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Abstract

Abundancy ratios are rational numbers k
m satisfying σ(N)

N = k
m for some N ∈ Z≥1,

where σ is the sum-of-divisors function. In this paper we examine abundancy ratios
of the form σ(m)+1

m , where gcd(m,σ(m) + 1) = 1. Defining D to be a quasi-friendly

divisor of N if σ(N)
N = σ(D)+1

D with D|N , our main results characterize all possible
quasi-friendly divisors D having two or more distinct prime divisors and satisfying
gcd(D,σ(D) + 1) = 1. In fact, we prove that no such quasi-friendly divisor can have
more than two distinct prime divisors.

1 Introduction

The abundancy index of a positive integer n is defined to be the ratio I(n) = σ(n)
n

, where
σ is the sum-of-divisors function defined by σ(n) =

∑

d|n d. If I(n) is an integer, then n

is said to be multiply perfect and in the case where I(n) = 2, the integer n is said to be
perfect. All known perfect numbers are even, having the form 2p−1(2p − 1), where 2p − 1
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is a Mersenne prime (meaning p must be prime, as well). Whether or not there exists an
odd perfect number is a long-standing open question, although there are a number of results
restricting the form and size of an odd perfect number should one exist. For example, if
an odd perfect number exists, then it must be larger than 101500 and have at least 101 (not
necessarily distinct) prime divisors [7, 3]. It must have at least 10 distinct prime divisors [6].
Probably the most well-known result about odd perfect numbers is Euler’s characterization
which states that an odd perfect number must have the form pαm2, where p, m and α are
positive integers, p is a prime not dividing m, and p ≡ α ≡ 1 (mod 4).

In fact, the existence of an odd perfect number is equivalent to the existence of a positive
integer N satisfying σ(N)/N = (2pα(p−1))/(pα+1−1), where, again, N , p, and α are positive
integers, p is a prime not dividing m, and p ≡ α ≡ 1 (mod 4) [4]. Hence, the existence of
odd perfect numbers can be better understood with a greater understanding of the map
I : Z≥1 → Q defined by I(n) = σ(n)/n. It is generally very difficult to determine whether a
given rational number k/m > 1 is in the image of the map I, meaning k/m is an abundancy
ratio, or whether k/m /∈ Image(I), in which case k/m is said to be an abundancy outlaw or
outlaw. However, there are partial results that can be used to characterize certain families of
abundancy outlaws within the rationals [8, 10]. For example, C. W. Anderson proved that
if k,m ∈ Z≥1 satisfy gcd(k,m) = 1 with m < k < σ(m), then k

m
is an outlaw, see [1] or

[11]. Hence, the object of our study, σ(m)+1
m

, is the smallest ratio for a fixed denominator m
where the abundancy status is unknown. In the early 1970’s Anderson conjectured that the
set Image(I) is a recursive set, meaning that there exists a recursive algorithm that can be
employed to determine whether or not a given rational number k/m is an outlaw [2]. This
remains an open problem today.

A well-known open problem related to perfect numbers is whether or not 5
3
= σ(3)+1

3

is an abundancy ratio. The question is interesting because if σ(d)
d

= 5
3
, then 5d is an odd

perfect number. (It is not hard to show that if such a d were to exist, then 5∤ d, meaning
σ(5d)
5d

= σ(5)
5

· σ(d)
d

= 6
5
· 5
3
= 2. For a complete proof, see [11].) More generally, it is not yet

known whether p+2
p

= σ(p)+1
p

is an abundancy ratio for any odd prime p.

In this paper we report on our efforts to understand abundancy ratios of the form σ(N)
N

=
σ(D)+1

D
, where D is a positive integer and gcd(D, σ(D) + 1) = 1. The symbol D was chosen

here to emphasize the fact that if σ(N)
N

= σ(D)+1
D

for two integers N and D where D and
σ(D) + 1 are relatively prime, then D must be a divisor of N . (This follows from Property
12 in Section 3).

Definition 1. For M,N ∈ Z≥1, we say M is a quasi-friend to N if

σ(M) + 1

M
=

σ(N)

N
.

If, additionally, M |N then we say M is a quasi-friendly divisor of N .

Remark 2. The term “quasi-friend” was inspired by the notion of friendly numbers, which
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is the term applied to a pair of distinct integers M and N satisfying σ(M)
M

= σ(N)
N

.1 Hence,

if σ(M)+1
M

= σ(N)
N

, then in some sense M and N are almost friendly. We decided to avoid
the word “almost” here because an almost perfect number is a positive integer n satisfying
σ(n) = 2n− 1, falling short of perfection by 1. It seemed more fitting to use the combining
form “quasi” because a quasiperfect number is a positive integer n exceeding perfection, with
σ(n) = 2n+ 1.

Remark 3. A pair of integers M,N is required when defining a quasi-friendly divisor. A
quasi-friendly divisor M of N is not necessarily a quasi-friendly divisor of other multiples
of M . For example, M = 1 divides every integer, but it is a quasi-friendly divisor of only
the perfect numbers (since N perfect implies σ(N)

N
= 2 = σ(1)+1

1
). More generally, it is easy

to check that every power of 2 smaller than 2p is a quasi-friendly divisor of an even perfect
number 2p−1(2p − 1), but D = 20 = 1 is the only quasi-friendly divisor where σ(D)+1

D
is

reduced.

Table 1 of Section 2 presents all N < 1010 having a quasi-friendly divisor D with σ(D)+1
D

reduced. The data reveals families of even and odd quasi-friendly divisors. Motivated by
the data, we prove there are infinitely many abundancy ratios of the form σ(D)+1

D
. In Section

3 we present some preliminary properties and propositions relating to the σ function used
in proving the results in Sections 4 and 5. Our main results characterize all possible pairs
(D,N), where D has at least two distinct prime divisors and D is a quasi-friendly divisor

of N with σ(D)+1
D

reduced. Our results confirm what the data reveals. All instances of D
appearing in the table have at most two distinct prime divisors, and we prove that if D has
three or more distinct prime divisors and gcd(D, σ(D)+1) = 1, then σ(D)+1

D
is an abundancy

outlaw. We also completely characterize all quasi-friendly divisors D of an integer N when
D has precisely two distinct prime divisors. The only other case—where D is the power of
a single prime—remains unresolved. We do characterize the even-powered primes, D = q2l,
appearing in Table 1; they all arise from values of N satisfying gcd(D,N/D) = 1. In Section
5 we present some partial results regarding values of N and D, where D = qb for some
b ∈ Z≥1 with gcd(D,N/D) > 1. Of course, it is this last unresolved case that initially
motivated our study.

2 What the data reveals

Before presenting our results, it will be useful to look at some data. Table 1 lists all values
of N less than 1010 satisfying σ(N)

N
= σ(D)+1

D
for some D ∈ Z≥1, with gcd(D, σ(D) + 1) = 1.2

The values of such N make up sequence A240991 from the On-Line Encyclopedia of Integer

1If M 6= N and σ(M)
M

= σ(N)
N

, then gcd(M,σ(M)) 6= 1 and gcd(N,σ(N)) 6= 1. Any N satisfying
gcd(N,σ(N)) = 1 is necessarily solitary, meaning N is the only integer having abundancy ratio equal to
σ(N)
N

. For example, all primes are solitary by Proposition 14.
2The entries in the table were identified by searching all N ∈ Z≥1 up to 1010 satisfying

numerator
(

reduced
(

σ(N)
N

))

= σ
(

denominator
(

reduced
(

σ(N)
N

)
))

+ 1.
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Sequences (OEIS) [9], although it does not appear that anyone had studied the form of these
integers prior to this paper.

6, 18, 28, 117, 162, 196, 496, 775, 1458, 8128, 9604, 13122, 15376, 19773, 24025, 88723,
118098, 257049, 470596, 744775, 796797, 1032256, 1062882, 2896363, 6725201, 9565938,
12326221, 14776336, 23059204, 25774633, 27237961, 33550336,... (OEIS A240991)

A close examination of the table reveals clear patterns relating to the factorizations of
both N and their quasi-friendly divisors, D. All values of D > 1 have the form D = qbpa,
where p = σ(qb) is prime and b, a ∈ Z≥0. In such instances, N = qbpa+1. (In the case where
q = 2, this means p = σ(2b) = 2b+1 − 1 is a Mersenne prime.) If D = 1, then N is a perfect
number. In Theorem 4 below we confirm that integers N of the aforementioned forms do
satisfy σ(N)

N
= σ(D)+1

D
and then use the result to prove there are infinitely many abundancy

ratios of the form σ(D)+1
D

.

Theorem 4. Let p, q be primes and a, b ∈ Z≥0. If σ(qb) = p, then D = qbpa is a quasi-
friendly divisor of N = qbpa+1.

Proof. Assuming the hypotheses in the theorem and using the fact that pσ(pa)+1 = σ(pa+1)
for every prime p, we find

σ(N)

N
=

σ(qb)σ(pa+1)

qbpa+1
=

pσ(pa+1)

qbpa+1
=

pσ(pa) + 1

qbpa
=

σ(qb)σ(pa) + 1

qbpa
=

σ(D) + 1

D
.

Definition 5. If D = qbpa is a quasi-friendly divisor of N = qbpa+1, where a, b ∈ Z≥1 and
q, p = σ(qb) are both primes, then we say that D is a standard quasi-friendly divisor of N .

The following proposition (which is not new) characterizes those integers having a prime-
valued sum of divisors. The result ensures that the exponent b in D = qbpa must be one less
than a prime number.

Proposition 6. For n ∈ Z≥1, if σ(n) is prime, then n = qb for some prime q and some
positive integer b, with b+ 1 prime.

Proof. If n has two or more distinct prime divisors then σ(n) is composite because σ is a
multiplicative function. Thus n = qb is a power of a prime q. Clearly b ≥ 1 (since σ(1) = 1
is not prime). Now, if b+ 1 is composite, say b+ 1 = rs with r, s ∈ Z≥2, then

σ(qb) =
qrs − 1

q − 1
=

qr − 1

q − 1

(

qr(s−1) + qr(s−2) + · · ·+ qr + 1
)

is composite. Therefore, n = qb where b+ 1 is prime.

Given a standard quasi-friendly divisor D of N , we now characterize precisely when the
ratio σ(D)+1

D
is reduced.
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N D
2 · 3 1
2 · 32 2 · 3
22 · 7 1
32 · 13 32

2 · 34 2 · 33

22 · 72 22 · 7
24 · 31 1
52 · 31 52

2 · 36 2 · 35

26 · 127 1
22 · 74 22 · 73

2 · 38 2 · 37

24 · 312 24 · 31
32 · 133 32 · 132

52 · 312 52 · 31
172 · 307 172

2 · 310 2 · 39

32 · 134 32 · 133

22 · 76 22 · 75

52 · 313 52 · 312

36 · 1093 36

26 · 1272 26 · 127
2 · 312 2 · 311

412 · 1723 412

74 · 2801 74

2 · 314 2 · 313

N D
592 · 3541 592

24 · 314 24 · 313

22 · 78 22 · 77

712 · 5113 712

172 · 3072 172 · 307
212 · 8191 1
32 · 136 32 · 135

892 · 8011 892

2 · 316 2 · 315

1012 · 10303 1012

1312 · 17293 1312

56 · 19531 56

32 · 137 32 · 136

52 · 315 52 · 314

2 · 318 2 · 317

1672 · 28057 1672

134 · 30941 134

1732 · 30103 1732

22 · 710 22 · 79

412 · 17232 412 · 1723
2 · 320 2 · 319

2932 · 86143 2932

174 · 88741 174

172 · 3073 172 · 3072

216 · 131071 1

Table 1: Values of N and D satisfying σ(N)
N

= σ(D)+1
D

, where gcd(σ(D) + 1, D) = 1 and
N ≤ 1010 (left: 1 ≤ N ≤ 107 and right: 107 ≤ N ≤ 1010)
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Proposition 7. Let D = qbpa be a standard quasi-friendly divisor of N = qbpa+1. Then
gcd(D, σ(D) + 1) = 1 (or, in other words, the fraction σ(D)+1

D
is written in lowest terms) if

and only if q ∤ (a+ 2).

Proof. Since σ(D) + 1 = σ(qb)σ(pa) + 1 = pσ(pa) + 1 is relatively prime to p, it suffices to
characterize when σ(D) + 1 is divisible by q. Since

p = σ(qb) = qb + qb−1 + · · ·+ q + 1 ≡ 1 (mod q)

we see that

σ(D) + 1 = pσ(pa) + 1 =
a+1
∑

i=0

pi ≡
a+1
∑

i=0

1i ≡ a+ 2 (mod q).

Thus gcd(D, σ(D) + 1) = 1 if and only if q ∤ (a+ 2).

Corollary 8. There are infinitely many abundancy ratios of the form σ(D)+1
D

(in reduced
form).

Proof. Take D = 21 · 3a where a is odd. Then a + 2 is also odd and therefore 2 ∤ a + 2.

Applying Proposition 7, we conclude that σ(D)+1
D

is an abundancy ratio in reduced form. If
one desires D to be odd, take D = 32 · 13a where 3 ∤ (a+ 2).

In the rest of this paper, we present results discovered while trying to determine if there
are any other integers N (that is, not described in Theorem 4) having a quasi-friendly divisor.
We will need some preliminaries first.

3 Preliminaries

The range of the map I : Z≥1 → (1,∞) is a complicated set. In fact, I is known to be
a dense map [5], and the set of abundancy outlaws is also dense in (1,∞) [2]. Existing
results characterizing families of rational numbers as abundancy outlaws make use of some
basic properties relating to the sum-of-divisors function. We provide the properties and
propositions needed for the current study below.

Property 9. Given n ∈ Z≥1 with n odd, σ(n) is odd if and only if n is a square.

Property 10. If k,N ∈ Z≥1 then σ(kN)
kN

≥ σ(N)
N

, with strict inequality when k ≥ 2.

Property 11. If p is a prime and e is a positive integer, then

p+ 1

p
≤

σ(pe)

pe
<

p

p− 1
.

Property 12. If σ(N)
N

= K
M

with gcd(K,M) = 1, then M |N .
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For the first property observe that if n =
∏k

i=1 p
ei
i , with pi > 2, then σ(n) ≡

∏k
i=1(ei+1)

(mod 2), and
∏k

i=1(ei + 1) ≡ 1 (mod 2) iff ei ≡ 0 (mod 2) for all 1 ≤ i ≤ k, iff n is a square.

Property 10 is true because σ(kN)
kN

=
∑

d|kN d

kN
≥

∑
d|N (kd)

kN
=

∑
d|N d

N
= σ(N)

N
for all k ∈ Z≥1,

and Property 11 follows from the formula σ(pe)
pe

= pe+1−1
pe(p−1)

. Certainly, pe+1−1
pe(p−1)

< pe+1

pe(p−1)
= p

p−1
,

and p+1
p

= σ(p)
p

≤ σ(pe)
pe

. Finally, Property 12 follows quickly from the fact that M |(NK)

whenever σ(N)/N = K/M . Since K and M are relatively prime, M |N .
While it is seemingly impossible to classify many rational numbers as abundancy ratios

or outlaws, there are certain cases where the classification is simple. Proposition 13, which
first appeared in [1] but also appears in [11], is particularly helpful.

Proposition 13. If k,m ∈ Z≥1 are relatively prime and m < k < σ(m), then k
m

is an
abundancy outlaw.

Proof. Assume σ(N)
N

= k
m
, for k,m,N ∈ Z≥1, where k and m are relatively prime. By

Property 12, m|N , and therefore σ(N)
N

≥ σ(m)
m

by Property 10. Hence k
m

≥ σ(m)
m

, meaning
k ≥ σ(m). Clearly, if m < k < σ(m), then k

m
is an outlaw.

To see Proposition 13 at work, consider the rational numbers 10
9
and 11

9
. Since σ(9) = 13

and 9 < 10 < 11 < 13, both rationals are easily classified as abundancy outlaws. More
generally, m+1

m
is an outlaw for every composite number m. Taking k = 12 and m = 9

illustrates that k and m really do need to be relatively prime as 9 < 12 < 13 while 12
9
= 4

3
=

σ(3)
3

is not an outlaw.

Proposition 14. If σ(N)
N

= m+1
m

for m,n ∈ Z≥1, then either m = 1 and N is a perfect
number or N = m is prime.

Proof. If σ(N)
N

= m+1
m

and m = 1 then N is clearly perfect. Now assume m > 1. If m is
composite, then m = st for some s, t ∈ Z≥1 with s and t greater than one. Hence 1, s and m
are distinct divisors of m, and σ(m) ≥ m+ s+1 > m+1 > m. Proposition 13 then implies
m+1
m

is an outlaw, contradicting our assumption that σ(N)
N

= m+1
m

. We conclude that m must
be prime. By Property 12, the prime m divides N , and therefore m ≤ N . If m < N , then
σ(m)
m

< σ(N)
N

by Property 10. However σ(m)
m

= σ(N)
N

, so N = m.

4 Main results

We are now ready to present our main results. Assume D is a quasi-friendly divisor of N ,
where σ(D)+1

D
is in reduced form. In the theorems to follow we characterize all possible D

having two or more distinct prime divisors; we prove D must be a standard quasi-friendly
divisor. (So D cannot have more than two distinct prime divisors.)

In Theorem 15, we also prove D is a standard quasi-friendly divisor of N whenever D
and N/D are relatively prime.
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Theorem 15. Let D be a quasi-friendly divisor of N satisfying gcd(D, σ(D) + 1) = 1 and
gcd(N/D,D) = 1. Then D = q2ℓ and N = q2ℓσ(q2ℓ) for some odd prime q and ℓ ∈ Z≥1

where σ(q2ℓ) is prime. (Hence D is a standard quasi-friendly divisor of N .)

Proof. Let D,N ∈ Z≥1 with gcd(D, σ(D) + 1) = gcd(N/D,D) = 1 and assume

σ(N)

N
=

σ(D) + 1

D
.

Since σ is multiplicative σ(N)
N

= σ(N/D)
N/D

σ(D)
D

, and thus

σ(N/D)

N/D
=

D

σ(D)

σ(D) + 1

D
=

σ(D) + 1

σ(D)
.

By Proposition 14, σ(D) is prime and N/D = σ(D), and by Proposition 6, D = qb for some
prime q and some positive integer b, with b + 1 prime. Observe that q must be odd since
gcd(2b, σ(2b) + 1) = gcd(2b, 2b+1) = 2b > 1. Since q 6= 2 and σ(qb) is prime, b + 1 6= 2,
and therefore b is even. Hence D = q2ℓ for some ℓ ∈ Z≥1, meaning N/D = σ(q2ℓ) and
N = q2ℓσ(q2ℓ) as claimed.

The data presented in Table 1 corroborates Theorem 15. For example, when D = 172,
N = 172σ(172) = 172 · 307, and 307 is prime. In fact, in all instances in Table 1 where D is
the power of a single prime, qb, b is even and N has the form N = qbσ(qb) with σ(qb) prime.

Theorem 16. Assume σ(N)
N

= σ(D)+1
D

with gcd(D, σ(D) + 1) = 1, where D has two or more
distinct prime divisors and gcd(N/D,D) is a positive power of a prime p. Then D is a
standard quasi-friendly divisor of N .

Proof. Assume σ(N)
N

= σ(D)+1
D

, where D = kpe, k > 1, and p ∤ k. Given N = mpfD, with

f ≥ 1 and gcd(m,D) = 1, compute: σ(N)
N

= σ(m)σ(pfD)
mpfD

= σ(D)+1
D

. So

σ(m)

m
=

pf (σ(D) + 1)

σ(pfD)
=

pfσ(pe)σ(k) + pf

σ(pe+f )σ(k)

=
(σ(pe+f )− σ(pf−1))σ(k) + pf

σ(pe+f )σ(k)

=
σ(pe+f )σ(k) + pf − σ(pf−1)σ(k)

σ(pe+f )σ(k)
.

We consider the cases m > 1 and m = 1, in turn.

Ifm > 1, then σ(m)
m

> 1 and pf−σ(pf−1)σ(k) > 0. In this case, σ(k) < pf

σ(pf−1)
< pf

pf−1 = p.

Thus gcd(σ(k), p) = 1, meaning gcd(σ(k), σ(pe+f )σ(k) + pf − σ(pf−1)σ(k)) = 1. Next let

c = gcd(σ(pe+f ), pf − σ(pf−1)σ(k)). Then we can write σ(m)
m

in reduced form:

σ(m)

m
=

σ(pe+f )
c

σ(k) + pf−σ(pf−1)σ(k)
c

σ(pe+f )
c

σ(k)
.
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Observe that because k > 1,

σ
(σ(pe+f )

c
σ(k)

)

>
σ(pe+f )

c
σ(k) +

σ(pe+f )

c

>
σ(pe+f )

c
σ(k) +

pf − σ(pf−1)σ(k)

c
.

This inequality contradicts Proposition 13, so it must be the case that m = 1.

Since m = 1, σ(m)
m

= pf (σ(D)+1)
σ(pfD)

= 1, and so pf (σ(D) + 1) = σ(pfD). Substituting

D = kpe yields pfσ(pe)σ(k) + pf = σ(pe+f )σ(k) = (pfσ(pe) + σ(pf−1))σ(k). Therefore pf =
σ(pf−1)σ(k). Since gcd(pf , σ(pf−1)) = 1, pf |σ(k) and we conclude that σ(k) = pf and
σ(pf−1) = 1. Hence f = 1 and σ(k) = p, a prime. By Proposition 6, k = qb for some prime
q and some positive integer b, with b + 1 prime. Thus D = kpe = qbσ(qb)e, N = mpfD =
pD = qbσ(qb)e+1, and we conclude that D is a standard quasi-friendly divisor of N .

Theorem 16 characterizes all quasi-friendly divisors D in which gcd(D, σ(D) + 1) = 1,
where D has more than one prime divisor while sharing only one of them with N/D. In fact,
as we prove next, if gcd(N/D,D) = d > 1, then D must share precisely one prime divisor

with N/D. This means Theorem 16 characterizes all abundancy ratios σ(D)+1
D

when D has
two or more prime divisors; D must be a standard quasi-friendly divisor. The only remaining
case is when D = qb for some prime q and b ∈ Z≥1, where gcd(D,N/D) is also a power of q.
This case remains unresolved, although we present some partial results in Section 5.

The following lemma will be used in the proof of Theorem 18. The divisor d̄ in the lemma
will play the role of the smallest multiple of d dividing N/D with gcd(N/(d̄D), d̄D) = 1.

Lemma 17. Let ℓ ∈ Z≥1 and let p1, p2, . . . , pℓ be distinct primes. Let D = k
(
∏ℓ

i=1 p
ei
i

)

and

let d̄ =
∏ℓ

i=1 p
fi
i , where each ei, fi, k ∈ Z≥1, and pi ∤ k. Then

σ(d̄D)− d̄σ(D) ≤ d̄

if and only if ℓ = 1 and σ(k) ≤
p
f1
1

σ(p
f1−1

1
)
.

Proof. First consider the case where ℓ > 1. Order the primes as p1 > p2 > · · · > pℓ. Note
that σ(d̄D) is the sum of all the divisors of d̄D. On the other hand, d̄σ(D) is the sum of those
divisors of d̄D that are divisible by d̄. Hence σ(d̄D)− d̄σ(D) is the sum of those divisors of
d̄D not divisible by d̄. Since pfℓℓ |d̄, one such divisor is

d′ = pf1+1
1 pf22 · · · p

fℓ−1

ℓ−1 p
fℓ−1

ℓ ,

(where f1 + 1 is allowed since e1 ≥ 1). Now, since p1 > pℓ, we have d′ > d̄, and hence
σ(d̄D)− d̄σ(D) ≥ d′ > d̄.
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Now consider the case where ℓ = 1. Then D = kpe11 , d̄ = pf11 , and

σ(d̄D)− d̄σ(D) = σ(kpf1+e1
1 )− pf11 σ(kpe11 )

= σ(k)
(

pf11 σ(pe11 ) + σ(pf1−1
1 )

)

− pf11 σ(k)σ(pe11 )

= σ(k)σ(pf1−1
1 ).

Thus, σ(d̄D)− d̄σ(D) ≤ d̄ if and only if σ(k)σ(pf1−1
1 ) ≤ pf11 , or equivalently, σ(k) ≤

p
f1
1

σ(p
f1−1

1
)
.

Theorem 18. If σ(N)
N

= σ(D)+1
D

for D,N ∈ Z≥1 with gcd(D, σ(D)+1) = 1, and gcd(N/D,D) =
d > 1, then d has one prime divisor. That is, D shares precisely one prime divisor with N/D.

Proof. Assume σ(N)
N

= σ(D)+1
D

where gcd(N/D,D) = d > 1 and d has at least two distinct
prime divisors. Write N = md̄D, where d̄ is the smallest positive integer satisfying d|d̄ and
gcd(m, d̄D) = 1. Then

σ(N)

N
=

σ(m)

m

σ(d̄D)

d̄D
=

σ(D) + 1

D
.

Solving for σ(m)
m

yields

σ(m)

m
=

d̄σ(D) + d̄

σ(d̄D)
.

Since σ(m)
m

≥ 1, σ(d̄D) ≤ d̄σ(D) + d̄ or σ(d̄D) − d̄σ(D) ≤ d̄. This leads to a contradiction
as Lemma 17 ensures σ(d̄D)− d̄σ(D) > d̄ whenever D and N/D share at least two distinct
prime divisors. We conclude that D shares precisely one prime divisor with N/D.

Our results can be used to identify abundancy outlaws not captured by Proposition 13.
For example, take D = 55. Using Corollary 20 we can identify 73

55
= σ(55)+1

55
as an outlaw.

As reported in [2], Paul Erdős was aware of this particular outlaw in 1975.

Corollary 19. If D ∈ N has three or more distinct prime divisors and gcd(D, σ(D)+1) = 1,

then σ(D)+1
D

is an abundancy outlaw.

Corollary 20. If D = pe11 pe22 , with p1 < p2, and p2 6= σ(pe11 ) and gcd(D, σ(D)+1) = 1, then
σ(D)+1

D
is an abundancy outlaw.

5 The unresolved case

If σ(N)
N

= σ(qb)+1
qb

where q is a prime not dividing N/qb, then we know from Theorem 15

that N = qbσ(qb), where σ(qb) is prime. So our interest now resides in the case where
gcd(qb, N/qb) 6= 1. We present a few partial results relating to the form of an integerN having
a quasi-friendly divisor qb. In particular, we prove that N is necessarily odd, and q must be
the smallest prime divisor of N . If b = 1, then N must also be a square. Our results consider
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primes q > 2 because if q = 2, then qb = 2b and σ(qb) + 1 = 2b+1 are not relatively prime.
The standard quasi-friendly divisors D = 2bσ(2b)e = 2b(2b+1 − 1)e characterized in Theorem
16 exhaust all possibilities for an even quasi-friendly divisor satisfying gcd(D, σ(D)+1) = 1.

Lemma 21. If q is an odd prime and N, b ∈ Z≥1 satisfying σ(N)
N

= σ(qb)+1
qb

, then N is odd.

Proof. Assume σ(N)
N

= σ(qb)+1
qb

, where q is an odd prime and N is even. Then 2|N and by

Property 10, σ(2)
2

≤ σ(qb)+1
qb

. Applying Property 11, we conclude that

3

2
≤

σ(qb) + 1

qb
=

σ(qb)

qb
+

1

qb
<

q

q − 1
+

1

q
<

q + 1

q − 1
,

or equivalently, 3(q − 1) < 2(q + 1). Thus q < 5, and since q is odd q = 3. Applying

Property 12, we conclude that 3|N , and since N is even, 6|N . Hence σ(6)
6

≤ σ(N)
N

, meaning

2 ≤ σ(qb)+1
qb

< q+1
q−1

or 2(q − 1) < q + 1. Thus, q < 3, which is a contradiction. We conclude
that N must be odd.

Proposition 22. If q is an odd prime and N, b ∈ Z≥1 satisfying σ(N)
N

= σ(qb)+1
qb

, then N has
at least two distinct prime divisors and q is the smallest prime divisor. Furthermore, if p is
a prime divisor of N , p 6= q, then p ≥ σ(qb).

Proof. Assume q is an odd prime and N, b ∈ Z≥1 satisfying σ(N)
N

= σ(qb)+1
qb

. By Property 12,

qb|N and N = mqc for some c,m ∈ Z≥1 with c ≥ b and gcd(q,m) = 1. If N has just one
prime divisor, then N = qc and

σ(N)

N
=

σ(qc)

qc
=

qc+1 − 1

qc(q − 1)
=

σ(qb) + 1

qb
.

It is easy to check that (σ(qb) + 1)(q − 1) > qb+1 and hence σ(qb)+1
qb

> q
q−1

. However, by

Property 11, σ(qc)
qc

< q
q−1

. We conclude that N has at least two distinct prime divisors. Next
let p be a prime divisor of N distinct from q. Then N = mqcpa, for some c, a,m ∈ Z≥1 with

gcd(qcpa,m) = 1, and σ(N)
N

= σ(m)
m

σ(qc)
qc

σ(pa)
pa

= σ(qb)+1
qb

. Observe qbp|qcpa, so by Property 12,
σ(qbp)
qbp

≤ σ(mqcpa)
mqcpa

and

σ(qb)

qb
p+ 1

p
≤

σ(m)

m

σ(qc)

qc
σ(pa)

pa
=

σ(qb) + 1

qb
.

Thus σ(qb)(p+1)
p

≤ σ(qb) + 1, meaning σ(qb) ≤ p. Since the prime divisor p was chosen
arbitrarily, the result follows.

Proposition 23. If q is an odd prime and N is a positive integer satisfying σ(N)
N

= q+2
q
,

then N is a square number having at least two distinct prime divisors, and q is the smallest
prime divisor.
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Proof. Assume q is an odd prime and σ(N)
N

= σ(q)+1
q

= q+2
q

for some N ∈ Z≥1. To see that N

is a square, observe that N is odd by Lemma 21, so σ(N)q = N(q + 2) implies that σ(N)
is odd. By Property 9 we conclude N is a square. The rest of the proposition follows from
Proposition 22.

While Proposition 23 examines the ratio σ(qb)+1
pb

when b = 1, in fact, a slight variation of

the above proof shows N must be a square number whenever σ(N)
N

= σ(qb)+1
qb

with b odd. To

date, the only known quasi-friendly divisors of the form D = qb (with gcd(D, σ(D)+1) = 1)
are those characterized in Theorem 15. That is, all have the form q2ℓ where ℓ ∈ Z≥1 and
σ(q2ℓ) is prime. Whether or not there are any quasi-friendly divisors of the form q2ℓ+1 is
unknown.

6 Conclusion

To summarize our results relating to quasi-friendly divisors D where σ(D)+1
D

is reduced: we
have described the form of all possible D with two distinct prime divisors, and we have
demonstrated that D cannot have more than two distinct prime divisors. We’ve also char-
acterized those integers N having a quasi-friendly divisor D = qb, where q is a prime
not dividing N/D. The unresolved case is where D is the power of a single prime and
gcd(D,N/D) > 1. Is it possible for a positive integer to have a prime quasi-friendly divisor?
This is the question initially motivating our study, and the answer remains beyond our reach.
We conjecture that the answer is no.
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