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Abstract

We investigate a version of Waring’s problem over quaternion rings, focusing on

cubes in quaternion rings with integer coefficients. We determine the global upper and

lower bounds for the number of cubes necessary to represent all such quaternions.

1 Introduction and definitions

Theorem 1 (Waring’s problem/Hilbert-Waring theorem). For every integer k ≥ 2 there

exists a positive integer g(k) such that every positive integer is the sum of at most g(k) k-th
powers of integers.

The idea behind Waring’s problem—examining sums of powers—can be easily extended
to any ring. (For example, number fields [7] and polynomial rings over finite fields [5].)
For an excellent and thorough exposition of the research on Waring’s problem and its gen-
eralizations, see Vaughan and Wooley [8]. We will specifically look at sums of cubes in
quaternion rings, extending the previous work on sum of squares begun in Cooke, Hamblen,
and Whitfield [4].

Definition 2. Let LQa,b denote the quaternion ring

{α0 + α1i+ α2j+ α3k | αn, a, b ∈ Z, i2 = −a, j2 = −b, ij = −ji = k}.
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Let LQn
a,b denote the additive group generated by all nth powers in LQa,b.

Note here that k2 = −ab, and that if a = b = 1, we have the Lipschitz quaternions. We
then have the following analogue of Waring’s problem.

Conjecture 3. For every integer k ≥ 2 and all positive integers a, b there exists a positive
integer ga,b(k) such that every element of LQk

a,b can be written as the sum of at most ga,b(k)
k-th powers of elements of LQa,b.

In contrast with the case when k = 2, it is much harder when an element of a ring can
be represented as a sum of a small number of cubes. For example, it was only recently
determined [1] that 33 is the sum of 3 integer cubes. Our goal in this paper, therefore, is
to determine global upper and lower bounds for ga,b(3), the number of cubes necessary to
represent all elements of LQ3

a,b. We have the following main result.

Theorem 4. Let a, b be positive integers. Then

• if 3 ∤ a or 3 ∤ b, then 3 ≤ ga,b(3) ≤ 6, and

• if 3 | a and 3 | b, then 4 ≤ ga,b(3) ≤ 5.

The upper bounds of Theorem 4 are given in Section 2, following an algorithmic approach
based on cubic algebraic identities. The lower bounds are given in Section 3.

It seems quite possible that the lower bounds in Theorem 4 are the actual values for
ga,b(3). A number of individual quaternions were tested in SAGE, and all were found to
be expressible as the minimum number of cubes. Additionally, the identities of Eqns. (4)
and (5), while very useful for our upper bound proof, are by no mean optimal. A search for
similar identities involving quaternions was unsuccessful, due to the complications introduced
by non-commutativity.

Lastly, it should be noted that Propositions 6 and 12 were both initially proven by
checking individual residue classes in SAGE. While we were able to cover all possible cases,
more theoretical versions of the proofs are provided here.

2 LQ3
a,b and upper bounds

Recall that LQ3
a,b is the additive subgroup generated by all cubes in LQa,b. Our first goal

is to determine the shape of elements in LQ3
a,b; we therefore first give the general forms of

cubes in LQa,b. If α = α0 + α1i+ α2j+ α3k, we have

α3 = α3
0 − 3aα0α

2
1 − 3bα0α

2
2 − 3abα0α

2
3 (1)

+ (3α2
0α1 − aα3

1 − bα1α
2
2 − abα1α

2
3)i

+ (3α2
0α2 − aα2

1α2 − bα3
2 − abα3α

2
3)j

+ (3α2
0α3 − aα2

1α3 − bα1α
2
2 − abα3

3)k.
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We can simplify this equation by noting common factors in each of the coefficients on
the right side of Eqn. (1). For α = α0 + α1i+ α2j+ α3k, let

Pα = aα2
1 + bα2

2 + abα2
3. (2)

We then have
α3 = (α2

0 − 3Pα)α0 + (3α2
0 − Pα) (α1i+ α2j+ α3k) . (3)

Additionally, we will make frequent use of the following two identities:

6z = (z + 1)3 + (z − 1)3 + (−z)3 + (−z)3 (4)

6z + 3 = (−z − 5)3 + (z + 1)3 + (−2z − 6)3 + (2z + 7)3. (5)

These two identities, and these proofs, are inspired by Cohn’s results [2, 3] on sums of
cubes in quadratic fields: gZ[i](3) = 4 and gZ[

√
d](3) ≤ 5.

We start by treating the case when 3 ∤ a or 3 ∤ b.

Proposition 5. If 3 ∤ a or 3 ∤ b, then LQ3
a,b = LQa,b.

Note that in the Lipschitz quaternions (a = b = 1), this follows from Pollack’s work on
quaternions [6, Theorem 1.1].

Proposition 6. If 3 ∤ a or 3 ∤ b, then every element of LQ3
a,b can be written as the sum of

at most 6 cubes of elements in LQa,b.

We will prove that every element of LQa,b can be written as the sum of at most 6 cubes,
which yields both propositions.

Proof. First, note that by Eqns. (4) and (5), we immediately have that every element in
LQa,b that is a multiple of 6, or 3 more than a multiple of 6, can be written as the sum of 4
cubes. It then suffices to restrict our attention to the resulting residue classes, and we need
only consider the residue of a, b modulo 6. We will break the problem into two cases, and in
each case will need two supporting Lemmas.

Our two cases are as follows:

• Case 1: Suppose 3 ∤ ab, and at least one of a or b is congruent to 2 (mod 3), and

• Case 2: All other cases: either a ≡ b ≡ 1 (mod 3), or exactly one of a and b is divisible
by 3.

For the following Lemmas, we let Re(x) be the real part of x and Im(x) be the imaginary
or pure part of x. That is, if x = x0 + x1i + x2j + x3k, then Re(x) = x0 and Im(x) =
x1i + x2j + x3k. Additionally, we write Im(x) ≡ Im(y) (mod 6) if 6 divides each of the
coefficients of Im(x− y). Lastly, for n ∈ Z, we write n for the least non-negative residue of
n (mod 6); that is n ≡ n (mod 6) and n ∈ {0, 1, . . . , 5}.
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Lemma 7. Suppose we are in Case 1: 3 ∤ ab, and at least one of a or b is congruent to

2 (mod 3), and let

S = {α ∈ LQa,b | 2 ∤ α0 and 3 ∤ α1α2α3}.

Then, for all α ∈ S, there exists x ∈ LQa,b such that Re(x3) ≡ Re(α) (mod 3) and Im(x3) ≡
Im(α) (mod 6).

Note that as an immediately corollary of Lemma 7 and Eqns. (4) and (5), every element
of S can be written as the sum of at most 5 cubes.

Proof. Take α = α0+α1i+α2j+α3k ∈ S. Then let x = x0+x1i+x2j+x3k, where xℓ = αℓ

for ℓ ∈ {1, 2, 3} and x0 = α0 − 3δα, where

δα =

{

1, if Pα is odd;

0, otherwise.

By Eqn. (3), it suffices to show that x3
0−3x0Px ≡ α0 (mod 3), and xℓ(3x

2
0−Px) ≡ αℓ (mod 6)

for ℓ ∈ {1, 2, 3}.
We then have

x3
0 − 3x0Px = (α0 − 3δα)

3 − 3(α0 − 3δα)Px ≡ α3
0 ≡ α0 (mod 3), (6)

so Re(x3) ≡ Re(α) (mod 3). Then, note that in this case we have α ∈ S, α2
1 ≡ α2

2 ≡ α2
3 ≡

1 (mod 3), so

Pα ≡ a · 1 + b · 1 + ab · 1 (mod 3)

≡ (a+ 1)(b+ 1)− 1 (mod 3).

Since at least one of a or b is congruent to 2 (mod 3), we must have that Pα ≡ 2 (mod 3).
Therefore if δα = 1, then Pα ≡ 5 (mod 6), and if δα = 0, then Pα ≡ 2 (mod 6); in either
case, 3δα − Pα ≡ −2 (mod 6).

Then note that since Px ≡ Pα (mod 6) (since by definition, Im(x) ≡ Im(α) (mod 6)) and
α0 is odd, we have

3x2
0 − Px = 3(α0 − 3δα)

2 − Px ≡ 3α2
0 + 3δα − Pα (mod 6)

≡ 3− 2 = 1 (mod 6).

Therefore xℓ(3x
2
0 − Px) ≡ αℓ (mod 6) for ℓ ∈ {1, 2, 3}, so Im(x3) ≡ Im(α) (mod 6), which

completes the proof.

Lemma 8. Suppose 3 ∤ ab, and at least one of a or b is congruent to 2 (mod 3), and let

S be defined as in Lemma 7. Then, for all α ∈ LQa,b, there exists α′, α′′ ∈ S such that

Re(α′ + α′′) ≡ Re(α) (mod 3) and Im(α′ + α′′) ≡ Im(α) (mod 6).
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Proof. Notice that elements of S can have real coefficient equivalent to 1, 3, or 5 (mod 6),
and can have imaginary coefficients equivalent to 1, 2, 4, or 5 (mod 6). The first conclusion
then follows since the real coefficients cover all residue classes mod 3, and the second follows
from the fact that in Z6, we have {1, 2, 4, 5}+ {1, 2, 4, 5} = Z6.

As a consequence of Lemmas 7 and 8, for all α ∈ LQa,b, there exists x1, x2 ∈ LQa,b such
that α− x3

1 + x3
2 is either a multiple of 6, or 3 more than a multiple of 6; Eqns. (4) and (5)

then imply that under the hypotheses of Case 1, every element of LQa,b can be written as
the sum of at most 6 cubes. We have therefore proven Propositions 5 and 6 in the case when
3 ∤ ab, and at least one of a or b is congruent to 2 (mod 3).

We then move to Case 2, where we suppose that we are in one of the following cases:

• Case 2a: a ≡ b ≡ 1 (mod 3).

• Case 2b: Exactly one of a and b is divisible by 3, and the other is 2 (mod 3). Without
loss of generality, in this case we assume a ≡ 2 (mod 3) and b ≡ 0 (mod 3).

• Case 2c: Exactly one of a and b is divisible by 3, and the other is 1 (mod 3). Without
loss of generality, in this case we assume a ≡ 1 (mod 3) and b ≡ 0 (mod 3).

Lemma 9. Given a and b satisfying one of the cases above, let

T2 = {α ∈ LQa,b | 2 ∤ α0 and 3 ∤ α1α3 and 3 | α2},

T3 = {α ∈ LQa,b | 2 ∤ α0 and 3 ∤ α1α2 and 3 | α3},

and T = T2 ∪ T3. Then, for all α ∈ T , there exists x ∈ LQa,b such that Re(x3) ≡
Re(α) (mod 3) and Im(x3) ≡ Im(α) (mod 6).

Proof. The proofs in each subcase are very similar to that of Lemma 7; we will only highlight
where the definitions and calculations differ.

Take α = α0 + α1i+ α2j+ α3k ∈ S, let x0 = α0 − 3δα as defined in Lemma 7, and let

xℓ =

{

αℓ, in Cases 2a and 2b;

6− αℓ, in Case 2c.

Immediately by Eqn. (6) in Lemma 7, we have that Re(x3) ≡ Re(α) = α0 (mod 3).
Then, for α ∈ T2, we have α2

1 ≡ α2
3 ≡ 1 (mod 3) and α2

2 ≡ 0 (mod 3), so from Eqn. (2)
we get:

Pα ≡











2 ≡ 1 · 1 + 1 · 0 + 1 · 1 (mod 3), in Case 2a;

2 ≡ 2 · 1 + 0 · 0 + 0 · 1 (mod 3), in Case 2b;

1 ≡ 1 · 1 + 0 · 0 + 0 · 1 (mod 3), in Case 2c.

Note that in all of these cases, b ≡ ab (mod 3), so for α ∈ T3, the values of Pα mod 3 are the
same as for α ∈ T2.
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Therefore, in Cases 2a and 2b, if δα = 1, then Pα ≡ 5 (mod 6), and if δα = 0, then
Pα ≡ 2 (mod 6); either way, 3δα −Pα ≡ −2 (mod 6). Since Px ≡ Pα (mod 6) and α0 is odd,
we have

3x2
0 − Px = 3(α0 − 3δα)

2 − Px ≡ 3α2
0 + 3δα − Pα (mod 6)

≡ 3− 2 = 1 (mod 6).

Therefore Im(x3) ≡ Im(α) (mod 6), which completes the proof for Cases 2a and 2b.
In Case 2c, if δα = 1, then Pα ≡ 1 (mod 6), and if δα = 0, then Pα ≡ 4 (mod 6); either

way, 3δα − Pα ≡ 2 (mod 6). The same calculation as above then yields

3x2
0 − Px ≡ 3 + 2 ≡ −1 (mod 6).

But, as we have defined xℓ = 6− αℓ in this case, we have

xℓ(3x
2
0 − Px) ≡ (6− αℓ)(−1) ≡ αℓ (mod 6)

for ℓ ∈ {1, 2, 3}, which implies Im(x3) ≡ Im(α) (mod 6), completing the proof for Case
2c.

Lemma 10. Given a and b satisfying Case 2, let T be defined as in Lemma 9. Then,

for all α ∈ LQa,b, there exists α′, α′′ ∈ T such that Re(α′ + α′′) ≡ Re(α) (mod 3) and

Im(α′ + α′′) ≡ Im(α) (mod 6).

Proof. If 3 | α2 or 3 | α3, we can satisfy the conclusions by choosing α′ and α′′ both to be in
T2 or T3, respectively, and following the reasoning in Lemma 8. If 3 ∤ α2α3, then there exists
α′ ∈ T2 and α′′ ∈ T3 satisfying the conclusions.

This completes the proofs of Propositions 5 and 6: as in Case 1, Lemmas 9 and 10 imply
that in Case 2, every element of LQa,b can be written as the sum of at most 6 cubes.

If 3 | a and 3 | b, there is slightly more work to do, as not all elements of the ring can be
written as the sum of cubes.

Proposition 11. Let 3 | a and 3 | b, and define

Ca,b = {α0 + 3α1i+ 3α2j+ 3α3k | i2 = −a, j2 = −b,= ij = −ji = k, αn ∈ Z}.

Then LQ3
a,b = Ca,b.

Proof. Note that if 3 | a and 3 | b, then for all α ∈ LQa,b, we have 3 | Pα from Eqn. (2).
Then by Eqn. (3), we have that each of the imaginary coefficients (the coefficients of i, j,k)
are each divisible by 3, showing that LQ3

a,b ⊆ Ca,b.
The proposition then follows from Proposition 12, which shows that every element in Ca,b

can be written as the sum of at most 5 cubes.
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Proposition 12. If 3 | a and 3 | b, then every element of Ca,b can be written as the sum of

at most 5 cubes of elements in LQa,b.

Proof. In light of Eqns. (4) and (5), it suffices to show that for all elements α ∈ Ca,b, there
exists x ∈ LQa,b such that Re(x3) ≡ Re(α) (mod 3) and Im(x3) ≡ Im(α) (mod 6).

Take α = α0+α1i+α2j+α3k ∈ Ca,b. Then let xℓ = αℓ for ℓ ∈ {1, 2, 3} and x0 = α0−3δα,
where

δα =

{

1, if Pα ≡ α0 (mod 2);

0, otherwise.

We immediately get Re(x3) ≡ Re(α) (mod 3) by the calculations in Lemma 7.
For α ∈ Ca,b, since 3 | a and 3 | b, we have Pα ≡ 0 (mod 3). Therefore if δα = 1, then

α0 is odd and Pα ≡ 3 (mod 6), or α0 is even and Pα ≡ 0 (mod 6). If δα = 0, then α0 is odd
and Pα ≡ 0 (mod 6), or α0 is even and Pα ≡ 3 (mod 6). Specifically, an odd number of α0,
δα, and Pα will be odd. We then have

3x2
0 − Px = 3(α0 − 3δα)

2 − Px ≡ 3α2
0 + 3δα − Pα (mod 6)

≡ 3 (mod 6).

Then, since α ∈ Ca,b, we have αℓ is a multiple of 3 for ℓ ∈ {1, 2, 3}, so 3αℓ ≡ αℓ (mod 6).
But these are now exactly the mod 6 imaginary coefficients of x3.

Therefore Im(x3) ≡ Im(α) (mod 6), which completes the proof.

3 Lower bounds

We now prove the lower bounds of Theorem 4 via example.

Proposition 13. If 3 ∤ a or 3 ∤ b, then 3 + 3i cannot be written as the sum of 2 cubes in

LQa,b.

Proof. Suppose x, y ∈ LQa,b are such that

3 + 3i = x3 + y3, (7)

and write x = x0 + x1i+ x2j+ x3k, y = y0 + y1i+ y2j+ y3k with xn, yn ∈ Z. We then have
the following four equations from the coefficients of Eqn. (7):

x3
0 − 3x0Px + y30 − 3y0Py = 3 (real coefficient); (8)

3x2
0x1 − x1Px + 3y20y1 − y1Py = 3 (i coefficient); (9)

3x2
0x2 − x2Px + 3y20y2 − y2Py = 0 (j coefficient); (10)

3x2
0x3 − x3Px + 3y20y3 − y3Py = 0 (k coefficient). (11)
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From Eqn. (8), we get x3
0 + y30 ≡ 0 (mod 3); as the only cubes mod 9 are 0, 1, and 8, we

immediately get x3
0 + y30 ≡ 0 (mod 9). Since x3

0 ≡ x0 (mod 3), we also get

x0 + y0 ≡ 0 (mod 3). (12)

We can then examine Eqn. (8) (mod 9) and simplify:

x3
0 − 3x0Px + y30 − 3y0Py ≡ 3 (mod 9)

−3x0Px − 3y0Py ≡ 3 (mod 9)

−x0Px − y0Py ≡ 1 (mod 3)

−x0Px − y0Py ≡ 1 (mod 3)

y0(Px − Py) ≡ 1 (mod 3). (13)

We first assume (without loss of generality) that Px ≡ 0 (mod 3). Then Py 6≡ 0 (mod 3),
and Eqns. (9), (10), (11) reduce to

−y1Py ≡ 0 (mod 3)

−y2Py ≡ 0 (mod 3)

−y3Py ≡ 0 (mod 3).

Therefore y1 ≡ y2 ≡ y3 ≡ 0 (mod 3), which implies that Py ≡ 0 (mod 3), a contradiction.
Therefore Px, Py 6≡ 0 (mod 3).

We additionally have from Eqn. (13) that Px 6≡ Py (mod 3), so assume Px ≡ 1 (mod 3)
and Py ≡ 2 (mod 3). From Eqns. (9), (10), and (11) we have xn ≡ 2yn (mod 3) for
n ∈ {1, 2, 3}, which implies x2

n ≡ y2n (mod 3). We then have

1 ≡ Py − Px ≡ (ay21 + by22 + aby23)− (ax2
1 + bx2

2 + abx2
3) (mod 3)

≡ a(y21 − x2
1) + b(y21 − x2

1) + ab(y23 − x2
3) (mod 3)

≡ 0 (mod 3).

We therefore have the contradiction in this case, which completes the proof.

Proposition 14. If 3 | a and 3 | b, then 4 cannot be written as the sum of 3 cubes in LQa,b.

Proof. Suppose x, y, z ∈ LQa,b are such that 4 = x3+y3+z3. Examining the real coefficients
of Eqn. (7), we get the following (similar to Eqn. (8)):

x3
0 − 3x0Px + y30 − 3y0Py + z30 − 3z0Pz = 4. (14)

Note that since 3 | a and 3 | b, we have Px ≡ Py ≡ Pz ≡ 0 (mod 3); therefore Eqn. (14)
becomes

x3
0 + y30 + z30 ≡ 4 (mod 9),

which has no integer solutions.

Propositions 6, 12, 13, and 14 then complete the proof of Theorem 4.
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