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Abstract

Let P (n, j) denote the number of j-permutations of n objects. In this paper we
obtain the generating function for the alternating sequence (−1)j P (n, j). Our method
gives an integral representation for the differenceDn− n!

e
, whereDn denotes the number

of derangements on n objects. Using this integral representation, we compute the
moments of this difference, and we also get an asymptotic expansion for Dn with
coefficients in terms of the Bell numbers Bn. We also give a simple proof of the
irrationality of e.

1 Introduction and summary of results

Let C(n, j) denote the number of j-combinations of n objects, and P (n, j) denote the number
of j-permutations of n objects, counting the number of ways to choose an ordered selection
of j items from a set of n items. Many summation identities concerning C(n, j) can be found
in the literature. For example, see [4, Section 0.15], [11, Section 2.3.4], and [12, pp. 343–355]
for a list of 334 identities.

In comparison, there are fewer summation identities concerning P (n, j) in the literature.
Our first theorem provides an integral representation for the alternating sum over P (n, j).
The relation in this theorem is equivalent to one given by Askey and Ismail [2] and Kayll
[9]. Our simple proof differs from their and is included for completeness.
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Theorem 1. Let a ≥ 1 be a fixed real. For any positive integer n let

Ln(a) =

∫ a

1

logn t dt. (1)

Then, for any integer n ≥ 1 and for x ≥ 0,

n
∑

j=0

(−1)j P (n, j)xn−j =
(−1)n n! + Ln(e

x)

ex
. (2)

More precisely, by letting x = 1 in (2) we obtain

n
∑

j=0

(−1)j P (n, j) =
(−1)n n! + Ln(e)

e
. (3)

As an application of Theorem 1, we continue our study [6] of Dn, the number of derange-
ments on a set of cardinality n. We observe that the alternating sum at the left hand side
of (3) and Dn are related as follows:

Dn = n!
n

∑

j=0

(−1)j

j!
= (−1)n n!

n
∑

j=0

(−1)n−j

(n− j)!
= (−1)n

n
∑

j=0

(−1)jP (n, j).

Thus, by considering the relation (3), we obtain

Dn =
n!

e
+ (−1)n

Ln(e)

e
, (4)

for each integer n ≥ 1. The relation (4) is true for n = 0, too. This relation provides an
explicit integral representation for the difference

Dn −
n!

e
.

Using this integral representation we compute the moments of this difference, as follows:

Theorem 2. We have

∞
∑

n=1

(

Dn −
n!

e

)

= −1 +
1

e
+

Ei(2)− Ei(1)

e2
≅ −0.218114, (5)

where Ei denotes the exponential integral function defined by the Cauchy principal value of

the integral

Ei(x) = −
∫

∞

−x

e−z

z
dz,
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and
∞
∑

n=1

(

Dn −
n!

e

)2

= −(e− 1)2

e2
+

4

e2

∫ 1

2

0

h(z) dz ≅ 0.433113, (6)

where

h(z) =
e2z√
1− z2

arctan
z√

1− z2
+

e2−2z

√
2z − z2

arctan
z√

2z − z2
.

Moreover, for each integer k ≥ 1 the following multiple integral representation holds:

∞
∑

n=1

(

Dn −
n!

e

)k

= −(e− 1)k

ek
+

1

ek

∫ 1

0

· · ·
∫ 1

0

ex1+···+xk

1− (−1)k x1 · · · xk

dX, (7)

where X represents the k-tuple (x1, . . . , xk).

Ismail and Simeonov [8] derived the asymptotics of certain combinatorial numbers defined
on multi-sets when the number of sets tends to infinity, but the sizes of the sets remain
fixed. Their study includes the asymptotics of generalized derangements, numbers related
to k-partite graphs, and exponentially weighted derangements. As another application of
Theorem 1, by using the integral representation for the difference Dn − n!

e
we deduce a full

asymptotic expansion for Dn with coefficients in terms of the Bell numbers Bn.

Theorem 3. Given any positive integer r, for any integer n ≥ 1 we have the asymptotic

expansions

Ln(e)

e
=

r
∑

k=1

(−1)k−1 Bk

nk
+O

(

1

nr+1

)

, (8)

and

Dn =
n!

e
+

r
∑

k=1

(−1)n+k−1 Bk

nk
+O

(

1

nr+1

)

, (9)

where Bk denotes the k-th Bell number and the constant of O-term does not exceed Br+1 in

both expansions.

2 Two remarks

Remark 4. The relation (3) is an analogue to the identity
∑n

j=0(−1)jC(n, j) = 0. For an
analogue to the identity

∑n

j=0C(n, j) = 2n, we observe that

0 < e−
n

∑

j=0

1

j!
=

∞
∑

j=1

1

(n+ j)!
=

1

n!

∞
∑

j=1

j
∏

k=1

1

n+ k
<

1

n!

∞
∑

j=1

1

(n+ 1)j
=

1

n · n! .

Thus, for each n ≥ 1 we obtain

n
∑

j=0

P (n, j) = n!
n

∑

j=0

1

j!
= ⌊e n!⌋. (10)
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The author previously introduced some enumerative applications of the relation (10) con-
cerning the number of paths and cycles in complete graphs [5, 7].

Remark 5. The relation (3) enables us to provide a simple proof of the irrationality of the
number e. We observe that 0 ≤ log t ≤ 1 for 1 ≤ t ≤ e. Thus,

0 < Ln(e) ≤
∫ e

1

dt = e− 1 < e,

which implies 0 <
Ln(e)

e
< 1 for each positive integer n. Now we assume that e is rational.

Let e = α
β
for some positive integers α and β. The relation (3) with n = α gives

α
∑

j=0

(−1)jP (n, j) = (−1)α(α− 1)!β +
Lα(e)

e
,

implying that Lα(e)
e

is an integer, a contradiction.

3 Proof of Theorem 1

Proof. Using integration by parts we obtain
∫

logr t dt = t logr t− r

∫

logr−1 t dt.

Thus, the recurrence Lj(a) = a logj a − jLj−1(a) holds for any integer j ≥ 1. Multiplying

both sides of this recurrence by (−1)j

j!
, we can rewrite it as

(−1)j

j!
Lj(a)−

(−1)j−1

(j − 1)!
Lj−1(a) =

(−1)j

j!
a logj a.

Summing over 1 ≤ j ≤ n yields

(−1)n

n!
Ln(a)− L0(a) =

n
∑

j=1

(−1)j

j!
a logj a.

Note that L0(a) = a− 1. Thus,

(−1)n

n!
Ln(a) = −1 +

n
∑

j=0

(−1)j

j!
a logj a = −1 +

n
∑

j=0

(−1)−j

j!
a logj a,

and

Ln(a) = (−1)n+1n! + a

n
∑

j=0

(−1)n−j n!

j!
logj a.
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After a change of variables in the summation we get

Ln(a) = (−1)n+1n! + a

n
∑

j=0

(−1)j P (n, j) logn−j a.

Letting a = ex for x ≥ 0 we get (2), which concludes the proof.

4 Proof of Theorem 2

Proof. We conclude from (4) that

∞
∑

n=1

(

Dn −
n!

e

)

=
∞
∑

n=1

(−1)n
Ln(e)

e
=

1

e
lim

N→∞

N
∑

n=1

(−1)n Ln(e)

=
1

e
lim

N→∞

N
∑

n=1

(−1)n
∫ e

1

logn t dt =
1

e
lim

N→∞

∫ e

1

N
∑

n=1

(− log t)n dt

=
1

e
lim

N→∞

∫ e

1

− log t

1 + log t

(

1 + (− log t)N+1
)

dt.

Now we use the bounded convergence theorem [3, Theorem 3.26] to interchange the limit
and integral in the last relation. Consequently,

∞
∑

n=1

(

Dn −
n!

e

)

= −1

e

∫ e

1

lim
N→∞

log t

1 + log t

(

1 + (− log t)N+1
)

dt

= −1

e

∫ e

1

log t

1 + log t

(

1 + lim
N→∞

(− log t)N+1
)

dt

= −1

e

∫ e

1

log t

1 + log t
dt = −1

e

∫ e

1

log t

1 + log t
dt.

To evaluate the last integral we apply the change of variable −z = 1 + log t, satisfying
t = e−1−z and dt = −t dz = −1

e
e−zdz. Therefore

∫ e

1

log t

1 + log t
dt =

1

e

∫

−1

−2

(

1 +
1

z

)

e−z dz

=
1

e

∫

−1

−2

e−z dz − 1

e

(

−
∫

−1

−2

e−z

z

)

dz =
e2 − e

e
− Ei(2)− Ei(1)

e
.

This gives (5). To prove (6) we follow an argument due to LeVeque [10], which has been
described by Aigner and Ziegler [1, Chapter 9]. In (1) we apply the change of variable
z = log t, satisfying t = ez and dt = ezdz. Accordingly,

Ln(e) =

∫ 1

0

znez dz. (11)
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Repeated use of (11) shows that

Ln(e)
2 =

(
∫ 1

0

xnex dx

)(
∫ 1

0

yney dy

)

=

∫ 1

0

∫ 1

0

(xy)n ex+y dAx,y.

Hence, we conclude from (4) that

∞
∑

n=1

(

Dn −
n!

e

)2

= −L0(e)
2

e2
+

1

e2

∞
∑

n=0

Ln(e)
2

= −(e− 1)2

e2
+

1

e2

∞
∑

n=0

∫ 1

0

∫ 1

0

(xy)n ex+y dAx,y.

Since the function ex+y is bounded on the region [0, 1] × [0, 1], uniform convergence of the
geometric series allows us to change the order of sum and integrals. Accordingly,

∞
∑

n=1

(

Dn −
n!

e

)2

= −(e− 1)2

e2
+

1

e2
I,

where

I =

∫ 1

0

∫ 1

0

ex+y

1− xy
dAx,y.

The same reasoning applies to the case of other moments. Thus, meanwhile we obtain (7).
Let us compute I. For this purpose, we apply the change of coordinates. Let u = y+x

2
and

v = y−x

2
. We get the new domain of integration from old domain by first rotating it by −45◦

and then shrinking it by a factor of
√
2. This new domain of integration and the function

to be integrated are symmetric with respect to the u-axis. Also, dAx,y = 2dAu,v. Therefore,

I = 4

∫ 1

2

0

∫ u

0

e2u

1− u2 + v2
dv du+ 4

∫ 1

1

2

∫ 1−u

0

e2u

1− u2 + v2
dv du

= 4

∫ 1

2

0

e2u√
1− u2

arctan
u√

1− u2
du+ 4

∫ 1

1

2

e2u√
1− u2

arctan
1− u√
1− u2

du.

Substituting u = 1 − z in the last integral and simplifying yields (6). This is the desired
conclusion.

5 Proof of Theorem 3

Proof. We conclude from the integral representation (11) that

Ln(e) =

∫ 1

0

znez dz =

∫ 1

0

zn
∞
∑

j=0

zj

j!
dz =

∫ 1

0

∞
∑

j=0

zn+j

j!
dz.
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Since the last sum converges uniformly for 0 ≤ z ≤ 1, we may change the order of sum and
integral. Therefore,

Ln(e) =
∞
∑

j=0

∫ 1

0

zn+j

j!
dz =

∞
∑

j=0

1

j!(n+ j + 1)
.

An easy computation shows that

1

n+ b
=

r
∑

k=1

(−1)k−1 b
k−1

nk
+

(−1)r

n+ b

(

b

n

)r

,

for n+ b 6= 0. If we take b = j + 1, then

Ln(e) =
∞
∑

j=0

r
∑

k=1

(−1)k−1

nk

(j + 1)k−1

j!
+ (−1)r

∞
∑

j=0

1

j!(n+ j + 1)

(

j + 1

n

)r

=
r

∑

k=1

(−1)k−1

nk

∞
∑

j=0

(j + 1)k−1

j!
+

(−1)r

nr

∞
∑

j=0

(j + 1)r

j!(n+ j + 1)
.

Dobiński’s formula [13, p. 178] states that the k-th Bell number Bk equals

Bk =
1

e

∞
∑

j=0

jk

j!
.

On account of this formula, we have

∞
∑

j=0

(j + 1)k−1

j!
=

∞
∑

j=0

(j + 1)k

(j + 1)!
=

∞
∑

j=1

jk

j!
=

∞
∑

j=0

jk

j!
= eBk,

and
∞
∑

j=0

(j + 1)r

j!(n+ j + 1)
≤ 1

n

∞
∑

j=0

(j + 1)r

j!
=

1

n

∞
∑

j=0

(j + 1)r+1

(j + 1)!
=

eBr+1

n
.

Therefore, we obtain (8). This gives (9) when substituted in (4), and this is precisely the
assertion of the theorem.
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