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Abstract

The “rascal triangle” was introduced by three middle school students in 2010. In
this paper we describe number triangles that are generalizations of the rascal trian-
gle, and show that these generalized rascal triangles are characterized by arithmetic
sequences on all diagonals, as well as rascal-like multiplication and addition rules.

1 Introduction

In 2010, three middle school students—A. Anggaro, E. Liu, and A. Tulloch [1]—were asked
to determine the next row of numbers in the following triangular array:

1
1 1

1 2 1
1 3 3 1

? ? ? ? ?

Figure 1: A triangular array.

Instead of providing the expected answer

1 4 6 4 1

from Pascal’s triangle (sequence A007318 in the On-Line Encyclopedia of Integer Sequences
(OEIS) [4]), they produced the row
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1 4 5 4 1.

They did this by using the rule that the outside numbers are 1s and the inside numbers are
determined by the diamond formula

South =
East ·West + 1

North

where North, South, East, and West form a diamond in the triangular array as in Fig. 2.

North

South

EastWest

Figure 2: North, South, East, and West entries in a triangular array.

Continuing with this rule Anggaro, Liu, and Tulloch created a number triangle they
called the rascal triangle (sequence A077028 in the OEIS).

1
1 1

1 2 1
1 3 3 1

1 4 5 4 1
1 5 7 7 5 1

1 6 9 10 9 6 1
1 7 11 13 13 11 7 1

1 8 13 16 17 16 13 8 1

Figure 3: The first nine rows of the rascal triangle.

Because the diamond formula involves division, their instructor challenged Anggaro, Liu,
and Tulloch to prove that their formula would always result in an integer. They did this
by observing that the diagonals running from right to left in the rascal triangle formed
arithmetic sequences whose constant differences increased by one as they moved from one
diagonal to the next, as illustrated in Table 1 below.

First diagonal: 1, 1, 1, 1, . . .

Second diagonal: 1, 2, 3, 4, . . .

Third diagonal: 1, 3, 5, 7, . . .

Fourth diagonal: 1, 4, 7, 10, . . .

Table 1: The first four diagonals of the rascal triangle: sequences A000012, A000027,
A005408, and A016777 in the OEIS.
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In particular Anggaro, Liu, and Tulloch recognized that the kth entry on the rth diagonal
running from right to left is given by 1+rk, where r = 0 corresponds to the outside diagonal
consisting of all 1s, and k = 0 corresponds to the first entry on each diagonal. Thus in any
diamond as in Fig. 2, if South = 1 + rk, then East = 1 + r(k − 1), West = 1 + (r − 1)k,
and North = 1 + (r − 1)(k − 1).

North

South

EastWest

1 + rk

1 + (r − 1)k 1 + r(k − 1)

1 + (r − 1)(k − 1)

Figure 4: Algebraic Representation of North, East, West, and South.

A straightforward calculation then verifies that

South =
East ·West + 1

North
.

In the spring 2015 semester a mathematics for liberal arts class taught by my colleague,
Julian Fleron, discovered that the rascal triangle can also be generated by the rule that the
outside numbers are 1s and the inside numbers are determined by the formula

South = East + West−North + 1.

This formula also follows from the arithmetic sequences along the diagonals [2]. Thus, the
rascal triangle has the property that for any diamond as in Fig. 2, the South entry satisfies
two equations:

South =
East ·West + 1

North
, (1)

South = East + West−North + 1. (2)

The fact that both Eqs. (1) and (2) can be used to generate the rascal triangle was intriguing
to me, and I assumed that the rascal triangle was uniquely defined by either one of the two
equations; and so I began trying to prove that Eq. (2) implied Eq. (1) or vice versa. In
addition, I followed Fleron’s lead and had some of my mathematics for liberal arts classes
look for patterns in the rascal triangle, and to my delight they also made some original
discoveries [3]. During the following summer, while exploring the patterns found by my
students, I realized that there were other number triangles for which one equation held
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for the interior entries but the other did not, as will be shown below. This led me to the
realization that there was a larger class of number triangles, of which the rascal triangle was
but one example.

This paper is organized as follows. In Section 2 we look at some illustrative examples
and define generalized rascal triangles. In Section 3 we show that generalized rascal triangles
are characterized by the existence of modifications of both Eqs. (1) and (2). In Section 4
we conclude with proofs of some properties of generalized rascal triangles, including several
discovered by my students.

2 Motivating examples and generalized rascal triangles

Throughout this paper we will use the following conventions.

Definition 1. For any number triangle, the diagonals running from right to left will be
called the major diagonals while the diagonals running from left to right will be called the
minor diagonals.

(a) major diago-
nals.

(b) Minor diago-
nals.

We begin by looking at several examples of number triangles that motivated my explo-
ration, and eventual definition, of generalized rascal triangles.

Example 2. One of the first number triangles I created was the number triangle T in Fig. 6
(sequence A309555 in the OEIS) where the outside numbers are 3s and I used Eq. (2) to
find the interior numbers.

3
3 3

3 4 3
3 5 5 3

3 6 7 6 3
3 7 9 9 7 3

Figure 6: The first six rows of T .

This triangle is a “translation” of the rascal triangle, in that every entry in T is 2 more than
the corresponding entry in the rascal triangle. At this point I had begun to suspect that
there were number triangles other than the rascal triangle that satisfied both Eqs. (1) and (2)
so I expected that the interior numbers of T would also satisfy Eq. (1), and was surprised to
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discover that they did not. However, I soon realized that they did satisfy a modified version
of Eq. (1):

South =
West · East + 3

North
.

Example 3. Soon thereafter I created the number triangle S in Fig. 7 (sequence A309557 in
the OEIS) where the outside major diagonal is the sequence 2, 5, 8, 11, . . . (sequence A016789
in the OEIS), the outside minor diagonal is the sequence 2, 3, 4, 5, . . . (sequence A000027 in
the OEIS), and this time I used Eq. (1) to find the interior numbers.

2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

Figure 7: The first six rows of S.

I now correctly suspected the interior numbers would not satisfy Eq. (2), but quickly observed
that they did satisfy the modified version:

South = West + East + 2−North.

Further explorations with number triangles initially suggested to me that if the interior
numbers of a number triangle satisfied a modified version of one of Eq. (1) or (2) then they
also satisfied a modification of the other, as in Example 4.

Example 4. Let W be the number triangle in Fig. 8 (sequence A332790 in the OEIS).

1
3 4

5 11 7
7 18 19 10

9 25 31 27 13
11 32 43 44 35 16

Figure 8: The first six rows of W .

The outside major diagonal is the sequence 1, 3, 5, 7, . . . (sequence A005408 in the OEIS),
the outside minor diagonal is the sequence 1, 4, 7, 10, . . . (sequence A016777 in the OEIS),
and interior numbers satisfy neither Eqs. (1) nor (2). However, there are modifications of
both equations that work for all interior numbers,

South = West + East + 5−North

and

South =
West · East− 1

North
.
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I subsequently discovered that it is possible for the interior numbers in a number triangle
satisfy one of Eq. (1) or (2) but no modification of the other as illustrated in Examples 5 and 6
below.

Example 5. Let U be the number triangle in Fig. 9 (sequence A309559 in the OEIS) where
the outside major diagonal is the sequence 1, 2, 3, 4, . . . ) (sequence A000027 in the OEIS),
the outside minor diagonal is the sequence 1, 2, 4, 7, . . . (sequence A000124 in the OEIS),
and the interior numbers were generated using Eq. (2).

1
2 2

3 4 4
4 6 7 7

5 8 10 11 11
6 10 13 15 16 16

Figure 9: The first six rows of U .

In this case there is no modification of Eq. (1) that works for all interior numbers. To see
this, consider the two diamonds in Fig. 10.

1
2 2

3 4 4
4 6 7 7

5 8 10 11 11
6 10 13 15 16 16

Figure 10: Different diamonds in U .

For the diamond on the left, the modification of Eq. (1) would need to be

South =
West · East + 0

North

while for the diamond on the right, the modification of Eq. (1) would need to be

South =
West · East− 5

North
.

Example 6. Let V be the number triangle in Fig. 11 (sequence A332963 in the OEIS) in
which the outside diagonals are the alternating sequence 1, 2, 1, 2, . . . (sequence A000034 in
the OEIS) and the interior numbers were generated by Eq. (1).

1
2 2

1 5 1
2 3 3 2

1 7 2 7 1
2 4 5 5 4 2

Figure 11: The first six rows of V .
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Here there is no modification of Eq. (2) that works for all interior numbers. To see this,
consider the two diamonds in Fig. 12.

1
2 2

1 5 1
2 3 3 2

1 7 2 7 1
2 4 5 5 4 2

Figure 12: Different diamonds in V .

For the diamond on the left, the modification of Eq. (2) would need to be

South = West + East− 1−North

while for the diamond on the right, the modification of Eq. (2) would need to be

South = West + East− 2−North.

Note that for T , S, and W all the major and minor diagonals are arithmetic sequences
and the interior numbers satisfy equations similar to Eqs. (1) and (2). Whereas in U , some
of the diagonals are not arithmetic sequences and although the interior entries in U satisfy
Eq. (2), there is no modification of Eq. (1) that will work for all of the interior entries. While
in V, none of the diagonals are arithmetic sequences and although the interior entries in V
satisfy Eq. (1) there is no modification of Eq. (2) that will work for all of the interior entries.
This suggests that for number triangles with arithmetic sequences on both the major and
minor diagonals, the interior numbers satisfy two equations of the form Eqs. (1) and (2).
This motivates Definitions 8 and 9 below.

Notation 7. For a number triangle T we will use Tr,k to denote the kth entry on the rth major
diagonal with r = 0 corresponding to the outside major diagonal and k = 0 corresponding
to the first entry on each major diagonal. With this notation, T0,0 corresponds to the top
number of T . Note that on the minor diagonals, Tr,k denotes the rth entry on the kth minor
diagonal with k = 0 corresponding to the outside minor diagonal on the right and r = 0
corresponding to the first entry on each minor diagonal.

Definition 8. Let c, d, d1, d2 ∈ Z. A number triangle T is called a generalized rascal triangle
if

Tr,k = c+ kd1 + rd2 + rkd (3)

for all r, k ≥ 0. We will write T (c, d, d1, d2) for the generalized rascal triangle determined by
the constants c, d, d1, d2.

In a generalized rascal triangle T (c, d, d1, d2) we have that c = T0,0, the top entry, d1 =
T0,k+1 − T0,k, the arithmetic difference along the outside major diagonal, d2 = Tk+1,0 − Tk,0,
the arithmetic difference along the outside minor diagonal, and

d = (Tr+1,k+1 − Tr+1,k)− (Tr,k+1 − Tr,k) = (Tr+1,k+1 − Tr,k+1)− (Tr+1,k − Tr,k),
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the change in the arithmetic differences as we move from one major diagonal to the next
or move from one minor diagonal to the next. In particular, the rth major diagonal is the
arithmetic sequence

Mr(k) = (c+ rd2) + k(d1 + rd) (4)

and the kth minor diagonal is the arithmetic sequence

mk(r) = (c+ kd1) + r(d2 + kd). (5)

We now generalize Eqs. (1) and (2).

Definition 9. Let d,D ∈ Z and let T be a number triangle. If the interior numbers satisfy
the equation

Tr,k =
Tr−1,k · Tr,k−1 +D

Tr−1,k−1
(6)

we call this a rascal-like multiplication rule with multiplicative constant D; and if the interior
numbers satisfy

Tr,k = Tr−1,k + Tr,k−1 + d− Tr−1,k−1 (7)

that will be called a rascal-like addition rule with additive constant d.

Example 10. The generalized rascal triangle T (1, 1, 0, 0), which is defined by the equation

Tr,k = 1 + 0k + 0r + rk = 1 + rk,

has a constant sequence of 1s on the outside diagonals, and the arithmetic differences increase
by 1 as we move from one major (resp., minor) diagonal to the next. This is, of course, the
rascal triangle (sequence A077028 in the OEIS).

1
1 1

1 2 1
1 3 3 1

1 4 5 4 1
1 5 7 7 5 1

1 6 9 10 9 6 1
1 7 11 13 13 11 7 1

1 8 13 16 17 16 13 8 1

Figure 13: The first nine rows of the rascal triangle.

We will denote this triangle by R, and its equation by Rr,k = 1 + rk. As was mentioned
earlier, the interior numbers satisfy both the rascal-addition rule

Rr,k = Rr−1,k +Rr,k−1 + 1−Rr−1,k−1,

and the rascal-multiplication rule

Rr,k =
Rr−1,k ·Rr,k−1 + 1

Rr−1,k−1
.
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Example 11. The generalized rascal triangle T (2, 2, 3, 1), is the number triangle determined
by the equation

Tr,k = 2 + 3k + r + 2rk.

This number triangle has a top entry of c = 2, the outside major diagonal has an arithmetic
difference of d1 = 3 which gives the arithmetic sequence 2, 5, 8, 11, . . . (sequence A016789
in the OEIS), and the outside minor diagonal has an arithmetic difference of d2 = 1, which
gives the arithmetic sequence 2, 3, 4, 5, . . . (sequence A000027 in the OEIS). Moreover, the
arithmetic differences change by d = 2 as we move from one major (resp., minor) diagonal
to the next. This results in the number triangle S from Example 3 (sequence A309557 in
the OEIS).

2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

Figure 14: The first six rows of S = T (2, 2, 3, 1).

The rascal-like addition rule for S is

Tr,k = Tr−1,k + Tr,k−1 + 2− Tr−1,k−1

and the rascal-like multiplication rule for S is

Tr,k =
Tr−1,k · Tr,k−1 + 1

Tr−1,k−1
.

3 Addition and multiplication rules for generalized ras-

cal triangles

It is easy to show that every generalized rascal triangle has a rascal-like addition rule (7), and
a rascal-like multiplication rule (6) (see Proposition 14 below). My initial (naive) assumption
was that if a number triangle T had a rascal-like addition or rascal-like multiplication rule,
it was a generalized rascal triangle. However, as illustrated in Examples 5 and 6 above, the
existence of just a rascal-like addition rule or just a rascal-like multiplication rule for the
interior numbers is not sufficient for a number triangle to be a generalized rascal triangle.
Nevertheless, as we will show below, if the outside major and minor diagonals are arithmetic
sequences, then the existence of either a rascal-like addition rule or a rascal-like multiplication
rule for the interior numbers is both necessary and sufficient for a number triangle to be a
generalized rascal triangle.

We begin with two lemmas whose proofs are left to the reader.
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Lemma 12. Let T be a number triangle. If Tr,k is on the nth row, then r + k = n. (See
Fig. 15.)

Tn,0Tr,n−rT0,n

T0,0

Figure 15: Row n.

Lemma 13. Let c, d1, d2, r, k, d ∈ Z. Then(
c+ (k − 1)d1 + rd2 + r(k − 1)d

)(
c+ kd1 + (r − 1)d2 + (r − 1)kd

)
+ cd− d1d2

=
(
c+ kd1 + rd2 + rkd

)(
c+ (k − 1)d1 + (r − 1)d2 + (r − 1)(k − 1)d

)
.

We first show that generalized rascal triangles satisfy rascal-like addition and rascal-like
multiplication rules.

Proposition 14. Let c, d, d1, d2 ∈ Z and T (c, d, d1, d2) be the associated generalized rascal
triangle. Then for r, k ≥ 1

Tr,k = Tr,k−1 + Tr−1,k + d− Tr−1,k−1

and whenever Tr−1,k−1 6= 0

Tr,k =
Tr,k−1 · Tr−1,k +D

Tr−1,k−1

where D = cd− d1d2.

Proof. Since T is a generalized rascal triangle, Tr,k = c+kd1+rd2+rkd. Thus, when r, k ≥ 1

Tr,k−1 + Tr−1,k + d− Tr−1,k−1 = (c+ (k − 1)d1 + rd2 + r(k − 1)d)

+ (c+ kd1 + (r − 1)d2 + (r − 1)kd) + d

− (c+ (k − 1)d1 + (r − 1)d2 + (r − 1)(k − 1)d)

= c+ kd1 + rd2 + r(k − 1)d+ (r − 1)kd+ d− (r − 1)(k − 1)d

= c+ kd1 + rd2 + rkd− rd+ rkd− kd+ d− rkd+ rd+ kd− d
= c+ kd1 + rd2 + rkd

= Tr,k.
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To show that T has a rascal-like multiplication rule, let D = cd− d1d2 and suppose r, k ≥ 1.
Then by Lemma 13

Tr−1,k · Tr,k−1 +D =
(
c+ (k − 1)d1 + rd2 + r(k − 1)d

)(
c+ kd1 + (r − 1)d2 + (r − 1)kd

)
+ cd− d1d2

=
(
c+ kd1 + rd2 + rkd

)(
c+ (k − 1)d1 + (r − 1)d2 + (r − 1)(k − 1)d

)
= Tr,kTr−1,k−1.

Thus, when Tr−1,k−1 6= 0

Tr,k =
Tr−1,k · Tr,k−1 +D

Tr−1,k−1
.

Note that the additive constant d for the rascal-like addition rule is the same as the d in
the definition of the generalized rascal triangle.

We now prove that a number triangle that has arithmetic sequences on the outside
diagonals and satisfies either a rascal-like addition rule or a rascal-like multiplication rule
for the interior numbers must be a generalized rascal triangle.

Proposition 15. Let d1, d2, d ∈ Z and T be a number triangle with Tr,0 = T0,0 + rd2,
T0,k = T0,0 +kd1, and Tr,k = Tr,k−1 +Tr−1,k +d−Tr−1,k−1. Then there exists a constant c ∈ Z
such that T = T (c, d, d1, d2).

Proof. Let c = T0,0. To show that T = T (c, d, d1, d2), we first note that

Tr,0 = c+ rd2 = c+ 0d1 + rd2 + r · 0d

and
T0,k = c+ kd1 = c+ kd1 + 0d2 + 0 · kd,

so on the exterior diagonals, Tr,k = c + kd1 + rd2 + rkd. For the interior numbers Tr,k with
r, k ≥ 1, we prove that Tr,k = ckd1 + rd2 + rkd by induction on the row number n for n ≥ 2.
Note that we start with n = 2 since the rows n = 0 and n = 1 have no interior numbers.

For the case n = 2 note that by Lemma 12 we have that n = r+ k for each entry Tr,k on
the nth row; so suppose r, k ∈ N with r + k = 2. Since r, k ≥ 1, r + k = 2 means r = 1 and
k = 1 and so Tr,k−1 = T1,0 = c+ d2, Tr−1,k = T0,1 = c+ d1, and Tr−1,k−1 = T0,0 = c. Since

T1,1 = T0,1 + T1,0 + d− T0,0

we have
T1,1 = c+ d1 + c+ d2 + d− c = c+ d1 + d2 + d.
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Now inductively suppose that whenever r, k ∈ N with 2 ≤ r + k ≤ n − 1, we have that
Tr,k = c+kd1+rd2+rkd. Then for r+k = n we have (r−1)+k = n−1 and r+(k−1) = n−1.
Using the addition rule and the induction hypothesis we get that

Tr,k = Tr,k−1 + Tr−1,k + d− Tr−1,k−1
=
(
c+ (k − 1)d1 + rd2 + r(k − 1)d

)
+
(
c+ kd1 + (r − 1)d2 + (r − 1)kd

)
+ d

−
(
c+ (k − 1)d1 + (r − 1)d2 + (r − 1)(k − 1)d

)
= c+ kd1 + rd2 + rkd.

Thus, Tr,k = c + kd1 + rd2 + rkd for r, k ≥ 0, and so T is the generalized rascal triangle
T (c, d, d1, d2).

Proposition 16. Let D, d1, d2 ∈ Z and T be a number triangle with Tr,0 = T0,0 + rd2,

T0,k = T0,0 + kd1, Tr,k 6= 0 for all r, k ≥ 0 and Tr,k =
Tr,k−1 · Tr−1,k +D

Tr−1,k−1
. Then there exist

constants c, d ∈ Z such that T = T (c, d, d1, d2) and D = cd− d1d2.

Note that since we are assuming all the interior numbers satisfy a rascal-like multiplication
rule, we require that Tr,k 6= 0 for all r, k ≥ 0.

Proof. We first determine the constants c and d and establish the relation D = cd − d1d2.
Let c = T0,0 and d = T1,1 − T0,1 − T1,0 + T0,0. Next note that since T has a rascal-like
multiplication rule, we have that

T1,1 =
T1,0 · T0,1 +D

T0,0

which means
T0,0 · T1,1 = T1,0 · T0,1 +D.
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Moreover because Tr,k 6= 0 for all r, k ≥ 0, we have that c = T0,0 6= 0 and so

d =
dT0,0
T0,0

=
T0,0(T1,1 − T0,1 − T1,0 + T0,0)

T0,0

=
T0,0 · T1,1 − T0,0 · T0,1 − T0,0 · T1,0 + T 2

0,0

T0,0

=
(T0,1 · T1,0 +D)− T0,0 · T0,1 − T0,0 · T1,0 + T 2

0,0

T0,0

=
D + (T0,1 · T1,0 − T0,0 · T0,1 − T0,0 · T1,0 + T 2

0,0)

T0,0

=
D + (T0,1 − T0,0)(T1,0 − T0,0)

T0,0

=
D + d1d2

c
.

Thus,
D = cd− d1d2.

To prove that T = T (c, d, d1, d2), we first note that

Tr,0 = c+ rd2 = c+ 0d1 + rd2 + r · 0d

and
T0,k = c+ kd1 = c+ kd1 + 0d2 + 0 · kd,

so on the exterior diagonals, Tr,k = c + kd1 + rd2 + rkd. For the interior numbers Tr,k with
r, k ≥ 1, we prove Tr,k = ckd1 + rd2 + rkd by induction on the row number n for n ≥ 2. Note
that we start with n = 2 since the rows n = 0 and n = 1 have no interior numbers.

For the case n = 2 note that by Lemma 12 we have that n = r+ k for each entry Tr,k on
the nth row; so suppose r, k ∈ N with r + k = 2. Since r, k ≥ 1, r + k = 2 means r = 1 and
k = 1 and so Tr,k−1 = T1,0 = c+ d2, Tr−1,k = T0,1 = c+ d1, and Tr−1,k−1 = T0,0 = c. Since

d = T1,1 − T0,1 − T1,0 + T0,0,

we have
T1,1 = T0,1 + T1,0 − T0,0 + d = c+ d1 + d2 + d.

Now inductively suppose that whenever r, k ∈ N with 2 ≤ r + k ≤ n − 1 we have that
Tr,k = c+kd1+rd2+rkd. Then for r+k = n we have (r−1)+k = n−1 and r+(k−1) = n−1.
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Using the multiplication rule, the induction hypothesis, and Lemma 13 we have that

Tr,k =
Tr,k−1 · Tr−1,k +D

Tr−1,k−1

=
(c+ (k − 1)d1 + rd2 + r(k − 1)d)(c+ kd1 + (r − 1)d2 + (r − 1)kd) + cd− d1d2

(c+ (k − 1)d1 + (r − 1)d2 + (r − 1)(k − 1)d)

=
(c+ kd1 + rd2 + rkd)(c+ (k − 1)d1 + (r − 1)d2 + (r − 1)(k − 1)d)

(c+ (k − 1)d1 + (r − 1)d2 + (r − 1)(k − 1)d)

= c+ kd1 + rd2 + rkd.

Thus, Tr,k = c + kd1 + rd2 + rkd for r, k ≥ 0, and so T is the generalized rascal triangle
T (c, d, d1, d2).

Combining Propositions 14, 15 and 16 gives us the following theorem:

Theorem 17. Let c, d, d1, d2 ∈ Z and T be a number triangle with the arithmetic sequences
T0,k = c+ kd1 and Tr,0 = c+ rd2 on the exterior diagonals. Then T is the generalized rascal
triangle T (c, d, d1, d2) and if and only if

Tr,k = c+ kd1 + rd2 + rkd,

Tr,k = Tr,k−1 + Tr−1,k + d− Tr−1,k−1,

and whenever Tr−1,k−1 6= 0

Tr,k =
Tr−1,k · Tr,k−1 +D

Tr−1,k−1

where D = cd− d1d2.

We should note that generalized rascal triangles can contain entries that are zero. Since
they have both a rascal-like addition and a rascal-like multiplication, we will, in general, use
the rascal-like addition instead of the rascal-like multiplication.

4 Properties of generalized rascal triangles

4.1 Arithmetic diagonals implies a generalized rascal triangle

As we observed in Eqs. (4) and (5), if c, d, d1, d2 ∈ Z, then one consequence of the definition
of the generalized rascal triangle T (c, d, d1, d2) is that all major and minor diagonals are
arithmetic sequences. Not surprisingly, the converse of this observation is true. If all the
major and minor diagonals of a number triangle T are arithmetic sequences, then T is a
generalized rascal triangle.

We start by showing that if all the diagonals of a number triangle are arithmetic sequences
then the constant differences for these sequences change by a fixed amount as we move from
one diagonal to the next.
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Lemma 18. Let T be a number triangle with arithmetic sequences on all major and minor
diagonals and let Mr(k) = Tr,0 +kαr and mk(r) = T0,k +rβk denote the arithmetic sequences
on the major and minor diagonals respectively. Then there exists a constant d ∈ Z such that
d = αr − αr−1 = βk − βk−1 for all r, k ≥ 1.

Proof. Since Tr,k = Mr(k) = mk(r), Tr,k = Tr,k−1 + αr = Tr−1,k + βk ∀r, k ≥ 1. Let r, k ≥ 1
be arbitrary. Then,

Tr,k = Tr,k−1 + αr = Tr−1,k−1 + βk−1 + αr

= Tr−1,k + βk = Tr−1,k−1 + αr−1 + βk

which means
βk−1 + αr = αr−1 + βk,

if and only if
αr − αr−1 = βk − βk−1.

Since this is true for all r, k ≥ 1, if we let d = α1−α0 = β1−β0 we get that d = αr−αr−1 =
βk − βk−1 for all r, k ≥ 1.

Proposition 19. Let T be a number triangle with arithmetic sequences on all major and
minor diagonals. Then T is a generalized rascal triangle.

Proof. We must show that there exist constants c, d, d1, d2 ∈ Z such that T = T (c, d, d1, d2).
Let c = T0,0, and let Mr(k) = Tr,0 + kαr and mk(r) = T0,k + rβk denote the arithmetic
sequences on the major and minor diagonals respectively. By Lemma 18 there is a constant
d ∈ Z so that d = αr − αr−1 = βk − βk−1 for all r, k ≥ 1. Let d1 = T1,0 − T0,0 = α0 and
d2 = T0,1 − T0,0 = β0. Then

Tr,k = Mr(k) = Tr,0 + kαr = m0(r) + kαr = T0,0 + rβ0 + kαr

= c+ rd2 + k(αr−1 + d) = · · · = c+ rd2 + k(α0 + rd)

= c+ rd2 + kd1 + rkd.

Example 20. Consider the number triangle W (sequence A332790 in the OEIS) from Ex-
ample 4 in Section 2 (see Fig. 8). This number triangle has c = 1 and arithmetic sequences
on all diagonals. The first three major diagonals in W are the arithmetic sequences A005408,
A017029, and A017605 in the OEIS.

1, 3, 5, 7, . . .

4, 11, 18, 25, . . .

7, 19, 31, 43, . . .

...
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Since the constant difference on the outside major diagonal is 2, d1 = 2.
The first three minor diagonals in W are the arithmetic sequences A016777, A017101,

and A154609 in the OEIS.

1, 4, 7, 10, . . .

3, 11, 19, 27, . . .

5, 18, 31, 44, . . .

...

Since the constant difference on the outside minor diagonal is 3, d2 = 3.
Furthermore the differences for the arithmetic sequences change by 5 each time which

means d = 5 and so T = T (1, 5, 2, 3). Thus,

Tr,k = 1 + 3k + 2r + 5rk,

and the rascal-like addition rule is

Tr,k = Tr−1,k + Tr,k−1 + 5− Tr−1,k−1.

For the rascal-like multiplication rule

D = cd− d1d2 = 1 · 5− 2 · 3 = −1,

which means

Tr,k =
Tr−1,k · Tr,k−1 − 1

Tr−1,k−1

whenever, Tr−1,k−1 6= 0.

4.2 Uniqueness of the rascal triangle

While we have seen that the rascal triangle is not the only number triangle that is generated
by both a rascal-like multiplication rule and a rascal-like addition rule, the rascal triangle
is unique in the sense that if T is a generalized rascal triangle with d = 1 and c, d1, d2 ∈ Z
with D = cd− d1d2 = c− d1d2 = 1, then T sits inside the rascal triangle as a sub-triangle.

Definition 21. A number triangle T ′ is called a sub-triangle of a number triangle T if there
exists r0, k0 ∈ N such that T ′r,k = Tr0+r,k0+k, as illustrated in Fig. 16.
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Tr0,k0

Tr0,k0−1Tr0−1,k0

Tr0−1,k0−1

Tr0−1,k0+1 Tr0+1,k0−1

Tr0,k0+1 Tr0+1,k0

Tr0,k0+2

Tr0−1,k0+2

Tr0+1,k0+1 Tr0+2,k0Tr0−1,k0+2

Tr0+2,k0−1

Tr0+3,k0−1

T ′

T

Figure 16: Sub-triangle T ′ starting at Tr0,k0 .

Corollary 22. Let c, d1, d2 ∈ Z, such that c − d1d2 = 1 and let T be the generalized rascal
triangle T (c, 1, d1, d2). Then T is a sub-triangle of the rascal triangle R.

Proof. We have c = 1 + d1d2, so T0,0 = c = 1 + d1d2 = Rd1,d2 and

Tr,k = c+ kd1 + rd2 + rk

= 1 + d1d2 + kd1 + rd2 + rk

= 1 + (d1 + r)(d2 + k)

= Rd1+r,d2+k.

Thus T is the sub-triangle of R starting at Rd1,d2 .

Definition 23. A number triangle T ′ is called a multiple of a number triangle T if there
exists a constant m such that for r, k ≥ 0, T ′r,k = mTr,k.

The original rascal triangle R corresponds to the generalized rascal triangle T (1, 1, 0, 0).
If we take c = d and d1 = d2 = 0, then T (c, c, 0, 0) is a multiple of R.

Corollary 24. Let c ∈ Z and let T be the generalized rascal triangle T (c, c, 0, 0). Then
T = cR.

The proof of this is left to the reader.

4.3 Student discovered properties in generalized rascal triangles.

Over several semesters, I challenged students in my mathematics for liberal arts classes to
find patterns in the rascal triangle. To my delight, they discovered several properties that,
as far as I can tell, were unknown at the time [3]. Further investigations showed that these
properties were also present in generalized rascal triangles; we conclude by presenting proofs
of several of these properties, as well as some others, for generalized rascal triangles.

The first property about row sums, was discovered by Evan, who observed that the row
sums in the rascal triangle R = T (1, 1, 0, 0) had constant third differences. That is, they
exhibited cubic growth.
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Proposition 25. Let c, d, d1, d2 ∈ Z and T (c, d, d1, d2) be the associated generalized rascal
triangle; then the row sum sn for the nth row is

sn =
d

6
n3 +

(
d1 + d2

2

)
n2 +

(
c+

d1 + d2
2

− d

6

)
n+ c.

Proof. Since T is a generalized rascal triangle, Tr,k = c+ kd1 + rd2 + rkd. By Lemma 12 we
have k = n− r for every entry Tr,k on the nth row. Thus

sn =
n∑

r=0

(c+ (n− r)d1 + rd2 + r(n− r)d)

=
n∑

r=0

c+
n∑

r=0

n d1 −
n∑

r=0

d1r +
n∑

r=0

d2r +
n∑

r=0

n d r −
n∑

r=0

d r2

= (n+ 1)c+ (n2 + n)d1 −
(
n2 + n

2

)
d1 +

(
n2 + n

2

)
d2 +

(
n3 + n2

2

)
d

−
(

2n3 + 3n2 + n

6

)
d

=
d

6
n3 +

(
d1 + d2

2

)
n2 +

(
c+

d1 + d2
2

− d

6

)
n+ c.

For the next patterns, we need the following definition.

Definition 26. Let T denote a number triangle. For n ≥ 1, an n-diamond in T is the
diamond whose sides are formed by the entries Tr,k to Tr+n−1,k on the kth minor diagonal,
Tr+n−1,k to Tr+n−1,k+n−1 on the (r+ n− 1)st major diagonal, Tr+n−1,k+n−1 to Tr,k+n−1 on the
(k + n − 1)st minor diagonal, and Tr,k+n−1 to Tr,k on the rth major diagonal (see Fig. 17).
We call Tr,k the top number of the diamond.
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Tr+1,k

Tr+n−2,k

Tr+n−1,k

Tr+n−1,k+1

Tr+n−1,k+n−2

Tr+n−1,k+n−1

Tr+n−2,k+n−1

Tr+1,k+n−1

Tr,k+n−1

Tr,k+n−2

Tr,k+1

Tr,k

Figure 17: An n-diamond.

The following property was named after John, who discovered the original patterns about
nested diamonds in the rascal triangle R = T (1, 1, 0, 0).

Proposition 27 (John’s odd/even diamond patterns). Let c, d, d1, d2 ∈ Z and T (c, d, d1, d2)
be the associated generalized rascal triangle. Then T has the following diamond patterns:

i. (Odd diamond pattern.) Let D be a (2n + 1)-diamond in T whose top number is Tr,k
and whose center number is Tr+n,k+n as shown in Fig. 18.

Tr+1,k

Tr+2n−1,k

Tr+2n,k

Tr+2n,k+1

Tr+2n,k+2n−1

Tr+2n,k+2n

Tr+2n−1,k+2n

Tr+1,k+2n

Tr,k+2n

Tr,k+2n−1

Tr,k+1

Tr,k

Tr+n,k+n

Figure 18: (2n+ 1)-diamond

Then the average of the 8n entries along the edge of the diamond is Tr+n,k+n. That is,

1

8n

(
2n−1∑
i=0

Tr+i,k +
2n−1∑
i=0

Tr+2n,k+i +
2n−1∑
i=0

Tr+2n−i,k+2n +
2n−1∑
i=0

Tr,k+2n−i

)
= Tr+n,k+n.
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ii. (Even diamond pattern.) Let D1 be a 2-diamond whose top number is Tr,k, and for
n ≤ min{r, k} let Dn denote the 2n-diamond whose top entry is Tr−n+1,k−n+1 as shown
in Fig. 19.

Tr−n+2,k−n+1

Tr+n−1,k−n+1

Tr+n,k−n+1

Tr+n,k−n+2

Tr+n,k+n−1

Tr+n,k+n

Tr+n−1,k+n

Tr−n+2,k+n

Tr−n+1,k+n

Tr−n+1,k+n−1

Tr−n+1,k−n+2

Tr−n+1,k−n+1

Tr,k

Tr,+1kTr,k+1

Tr+1,k+1

Figure 19: 2n-diamond

Then the average of the entries along the edges of Dn is equal to the average of the
four entries along the edges of D1. That is,

1

8n− 4

(
2n−2∑
i=0

Tr−n+1+i,k−n+1 +
2n−2∑
i=0

Tr+n,k−n+1+i +
2n−2∑
i=0

Tr+n−i,k+n +
2n−2∑
i=0

Tr−n+1,k+n−i

)
=

1

4
(Tr,k + Tr+1,k + Tr+1,k+1 + Tr,k+1) .

Example 28. In the generalized rascal triangle T (2, 2, 3, 1) (sequence A309557 in the OEIS)
in Fig. 20, the average of the 8 numbers along the edge of the red 3-diamond is equal to the
center number 32.
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2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

20 28 32 32 28 20 8
23 33 39 41 39 33 23 9

26 38 46 50 50 46 38 26 10
29 43 53 59 61 59 53 43 29 11

Figure 20: John’s odd diamond pattern in T (2, 2, 3, 1).

18 + 23 + 28 + 39 + 50 + 41 + 32 + 25

8
= 32.

In the generalized rascal triangle T (2, 2, 3, 1) (sequence A309557 in the OEIS) in Fig. 21,
the average of the 12 numbers along the edge of the red 4-diamond is equal to the average
of the 4 numbers in the black 2-diamond in the center.

2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

20 28 32 32 28 20 8
23 33 39 41 39 33 23 9

26 38 46 50 50 46 38 26 10
29 43 53 59 61 59 53 43 29 11

Figure 21: John’s even diamond pattern in T (2, 2, 3, 1).

8 + 11 + 14 + 17 + 28 + 39 + 50 + 41 + 32 + 23 + 18 + 13

12
=

18 + 23 + 32 + 25

4
= 24.5.

Proof of Proposition 27. For the odd diamond pattern, we can regroup the terms in the
numerator as follows

2n−1∑
i=0

((
Tr+i,k + Tr+2n−i,k+2n

)
+
(
Tr+2n,k+i + Tr,k+2n−i

))
.
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Since T is a generalized rascal triangle we have that Tr,k = c+ kd1 + rd2 + rkd; so

Tr+i,k + Tr+2n−i,k+2n = (c+ kd1 + (r + i)(d2 + kd)) + (c+ (k + 2n)d1

+ (r + 2n− i)(d2 + (k + 2n)d))

= c+ kd1 + (r + i)(d2 + kd) + c+ kd1 + 2nd1 + (r − i)(d2 + kd)

+ (r − i)2nd+ 2n(d2 + kd) + 4n2d

= 2c+ 2kd1 + 2rd2 + rkd+ id2 + ikd+ 2nd1 + rkd− id2 − ikd+ 2nrd

− 2ndi+ 2nd2 + 2nkd+ 4n2d

= 2c+ (2kd1 + 2nd1) + (2rd2 + 2nd2) + (2rkd+ 2rnd+ 2knd+ 2n2d) + 2n2d

− 2ndi

= 2(c+ (k + n)d1 + (r + n)d2 + (r + n)(k + n)d) + 2n2d− 2ndi

= 2Tr+n,k+n + 2n2d− 2ndi; (8)

and

Tr+2n,k+i + Tr,k+2n−i = (c+ (r + 2n)d2 + (k + i)(d1 + (r + 2n)d))

+ (c+ rd2 + (k + 2n− i)(d1 + rd))

= c+ rd2 + 2nd2 + (k + i)(d1 + rd) + (k + i)2nd+ c+ rd2 + (k − i)(d1 + rd)

+ 2n(d1 + rd)

= c+ rd2 + 2nd2 + kd1 + rkd+ id1 + ird+ 2knd+ 2ndi+ c+ kd1 + rd2 + rkd

− id1 − ird+ 2nd1 + 2nrd+ 2n2d− 2n2d

= 2c+ (2rd2 + 2nd2) + (2kd1 + 2nd1) + (2rkd+ 2rnd+ 2knd+ 2n2d) + 2ndi

− 2n2d

= 2(c+ (k + n)d1 + (r + n)d2 + (r + n)(k + n)d) + 2ndi− 2n2d

= 2Tr+n,k+n + 2dni− 2n2d. (9)

Combining Eqs. (8) and (9) we get

(Tr+i,k + Tr+2n−i,k+2n) + (Tr+2n,k+i + Tr,k+2n−i)

= 2Tr+n,k+n + 2n2d− 2ndi+ 2Tr+n,k+n + 2ndi− 2n2d

= 4Tr+n,k+n.

Therefore

1

8n

(
2n−1∑
i=0

Tr+i,k +
2n−1∑
i=0

Tr+2n,k+i +
2n−1∑
i=0

Tr+2n−i,k+2n +
2n−1∑
i=0

Tr,k+2n−i

)

=
1

8n

(
2n−1∑
i=0

(
(Tr+i,k + Tr+2n−i,k+2n) + (Tr+2n,k+i + Tr,k+2n−i)

))

=
1

8n

(
2n−1∑
i=0

4Tr+n,k+n

)
=

1

8n
(8n · Tr+n,k+n) = Tr+n,k+n.
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For the even diamond pattern, we can regroup the terms in the sum of the edges of a
2n-diamond as follows:

2n−2∑
i=0

(
Tr−n+1+i,k−n+1 + Tr+n,k−n+1+i + Tr+n−i,k+n + Tr−n+1,k+n−i

)
.

Since T is a generalized rascal triangle we have that Tr,k = c+ kd1 + rd2 + rkd. Thus,

Tr−n+1+i,k−n+1 = c+ (k − n+ 1)d1 + (r − n+ 1 + i)d2 + (r − n+ 1 + i)(k − n+ 1)d

= c+ (k + 1)d1 − nd1 + (r + 1)d2 − (n− i)d2 + (r + 1)(k + 1)d

− (k + 1)(n− i)d− (r + 1)nd+ n(n− i)d
= Tr+1,k+1 − nd1 − (n− i)d2 − k(n− i)d− (n− i)d− rnd− nd+ n(n− i)d,

(10)

Tr+n,k−n+1+i = c+ (k − n+ 1 + i)d1 + (r + n)d2 + (r + n)(k − n+ 1 + i)d

= c+ (k + 1)d1 − (n− i)d1 + rd2 + nd2 + r(k + 1)d− r(n− i)d
+ (k + 1)nd− n(n− i)d

= Tr,k+1 − (n− i)d1 + nd2 − r(n− i)d+ knd+ nd− n(n− i)d, (11)

Tr+n−i−i,k+n = c+ (k + n)d1 + (r − n− i)d2 + (r + n− i)(k + n)d

= c+ kd1 + nd1 + rd2 + (n− i)d2 + rkd+ rnd+ k(n− i)d+ n(n− i)d
= Tr,k + nd1 + (n− i)d2 + rnd+ k(n− i)d+ n(n− i)d, (12)

Tr−n+1,k+n−i = c+ (k + n− i)d1 + (r − n+ 1)d2 + (r − n+ 1)(k + n− i)d
= c+ kd1 + (n− i)d1 + (r + 1)d2 − nd2 + (r + 1)kd+ (r + 1)(n− i)d
− nkd− n(n− i)d

= Tr+1,k + (n− i)d1 − nd2 + (r + 1)(n− i)d− nkd− n(n− i)d. (13)

Combining Eqs. (10)–(13) we get

Tr−n+1+i,k−n+1 + Tr+n,k−n+1+i + Tr+n−i,k+n + Tr−n+1,k+n−i

= Tr+1,k+1 − nd1 − (n− i)d2 − k(n− i)d− (n− i)d− rnd− nd+ n(n− i)d
+ Tr,k+1 − (n− i)d1 + nd2 − r(n− i)d+ knd+ nd− n(n− i)d
+ Tr,k + nd1 + (n− i)d2 + rnd+ k(n− i)d+ n(n− i)d
+ Tr+1,k + (n− i)d1 − nd2 + (r + 1)(n− i)d− nkd− n(n− i)d

= Tr+1,k+1 + Tr,k+1 + Tr,k + Tr+1,k.

23



Therefore

1

8n− 4

(
2n−2∑
i=0

(Tr−n+1+i,k−n+1 + Tr+n,k−n+1+i + Tr+n−i,k+n + Tr−n+1,k+n−i)

)

=
1

8n− 4

(
2n−2∑
i=0

(Tr+1,k+1 + Tr,k+1 + Tr,k + Tr+1,k)

)
=

1

8n− 4
(2n− 1)(Tr+1,k+1 + Tr,k+1 + Tr,k + Tr+1,k)

=
1

4
(Tr+1,k+1 + Tr,k+1 + Tr,k + Tr+1,k).

The remaining properties are recursive rules similar to the rascal-like addition rule in
Eq. (7) which allow us to determine Tr,k from entries in T that are in the rows above it.

The first three properties were named for Ashley, who discovered the original version for
the rascal triangle R = T (1, 1, 0, 0).

Proposition 29 (Ashley’s rule). Let c, d, d1, d2 ∈ Z and T (c, d, d1, d2) be the associated
generalized rascal triangle. Then

Tr,k = Tr−1,k + Tr,k−1 − Tr−2,k−1 + ((2− k)d− d2) (14)

for all r ≥ 2, k ≥ 1.

Note that the quantity (2−k)d−d2 in Eq. (14) depends only on the minor diagonal k that
contains Tr,k since the quantities d and d2 are fixed. When describing her original version
of Proposition 29 for the Rascal Triangle R = T (1, 1, 0, 0), Ashley called this quantity the
diagonal factor.

Notation 30. In Figs. 22–25 in Examples 31–33 the generalized rascal triangle is T (2, 2, 3, 1)
(sequence A309557 in the OEIS). The blue circle corresponds to Tr,k, the black boxes corre-
spond to the terms that are added and the red hexagons correspond to the terms that are
subtracted. The bold red diagonal in Fig. 22 is the diagonal factor (2− k)d− d2 in Eq. (14).

Example 31. If we let Tr,k = 59, then r = 5 and k = 4. Therefore Tr−1,k = T4,4 = 50,
Tr,k−1 = T5,3 = 46, Tr−2,k−1 = T3,3 = 32, and the diagonal factor is (2 − k)d − d2 = −5, as
illustrated in Fig. 22. Thus

Tr−1,k + Tr,k−1 − Tr−2,k−1 + ((2− k)d− d2) = 50 + 46− 32− 5 = 59 = Tr,k.
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2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

20 28 32 32 28 20 8
23 33 39 41 39 33 23 9

26 38 46 50 50 46 38 26 10
29 43 53 59 61 59 53 43 29 11

+3
+1

−1
−3

−5
−7

−9
−11

−13
−15

(2 − k)d − d2

Figure 22: Ashley’s rule for T (2, 2, 3, 1).

Proof of Proposition 29. Recall from Eq. (5) that on the kth minor diagonal, the entries
form the arithmetic progression c+ kd1 + r(kd+ d2) with common difference kd+ d2, hence
Tr−1,k + kd+ d2 = Tr,k for r ≥ 1, k ≥ 0. Thus

Tr,k−1 + Tr−1,k − Tr−2,k−1 + ((2− k)d− d2)
= Tr,k−1 + Tr−1,k − Tr−2,k−1 − (k − 1)d− d2 + d

= Tr,k−1 + Tr−1,k − (Tr−2,k−1 + (k − 1)d+ d2) + d

= Tr,k−1 + Tr−1,k − Tr−1,k−1 + d

= Tr,k

by Proposition 14.

My colleague, J. Fleron and I subsequently discovered three ways of modifying Ashley’s
rule so that the diagonal factor (2− k)d− d2 was not needed.

Proposition 32 (Modified Ashley’s rule). Let c, d, d1, d2 ∈ Z and T (c, d, d1, d2) be the asso-
ciated generalized rascal triangle; then for r, k ≥ 3

Tr,k = Tr−1,k + Tr,k−1 − Tr−2,k−1 − Tr−2,k−2 + Tr−3,k−2 (15)

= Tr,k−1 + Tr−1,k−1 − Tr−2,k−2 − Tr−2,k−3 + Tr−3,k−3 (16)

= Tr−1,k + Tr−1,k−1 − Tr−2,k−2 − Tr−3,k−2 + Tr−3,k−3. (17)

Example 33. For the first modification, Eq. (15), if we let Tr,k = 59 then r = 5 and k = 4.
Therefore Tr−1,k = T4,4 = 50, Tr,k−1 = T5,3 = 46, Tr−2,k−1 = T3,3 = 32, Tr−2,k−2 = T3,2 = 23,
and Tr−3,k−2 = T2,2 = 18, as shown in Fig. 23. Hence

Tr−1,k + Tr,k−1 − Tr−2,k−1 − Tr−2,k−2 + Tr−3,k−2 = 50 + 46− 32− 23 + 18 = 59 = Tr,k.
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2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

20 28 32 32 28 20 8
23 33 39 41 39 33 23 9

26 38 46 50 50 46 38 26 10
29 43 53 59 61 59 53 43 29 11

Figure 23: Modification 1 of Ashley’s rule for T (2, 2, 3, 1).

For the second modification, Eq. (16), if we let Tr,k = 59 then r = 5 and k = 4. Therefore
Tr,k−1 = T5,3 = 46, Tr−1,k−1 = T4,3 = 39, Tr−2,k−2 = T3,2 = 23, Tr−2,k−3 = T3,1 = 14, and
Tr−3,k−3 = T2,1 = 11, as illustrated in Fig. 24. Thus

Tr,k−1 + Tr−1,k−1 − Tr−2,k−2 − Tr−2,k−3 + Tr−3,k−3 = 46 + 39− 23− 14 + 11 = 59 = Tr,k.

2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

20 28 32 32 28 20 8
23 33 39 41 39 33 23 9

26 38 46 50 50 46 38 26 10
29 43 53 59 61 59 53 43 29 11

Figure 24: Modification 2 of Ashley’s rule for T (2, 2, 3, 1).

For the third modification, Eq. (17), if we let Tr,k = 59 then r = 5 and k = 4. Therefore
Tr−1,k = T4,4 = 50, Tr−1,k−1 = T4,3 = 39, Tr−2,k−2 = T3,2 = 23, Tr−3,k−2 = T2,2 = 18, and
Tr−3,k−3 = T2,1 = 11, as shown in Fig. 25. Thus

Tr−1,k + Tr−1,k−1 − Tr−2,k−2 − Tr−3,k−2 + Tr−3,k−3 = 50 + 39− 23− 18 + 11 = 59 = Tr,k.
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2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

20 28 32 32 28 20 8
23 33 39 41 39 33 23 9

26 38 46 50 50 46 38 26 10
29 43 53 59 61 59 53 43 29 11

Figure 25: Modification 3 of Ashley’s rule for T (2, 2, 3, 1).

Proof of Proposition 32. For Eq. (15):

Tr−1,k + Tr,k−1 − Tr−2,k−1 − Tr−2,k−2 + Tr−3,k−2

= (c+ kd1 + (r − 1)d2 + (r − 1)kd)

+ (c+ (k − 1)d1 + rd2 + r(k − 1)d)

− (c+ (k − 1)d1 + (r − 2)d2 + (r − 2)(k − 1)d)

− (c+ (k − 2)d1 + (r − 2)d2 + (r − 2)(k − 2)d)

+ (c+ (k − 2)d1 + (r − 3)d2 + (r − 3)(k − 2)d)

= c+ kd1 + rd2 − d2 + rkd− kd

+ c+ kd1 − d1 + rd2 + rkd − rd

− c− kd1 + d1 − rd2 + 2d2 − rkd+ 2kd+ rd− 2d

− c− kd1 + 2d1 − rd2 + 2d2 − rkd+ 2kd+ 2rd− 4d

+ c+ kd1 − 2d1 + rd2 − 3d2 + rkd− 3kd− 2rd+ 6d

= c+ kd1 + rd2 + rkd = Tr,k.
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For Eq. (16):

Tr,k−1 + Tr−1,k−1 − Tr−2,k−2 − Tr−2,k−3 + Tr−3,k−3

= (c+ (k − 1)d1 + rd2 + r(k − 1)d)

+ (c+ (k − 1)d1 + (r − 1)d2 + (r − 1)(k − 1)d)

− (c+ (k − 2)d1 + (r − 2)d2 + (r − 2)(k − 2)d)

− (c+ (k − 3)d1 + (r − 2)d2 + (r − 2)(k − 3)d)

+ (c+ (k − 3)d1 + (r − 3)d2 + (r − 3)(k − 3)d)

= c+ kd1 − d1 + rd2 + rkd− rd
+ c+ kd1 − d1 + rd2 − d2 + rkd− rd− kd+ d

− c− kd1 + 2d1 − rd2 + 2d2 − rkd+ 2rd+ 2kd− 4d

− c− kd1 + 3d1 − rd2 + 2d2 − rkd+ 3rd+ 2kd− 6d

+ c+ kd1 − 3d1 + rd2 − 3d2 + rkd− 3rd− 3kd+ 9d

= c+ kd1 + rd2 + rkd = Tr,k.

The proof for Eq. (17) follows immediately from Eq. (16) by replacing Tr,k−1 by Tr−1,k +
d2 − d1 + (k0 − r0 − 1)d and Tr−2,k−3 by Tr−3,k−2 + d2 − d1 + (k0 − r0 − 1)d. These last steps
are a consequence of applying Lemma 34 below to the two adjacent columns C1 and C2 of
T which contain Tr−3,k−2 and Tr−1,k and Tr,k−1 and Tr−2,k−3 respectively; and where Tr0,k0 is
the entry in column C1 that is in the first row of T that contains entries from both C1 and
C2 as illustrated in Fig. 26 where the boxed entries denote the columns C1 and C2.

Tr,k

Tr−1,k Tr,k−1

Tr−1,k−1

Tr−2,k−1

Tr−2,k−2

Tr−1,k−2

Tr−3,k−2 Tr−2,k−3

Tr0,k0 Tr0+1,k0−1

Tr0+1,k0

Tr+1,k−1

Tr,k−2

Tr−1,k−3

Tr0+2,k0−1

Tr−1,k+1

Tr−2,k

Tr−3,k−1

Tr0,k0+1

Figure 26: Columns of T for the proof of Eq. (17).
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Lemma 34 (Constant difference between parallel columns). Let c, d, d1, d2 ∈ Z and let C1

and C2 be two columns in the associated generalized rascal triangle T (c, d, d1, d2) with C2 m
spaces to the right of C1. If n0 is the first row of T containing entries in C1 and C2 and n
is any row of T below n0 containing entries in C1 and C2, then the difference between the
entries of C1 and C2 in row n0 is the same as the difference between the entries of C1 and
C2 in row n. More precisely, if Tr0,k0 and Tr1,k1 are the entries in C1 and C2 respectively in
row n0 and Tr2,k2 and Tr3,k3 are the entries in C1 and C2 respectively in row n, then

Tr3,k3 − Tr2,k2 = Tr1,k1 − Tr0,k0 = md2 −md1 + (k0 − r0 −m)md.

Example 35. Using the generalized rascal triangle T (2, 2, 3, 1) (sequence A309557 in the
OEIS), consider the two columns in T indicated by the boxed numbers in Fig. 27. Here
n0 = 4 with Tr0,k0 = T1,3 = 18 and m = 3, so

md2 −md1 + (k0 − r0 −m)md = 3 · 1− 3 · 3 + (3− 1− 3) · 3 · 2 = −12,

which is the difference between entries of the two columns that are in the same row.

6− 18 = 20− 32 = 38− 50 = −12.

2
5 3

8 8 4
11 13 11 5

14 18 18 14 6
17 23 25 23 17 7

20 28 32 32 28 20 8
23 33 39 41 39 33 23 9

26 38 46 50 50 46 38 26 10
29 43 53 59 61 59 53 43 29 11

Figure 27: Constant Difference Between Parallel Columns for T (2, 2, 3, 1).

Proof of Lemma 34. Since Tr0,k0 is the entry in C1 on row n0 and C2 is m spaces to the right
of C1, the entry in C2 in row n0 is Tr1,k1 = Tr0+m,k0−m by Lemma 12. Furthermore, because
entries in a column occur in every two rows of T , there is an integer j so that n = n0 + 2j.
Thus the entries on the row n0 + 2j in the columns C1 and C2 are Tr2,k2 = Tr0+j,k0+j and
Tr3,k3 = Tr0+m+j,k0−m+j respectively (see Fig. 28).
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Tr0,k0 Tr0+m,k0−m

Tr0+j,k0+j Tr0+m+j,k0−m+j

C1 C2

Tr0+1,k0 Tr0+m,k0−m+1

Tr0+1,k0+1 Tr0+m+1,k0−m+1

Tr0+2,k0+1 Tr0+m+1,k0−m+2

Row

n0

n0 + 1

n0 + 2

n0 + 3

n0 + 2j

Tr0+j,k0+j−1 Tr0+m+j−1,k0−m+jn0 + 2j − 1

Tr0+2,k0+2 Tr0+m+2,k0−m+2n0 + 4

Figure 28: Entries in columns C1 and C2 in rows n0 to n0 + 2j.

Therefore,

Tr0+m,k0−m − Tr0,k0 = c+ (k0 −m)d1 + (r0 +m)d2 + (r0 +m)(k0 −m)d

− (c+ k0d1 + r0d2 + r0k0d)

= md2 −md1 + (k0 − r0 −m)md,

and

Tr0+m+j,k0−m+j − Tr0+j,k0+j = c+ (k0 −m+ j)d1 + (r0 +m+ j)d2 + (r0 +m+ j)(k0 −m+ j)d

− (c+ (k0 + j)d1 + (r0 + j)d2 + (r0 + j)(k0 + j)d)

= md2 −md1 + (k0 − r0 −m)md.

The final property was named after Timothy and Meg who originally discovered the
original version for the rascal triangle R = T (1, 1, 0, 0). Note that this property only applies
to generalized rascal triangles with d1 = d2 = 0.

Proposition 36 (T-Meg rule). Let c, d ∈ Z and T (c, d, 0, 0) be the associated generalized
rascal triangle; then

Tr,k = T0,r+k−2 + T1,r+k−3 + Tr−1,k−1 + 2(d− c)

for r ≥ 1, k ≥ 2.

Notation 37. In Figs. 29–31 in Examples 38–40 the generalized rascal triangle is T (3, 1, 0, 0)
(sequence A309555 in the OEIS). The blue circle corresponds to Tr,k, the black squares and
diamonds correspond to the three terms from the row two above Tr,k that are being added.
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Example 38. If we let Tr,k = T3,3 = 12 then r = 3 and k = 3. Therefore T0,r+k−2 = T0,4 = 3,
T1,r+k−3 = T1,3 = 6, Tr−1,k−1 = T2,2 = 7, and 2(d− c) = −4. Thus,

T0,r+k−2 + T1,r+k−3 + Tr−1,k−1 + 2(d− c) = 12 = 3 + 6 + 7− 4 = 12 = Tr,k.

3
3 3

3 4 3
3 5 5 3

3 6 7 6 3
3 7 9 9 7 3

3 8 11 12 11 8 3

Figure 29: T-Meg rule for T (3, 1, 0, 0).

Note that Proposition 36 is true even when Tr,k is the second or third entry in a row,
i.e., r = 1 or 2. When r = 1, then Tr−1,k−1 = T0,k−1 = T0,r+k−2 and when r = 2, Tr−1,k−1 =
T1,k−1 = T1,r+k−3 and so when r = 1 or 2 one of the one of the terms in the row two above
Tr,k is being added twice.

Example 39. If we let Tr,k = T2,4 = 11 then r = 2 and k = 4. Hence T0,r+k−2 = T0,4 = 3,
T1,r+k−3 = Tr−1,k−1 = T1,3 = 6 and 2(d− c) = −4. Thus,

T0,r+k−2 + T1,r+k−3 + Tr−1,k−1 + 2(d− c) = 3 + 6 + 6− 4 = 11 = Tr,k.

3
3 3

3 4 3
3 5 5 3

3 6 7 6 3
3 7 9 9 7 3

3 8 11 12 11 8 3

Figure 30: T-Meg rule for T (3, 1, 0, 0).

Example 40. If we let Tr,k = T1,5 = 8 then r = 1 and k = 5. Therefore T0,r+k−2 =
Tr−1,k−1 = T0,4 = 3, T1,r+k−3 = 6 and 2(d− c) = −4. Thus,

T0,r+k−2 + T1,r+k−3 + Tr−1,k−1 + 2(d− c) = 3 + 6 + 3− 4 = 8 = Tr,k.

3
3 3

3 4 3
3 5 5 3

3 6 7 6 3
3 7 9 9 7 3

3 8 11 12 11 8 3

Figure 31: T-Meg rule for T (3, 1, 0, 0).
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Proof of Proposition 36. Since d1 = d2 = 0 we have Tr,k = c+ rkd. Thus,

T0,r+k−2 + T1,r+k−3 + Tr−1,k−1 + 2(d− c)
= (c+ 0(r + k − 2)d) + (c+ 1(r + k − 3)d) + (c+ (r − 1)(k − 1)d) + 2d− 2c

= c+ c+ rd+ kd− 3d+ c+ rkd− rd− kd+ d+ 2d− 2c

= c+ rkd = Tr,k.

5 Conclusion

The results in this paper grew out of explorations by mathematics for liberal arts students
looking for patterns in the rascal triangle (sequence A077028 in the OEIS). My students
enthusiasm and insights inspired me to look more deeply at the structure of the rascal triangle
and the roles that Eqs. (1) and (2) played in that structure, which led to the generalized
rascal triangles.

As these triangles are closely related to the rascal triangle and Pascal’s triangle (sequence
A007318 in the OEIS) it is natural to ask if they are as rich mathematically as those tri-
angles. In particular, what other relationships are there between the entries, and are there
combinatorial interpretations of the entries for generalized rascal triangles? Brandt Kron-
holm and his student Jena Gregory, at the University of Texas, Rio Grande Valley, have
begun investigating this last question using generating functions and an infinite sequence of
number triangles whose limiting triangle is Pascal’s triangle.
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