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Abstract

Carnevale and Voll conjectured that ) j(—l)j ();1) ();2) # 0 when \; and Ay are two
distinct integers. We check the conjecture when either Ao or A\; — Ay is small. We
investigate the asymptotic behaviour of the sum when the ratio r := A\ /g is fixed and
Ao goes to infinity. We find an explicit range r» > 5.8362 on which the conjecture is
true. We show that the conjecture is almost surely true for any fixed r. For r close to

1, we give several explicit intervals on which the conjecture is also true.

1 Introduction

Carnevale and Voll [1] studied Dirichlet series enumerating orbits of Cartesian products of
maps whose orbits distributions are modelled on the distributions of finite index subgroups
of free abelian groups of finite ranks. For Cartesian products of more than three maps they
establish a natural boundary for meromorphic continuation. For products of two maps,
they formulate two combinatorial conjectures that prove the existence of such a natural
boundary. These conjectures state that some explicit polynomials have no unitary factors,
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i.e., polynomial factors that, for a suitable choice of variables, are univariate and have all
their zeroes on the unit circle. The polynomials related to their Conjecture A [1] are given

by: A
- 0)0)r

J=0

for positive integers A\ > Ao, and the conjectured property is the following.

Conjecture 1. Let A; > Ay be two positive integers. Then C, »,(—1,1) # 0.

Note that
A
o\ A dz dz
Coa(=1,1) =S (=1 — $(1—2)(1 A——fl—”—
SRR A G)G2,) = fa-rarrgta = fo-rets
_ (—1)’\/2(/\)/‘2), if A is even;
0, if A is odd.

This explains why the case \; = A5 is excluded.

Carnevale and Voll [1] reported that Stanton pointed out the following property: the
alternating summands have increasing absolute values for A\; > Ay(Ay + 1) — 1, which shows
the next result.

Proposition 2. For all Ay and Ay > Xa(Aa + 1) — 1, we have Cy, »,(—1,1) # 0.

For a fixed Ay, the sum Cj, »,(—1,1) is a polynomial in A; of degree \y. The first values
are Cy, o(—1,1) = 1, C, 1(—1,1) = 1 — A\;. Moreover, for 2 < Ay < 240, we checked with
Maple that it is an irreducible polynomial over Q when A, is even, and that it is the product
of Ay — A\ by an irreducible polynomial over Q when A, is odd. The even case required much
less time (238 seconds) than the odd case (63908 seconds). Since an irreducible polynomial
of degree at least 2 cannot have an integer zero, we deduce that the conjecture is true for
the first values of \s.

Proposition 3. For all 1 < Xy <240 and Ay > Ay, we have Cy, \,(—1,1) # 0.

The aim of this paper is to study the size of C}, ,(—1, 1) when A\ and A, are large enough.
We shall give explicit estimates in order to extend the range of validity of Conjecture 1.
We start by relating Cy, ,(z,1) to a complex integral formula:

dz
Qmazretl’

Crpmp(,1) = f (14 2 (2 + 2™

where the path is a simple one around 0. This will always be the case from now on. We thus

have
dz

A2 — M A2
(_1) C)xl,/\z(_L 1) B f(l i Z) (1 B Z) W .
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Put A = Ay and r = A\ /Ay > 1. We get
dz

2z’

(—1)2C), 2 (~1,1) = f exp(Af(2)) 1)

with

f(z) = f(r,z) :==rlog(l+ z) + log(l — z) — log = (2)
We need to find the right path to be able to find the asymptotic behaviour of this kind of
integral when A goes to infinity. Let us take z = pe? with —7 < 6 < m. The parameter p
will be optimal when f’ vanishes on the path. Since

r 1 1 —r22+(r—1)z-1

f’(z):1+z—:—;: 2(1—22) ’ (3)

and (r—1)2 —4dr =72 —6r+1= (r — 3 —2v2)(r — 3 +2v/2), we need to distinguish several
cases: 1 <r<3+2\/§7 r=3+42v2and r > 3+ 2v/2. We thus define

. SRS 22 if 7> 3+ 2v/2; ()
— T) .= 3
p=0p 1 r_liM;uT‘ if r <3422,

By (1) we want to study the integral

1) = 163) = | " exp(Af (o) 22 (5)

. 2

In the case r > 3+ 2v/2, we find f(pe®) = f(p) — ML + o(6?) for some positive real
number M, when 6 goes to 0. We therefore find 7(\) ~ ffooo exp <—)\M%> %. We prove an

effective version of this equivalence.

Theorem 4. Forr > 3+ 2v/2, put M = M(r) := p*>f"(p). Then M >0 and we have

VI 3342 53+ 2v9) VZexp (-AM7T)
exp(Af(p)) N -1s 256\ M2 * 24\M3 * 73/23/ AM '

This theorem shows that, for all r, we have I(\) # 0 for A\ large enough. We use
Proposition 3 and further tools to deduce a large range of validity for Conjecture 1.

Theorem 5. For A\ > 5.8362\y > 0, we have Cy, »,(—1,1) # 0.

Note that the value 5.8362 is close to 3 + 2v/2 = 5.82842.. .. , the limit of the method.
Since 7 = Ay /g is a rational number, the case r = 3+ 24/2 cannot occur, so we shall not
give it in detail. The same method would provide an effective version of the equality

22/331/67T(\/§+ 1)1/3 )\1/3
X
T(1/3) 2@V

1
)AI(3+2\/§,)\) =140 <W> .
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In the case 1 < r < 3 + 2v/2, the situation is quite different. There are two conjugate
points on the integrating circle where f’ vanishes. Their contributions partially cancel each
other, so we cannot get an exact equivalent term: for some choices of (A1, A9), the implied
constant may be really small. The analog of Theorem 4 has indeed the following form.

Theorem 6. For 1 < r < 3+ 2v/2, define v, = arccos ;’7\"/_;, Yo = — arccos ;\_/% and 3 =

1 arcsin (TZ:)Q. For \ > (r+1)(31'227ft/3j71)3/2 , we have
(—=r% 4+ 6r — 1)Y4/7) 16336
_ < .
S I(A) —cos ((ry1 +72)A+73)| < \/X(—rz G — 1)

It seems quite difficult to find a lower bound for | cos (A1 + Aoy + 73) | for every Ay,
Ao, and thus to show that I(\) # 0. However, we can upper bound the number of possible
exceptions.

Theorem 7. Forr > 1, we have
#{()\1,)\2) . /\1 = 7“)\2, C’)\ly)\Q(—l, 1) 7é O, )\2 S 27}
O,(1), ifr >34 2v2;
102644 (%ﬁ)ﬁlogx—l—()?’(ﬁ), if 1 <r <34 2v2.

(=r24+6r—1)11/4]og

Note that this theorem implies that, for a fixed r > 1, we have Cy, »,(—1,1) # 0 almost
surely. We can get more explicit estimates when r is close to 1, following a suggestion of
Dennis Stanton. This case is also of special interest since Cy, »,(—1,1) can be reduced to a
sum with at most L’\2—1J — P?ﬂ terms, using a hypergeometric transformation. This enables
us to prove the following analogue of Proposition 3.

Proposition 8. For all 1 < A\ — Xy < 701, we have Cy, »,(—1,1) # 0.

We then prove the following theorems.

Theorem 9. For 1 < \j/\y <3+ 22, define vy, = arccos % and 5 = — arccos %

Assume A\ — Ny > T02. We then have %I(Ag) —cos (M1 + Aaye)| < 0.0165 for
27 2

A — X < /8TAg, and
(1.05882, iflogAe < A1 — Xo < V/Tho;
1.30775, if VT < A1 — Ao <27y
1.50929, if V27 < A1 — Ao < /3T Ns;
1.68876, if v/3mha < A1 — Ao
1.85482, if v/4mhy < A1 — Ao
2.01189, if VBTha < Ap — Ao
2.1626,  if /6T Aa < A\ — Ao
(2.30865, if VTTAs < A — Ao

:

\/X2\/7T_A2

WI(&) —cos (M71 + Aeye)| <

(VAN VAN VAN VAN VAN VAN
ﬁﬁﬁﬂﬁ
9 33
el el e



Theorem 10. We have Cy, »,(—1,1) # 0 in the following cases:

° )\1 + )\2 =0 (mod 4) )\2 < )\1 S /\2 + 27T>\2 —1.0443 or )\2 + vV 27T>\2 +31407 S )\1 S
As + V6T hs — 0.9275;

o M+ A =1 (mod 4): Ay < A < Ay + v3TAy — 0.984 or Ay + /3TA; + 3.8433 < Ay <
VT As — 0.9231;

o M+ A = 2 (mod 4), Ay + max (702,2.058%;/4) <A < Ao+ V2Thg — 0.9535 or
2/Ths + 4.5938 < A1 — Ao < 20/2mhg — 0.9218;

e\ +X =3 (mod 4) Ao < A1 < Ay + /7Ty — 1.1958 or Ay + \/7'(')\2 +2.5913 < \; <
Ao + /DAy — 0.9367.

In Theorem 10 we study what happens before and after the first gap. The results obtained
show that we miss at most six values in the first gap, which is quite small.

In the next section we study the case r > 342v/2. We investigate the case 1 < r < 3+2v/2
in Section 3, and focus on the case r close to 1 in Section 4. We end this paper with some
remarks and conjectures.

Before starting our studies, let us note that

weN_ T B 1 i

o= (t22 (-2 22 ©)
mo N 2r B 2 B 3

f (2) - (1 + 2)3 (1 o 2)3 23 )

and let us define the even function g(0) = g(r,0) := R(f(pe?)) and the odd function h(f) =

h(r,0) :==S(f(pe”).
Since f(pe®?) = f(pe~), we have the useful expressions

/ exp(M () 52 = / exp(Mg(0)) cos (Vh(6)) 52 = / " exp(Ag(6) cos (Wh(9)) 2

—Tr —Tr

2 The case r > 3+ 2v/2

2.1 General properties

A straightforward calculation shows that

V1I—6r+r24+1—-3r
= <

'(r 0, 8
Y e ®)

and we get in this case
0<p<pB+2vV2)=v2-1. (9)
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From (3) we have
1+p

p(1 = p)

and from (6) and (9) we get that

rp p 1—2p—p?

M = M(r) == 21" (p) = - - >0.

1+p)? (A=p32 (A+p1-p)?
Another straightforward calculation shows that

1+ p+5p* + p?
(L4 p)*(1 = p)?

M(r) = =4/ (r) >0,

and we get
O0<M<1.

(10)

(11)

(12)

(13)

Let us now state a key lemma, which shows what kind of estimates are needed and how

to use them to get results for 7(\).
Lemma 11. Let 0 € [0,7]. Assume that

1. g(0) — g(0) < —KM%, for some constant 0 < K <1,

2. ‘9(9) —g(0) + M% < Cy0%, for some positive constant C,,

3. |h()] < Cy10)?, for some positive constant C,
for 0 < |0] <§. We then have

V2rAM
exp (A f(p))

3C, 15C? V2 62 )
M 1— 2\ Vo
Sxreeare T oar T sumar P 2 )" x) VTP

I -1

for all real numbers = and y.

2

—KM—) .
2

(14)

Let us use this property with z = A (g(&) —g(0) + M%) and y = Ah(#). Condition 1
provides the upper bound max(z,0) < A(1 — K)M%. Conditions 2 and 3 imply |z| < \C,0*



and |y| < AC}|0)3, respectively. From (14) and these bounds we deduce that

o o df 0 02\ \ db

[ ewtrroeng - [ e (2 (16-1%)) 5
6 2

= ‘/_5 (e®cosy — 1) exp (—AM%) %

0 0%\ do S N2C365 0%\ df
< 4 — — ] — h — — ) —
_/_éACQQeXp( )\KM2)27T+/_6 5 exp( )\M2)27T

exp (—Af(p))

AC,I'(5/2) NCRD(7/2) 3C, L 15C?
2m(AKM/2)5/2 " Ax(AM/2)7/2 — \2a\3/2(KM)5/2 227 \3/2M7/2
Since
02\ do _ [T 6 62\ do  ©XP (—AM %)
M — | — < - M= | —=
/5<|9|<+OO P < 2 ) 27 /5 ) P ( 2 ) T ONM T
and oo 62\ do 1
e M — | — = ,
/_oo Xp( 2) 2 \amAM
we obtain
V2T AM 0 , 1502 2 2
7T—/\/ exp()\f(pew))d—e—l < 3C4 5C + V2 exp —)\Mé— :
exp (Af(p)) J_s 27 AKB2MZ - 2AM3 57 \M 2

To deal with the remaining integral f5<|9|<7r exp(Af(pe?)) L we first show that g is

2m?

increasing on [—m, 0] and decreasing on [0, 7|. From the definition

9(0) = R (f (pe”)) =rlog 11+ pew‘ +log |1 — pew‘ —log p
and (10) we deduce that

1+ 1
g(0) = T_pp)log (1+20080p—|—p2) - ilog (1 —20050p+p2) —log p

and
1+p 2psind 1 2psind
2p(1—p) 8 1+2pcosf+p2 2 . 1 —2pcosf+ p?
~ sinf(2p(1 +2p — p*)(1 = cosf) + (1 = p*)(1 = 2p — p?)) <0
(1= p)((1+p?)? — 4p? cos? 0) T

which proves this intermediate result. We therefore have

g'(0) =

S o)) 42 exp (a(6) — 9(0)) 22
exp (Af(p)) /6§9§7r PN 5| = /5§|o|gﬂ p(Mol0) = 9(0) 57

< WQ;(S (exp (A(9(6) = 9(0))) + exp (A(g(=0) — 9(0)))) < " 0 exp (—KM%) |
and the lemma follows. 0



2.2 Estimates for ¢ and h

In this subsection, we obtain explicit versions of Conditions 1-3 in Lemma 11. We shall
present two kinds of inequalities: a general inequality valid for r > 3 + 2v/2, and a more
precise one only valid when 7 is close to 3 + 2v/2. The first ones will provide applications
when 7 is large enough, and the second ones when r is close to 3 + 21/2.

Lemma 12. Forr > 3+ 2v2 and 0] < 7, we have
2 2
o(6) — g(0) <~ M6*.

For 3+ 2v/2 < r < 7.686899 and |0 < 7/3, we have

92
o(0) — 9(0) < ~M %
Proof. From the definition of g, we get
r 1+ 2pcos@ + p? 1 1—2pcosf + p?
6) — g(0) = =1 21
50 =0 = F1on (S )+ 1on (T
r 2p(1 — cosb) 1 2p(1 — cosf) (15)
— Do (1= L8 | o (14 SRS TZEST)
pios (12 )+ (14 )

Without loss of generality we may assume € > 0. Since log(1+z) < z for x > —1, from (15)
we obtain the following upper bound:

9(6) — g(0) < ((1 _pp)2 - ipp)z) (1 — cosf) = —2M sin (g) < —2M (g)z . (16)

which proves the first part of the lemma.
From log(1 + ) <z — % + %3 for z > —1, from (11) and (15) we deduce that

g(0) —g(0) < —=M(1 — cosf) — <<1 f PL + (17fp)4) (1 — cosf)?
P 4(1 —cos )3
(- aim)

(17)

Let us put
0> (1 —cosf)*> 2(1—cosh)?
0) .= 0—1+ — — _
P1f) i=cosf =143 6 5
S(; that }clpl(O) = ¢1(0) :[OO|Z|I]1d <p’1’h(¢9%1: M. By Taylor’s formula and using the parity
of ¢y, there exists ty € |0, such that

_ 3 2 201 _ 3
2(1 — costy) ><9 <9(1 cos ) .

0<¢i(0) = 5 5 5 (18)



From (17), we get

62 (1 —-cosf)? 2(1—rcosf)® 6*(1—cosh)?
M
( > 6 T T 5 )
2 2 3 3 3
P rp 5 p rp 4(1 — cos6)
— + 1 —cosf)” + < - >
((1—p)4 (1+p)4)( ) (1=p)° (1+p)° 3

2

= —M§ + ¢1(p)(1 — cos0)? + ca(p, 0)(1 — cos 0)..

with

M 0> rp?  1—=8p+9p* —32p° — 9p* — 8p° — p°
ci(p) =

% \T—pf " Ttpn 61+ p)*(1— p)t

2 0 4 Ik rp®
0):=M|(—+—|+-= — .
i) =M (5+5) 5 (50~ T ear)
For 3 4+ 2v/2 < r < 7.686899, we have 0.19186222 < p(r) < v/2 — 1, and we check that

ca(p, 7/3)
2

c1(p) + (1 —cosB)ea(p, ) < ci(p) + <0

for |0| < m/3. The lemma follows. O

Lemma 13. Let c € [—1,1]. Forr > 3+ 2v/2 and cosf > ¢, we have
906) ~ 90) + | < Cp,

with

( 1=2p—p*  p'+6p3+202+4p—1 p )
Cy := max :

24(1+p)(L=p)*"  24(1+p)(1 —p)* 4(1 = p*)(1 + p* + 2pc)
Moreover, for r < 7.494, we have

_p4—|—6p3—|—2p2+4p—1+ P
24(1+p)(1 —p)* A(1 = p*)(1+p* + 2pc)

Proof. 1t follows from (16) that g(f) — ¢g(0) < M(cos — 1). The upper bound

Cy

62 o 1—2p—p?
0) — M— < M— = o
90) = 90) + M < Moy = o T — )

(19)

follows from (11) and from cosf < 1 — % + %.



2

Since log(l —x) > —z — 305 and log(l+x) >z — % for z € (0,1), from (15) we deduce
the lower bound

2 2

rp p )
g(0) —g(0) > —M(1 — cos @) — ((1 T 2’)8;;3);9)) + B —p)4> (1 —cosb)”.

From (18) we get

6> (1 —cosf)? 2(1—cosb)? 0> (1 —cosf)?
- 1> —— > —— -
cost —1> 5 + G + I z=5 + 6 )

and hence g(6) — ¢(0) + M% > —pa(p, c)(1 — cos0)?, with

M T‘p2 ,02
pa(p,c) s = ——+ +
2p(1—c — 4
6 (14 p) (1—%) (1-p)
ot 6P 420 +4p—1 p
6(1+p)(1—p)* (1= p*)(1+ p*+2pc)

From (1—cos#)? < 6*/4, we obtain g(#) — g(0) + M% > —max (p2(p, ), 0) & and therefore

p2(p, c) 1—2p—p? s "
< 0t = C,0".
—m”< r Puagrpa-p)’ 9

2

o(6) — 9(0) + M

We note that

M M pb+5p° +3p +14p — 3p? +5p— 1
_ > 1) = — = >0
QOQ(p’C) 6 — (,02(,0, ) 6 Q(I_p)4(1+p)3 el
for p > 0.2002734. The second part of the lemma follows. O

Lemma 14. Forr > 3 +2v/2 and cos > ¢, we have |h(0)| < C,|0]> with

= r.¢) ‘= max (1+P2)(102+4p_1> (1—|—p2)(1—2p(1+0)—/)2)
= uino) = (G S S i)

Moreover, for r < 6.537 and ¢ > 1/2, we have

(L) +4p—1)

Oh = 50— P 1

Proof. We have
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so that h(0) = 0 and

0 p1 0 —i0 p1 —i6
_pe / (pe )+2P€ f (pe ):%(pewf' (peia))

rpe’ B pe’d ) = rp(cosf+p)  plcos@—p)
1+ pe? 11— pe? 14 p2+2pcosf 1+ p2—2pcosh

1 (0)

Since h'(0) = 0, we find

vy = o0 o pleost—p)
14 p2+2pcosf 14+p 14+p2—2pcosh  1—p
~rp(l = p)(1 —cosd) p(1+ p)(1 — cos @)
(14 p)(1+4 p2+2pcosB) (1 —p)(1+ p?>—2pcosb)
p(1+p) 1
- - 1— .
((1—p)(1+p2—2pc089) 1+ p?+2pcosb x (1 = cosf)
Since
p(1+p) 3 1
(1 —=p)(1+p?>—=2pcosf) 1+ p>+2pcost
cptp) 1 (4 +4p— 1) — ()
T (L=p)P (I+p) (1 =p)*(1+p) ’

we deduce that h'(0) < max(ps3(p), 0)%.
Similarly we get h'(0) > —p4(p, c)(1 — cos @) > —max(p4(p, c), 0)% with

1 p(1+p) (1+p*)(1 =2p(1 +¢) = p*)

Tl 42e I-p) (T2 —200) (1= p)((1+p2)2 — 4p2c2)
We thus obtain

alp;c) :

| 2

1(0)] < max (¢3(0). 0. ea(p,)) 1

Since —py < 3, the first part of the lemma follows by integrating.
For ¢ > 1/2, note that
(14 p?)(20° + 7p° — 3p* — 20 + 3p% + Tp — 2)
(L=pPA+pP*+p+ (P> —p+1)
for p > 0.26101. The second part of the lemma follows. O]

@3(p) — @a(p,c) > @s(p) — @a(p,1/2) =

2.3 Proof of Theorem 4

In view of Lemma 11, we just need to estimate K, C,, and C}, when 6 = m. Because of
Lemma 12, we may choose K = 4/7%. By Lemma 13, and using the notation in its proof,

11



we may choose Cj; = max (g—i, W). By (13) we already know M /24 < 1/24. Since

PP+ 15p" +10p 4+ 46p* + 17p + 7
(L+p)*(L—p)°

and @a(v/2 — 1, —1) = (3 +2v/2)/2, we find C, < (3 +2v/2)/8.
With the notation in the proof of Lemma 14, we may put Cj, = max(e3(p), ¢a(p, —1))/6.
Since

>0

2(1+p*)(p* +2p— 1)
(E S

@3(p) — palp, —1) =

and 5 s ) 5
dp 6(1+ p)*(1—p)?
we find Cj, < pu(v2—1,-1)/6 = (v/2+1)/6.

These estimates prove the theorem.

2.4 Proof of Theorem 5

Let ®(r, A) denote the upper bound given in Theorem 4. It follows from (12) that ®; is a
decreasing function of r. The function ®; is also obviously a decreasing function of \. We
thus obtain

O (r, \) < ©,(5.941893,241) < 0.9999978502 ,

for r > 5.941893 and A > 241. Theorem 4 therefore implies that I(r, \) # 0 for r > 5.941893
and A > 241. Proposition 3 ensures us that I(r,\) # 0 for » and A < 240. We thus get
I(r,A) # 0 for r > 5.941893 and positive integers A.

We can now assume r < 5.941893. Let us get a better version of Theorem 4 in this case.
By Lemma 12, we may choose K = 1 when ¢ < . We also put ¢ = cosd in the definitions

of C, and Cj. We then get |Y22M_T()\) — 1‘ < Py(r, A, §), where

exp(Af(p))
Bo(r, 2, 6) 1= 2Cel1 ) | 15Cu(r o V2 (120 et ) exp (s
240 M WE INESYi - P 2 )

Let us show that ®, is a decreasing function of r, to get results on an interval rather than
at a point. Let us study each term defining ®,.
We find
%( C)_ P(p,6)+7(1—p)
9p " T 64 pP (L= PP (L4 72+ 200

where P is a polynomial in ¢ and p with nonnegative coefficients. We obtain %(p, c) >0,

and the first term in @, is therefore a decreasing function of r by (8) and (12).
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We also find
oC), p°+9p* +8p% + 280 — p+ 3
T () = T s,
dp 6(1=p)t(1+p)
and the second term in @, is also a decreasing function of r by (8) and (12).

The third term is easily seen to be a decreasing function of r by (12) when AMé§% > 1.
Therefore, for AM§? > 1, the function ®,(r, A, d) is a decreasing function of r and A, the
monotonicity in A being easy under the condition AM§? > 1. Computations then shows
D, (5.8478,241,0.75) < 0.9936 and P,(5.8362,980,0.5) < 0.9999, while AM 6% > 20 in these
two cases. We thus proved I(\) # 0 for r > 5.8362, except when 241 < XA < 979 and
5.8362 < r < 5.8478. There are a finite number of possible exceptions, corresponding to the
cases 241 < Ay <979 and 5.8362\ < Ay < 5.8478\5. We checked these cases with Maple in
5470 seconds. Here the limitation comes from the size of Ay that must be handled by Maple
in the computations. For our program, the limitation is Ay < 998.

3 The case r < 3+ 22

3.1 General properties

In this case, the derivative f’ has exactly two zeroes. These zeroes are the conjugate complex
numbers
Cr—=1+4iV—r?46r—1 io r—1—iv—r24+6r—1 Cin

Zp = =pe'” and z, = = pe ",
2r p 2r p

with p = \/i; and a € (0,7/2). Note that

1 N 1
r and sina = o . (20)

2\/r 21

Many properties from the previous section can be rewritten. We still have

Ccos . =

1— 22, — 22
(1+2.)22(1 — 2,)%’

B 1+ 2, y B
r_zr(l—zr) and f"(z,) =

from which we find

V—ri46r—1

V-r2+6r—-1 _,
" 2 _ —if3
)z 2 ( Ar

(r+1)vV=r2+6r —1—i(r— 1)2>

(21)
with 8 € (0,7/2). Note that
OWrZ 6 =1 1)
cos f = (r+ Dv=rt+6r and sinf = (r—1) . (22)
4r 4r

13



We also use (3) to compute

9] : —rp?e®? + (r —1)pe? — 1  —e?? 4+ 2e cosa — 1
=7 (f (pe 0)) =t 2.2i0 = 2i0
00 1 —p?e r—e
We then obtain the useful expressions
0 — el (et — eif) cosa — cosf
(0) + in(0) = ir = = 2 . (23
g(0) +ih(6) = ir r— e W(r—l)cosG—i(r%—l)sinH (23)

As in the previous section, we now state our key lemma.
Lemma 15. Let 0 € [0, «]. Assume that
1. ‘f (pei®) — f (pei®) + Y=Hr=Le=iB(9 — )2 < |0 — al®, for some positive constant
Cy,
2. 9(0) — g(a) < —M(ﬁ —a)?*+ Cyl0 — al?, for some constant Cy > 0,

167
fora—6<0<a-+).
We then have

—r2 4+ 6r — 1)Y4V7A 12872C e
( r+1> I(A) — cos ((7“’71 +Y2)A + é) < /
VARG 2 VI 4+ 1)2(=r2 + 6r — 1)7/4
T 77"2 T—
+ L a— - (m = 26)(=r* + 61 — 1)1/4\/X6*%WA52+09/\53
NI+ 1)(=r2 + 61 — 1)3/4 21 ’
with v, = arccos ;”;/—51, and 7y, = — arccos ;_/%
Proof. Instead of (14), we use the bound
’62 . 1‘ < |Z‘emax(§Rz,O) 7 (24)

with z = f (pe) — f (pe') + —“7”2:6”_1645(9 — a)?. Conditions 1 and 2 then imply |z| <
CiA0 — af? and Rz < C A0 — af?, using (22). We thus find

a+d ) ) a+d .
/ AF(pe®) -1 (pe)) 4O / I i g 4O
a—§ 27 a—9 27

a+o
a—0 27

a+é V—r2+6r—1
< / CiA0 — af® exp ()\ max (g(@) —g(a), — L Z6T ! cos B(0 — a)2>) @
a—9

5 2
+ 1) (—r*46r —1) du
< O\ 3 b a2+ Co\ul? ) 2
< Cy /5|u| exp( G u” + g|u|)27r

™ 2 _
< Cf)\ecg)“sg/ & exp (_ (r+1)(—r*+6r 1))\u2> du
0 167 T

™

12872

= CgA&3 )
1€ m(r+1)2(—r2 4 6r —1)2A

14



Since

2| —

+
/ o Vv —r22-6r—le—i,8>\(0_a)2 ﬁ < / > Ee_ vV —rQIGr—l cos 5>\U2 d_U
|0—a|>5 s 0 T

(r41)(=r?4+6r-1) y 52
167 AS

B 8re”
A+ 1)(=r2 4+ 6r — 1)

and A
T e i gap B e
—00 21 (=12 + 6r — DV4/7A

we get

erd( 27T

' ( 7“ + 6T 1/4 \/ / 10 d9 - ei)\h(a)-i-’iﬁ/Q
gla

(r+1)(=r®+6r—1)
e A0

1287‘20]0609/\63 n 8re”
T VI F 122+ 6r — 1) ST A 1) (=2 4 6r — 1)3/4

By (23) we have

2r(r 4+ 1)sind
! 8 _ - 0
g( ) |<T_ 1) COS@+i(T+1) Sin9|2(COSOK Ccos )7

which shows that ¢ is increasing on [0, ] and decreasing on [, 7]. From Condition 2 we
deduce that

a—9 a—9
/ A (o)1 (pei)) 40| / A9 D0 =0 ga—t)—g(a)
0 0

21 27r - 27

— 2
« 56_ D (r246r-1) 524 35
- 27
and T do 0
i0 ia ™= — (r41)(=r?46r—1) y ¢2 3
eA(f(pe )ff(pe ))— < — e 167 AG=+CgAS .
ks 2 2
We obtain

128r20fec-‘?’\‘53
= a2 1 6r — )78

' ( 7/' _'_ 671 1/4 V T / p819 de . Z)\h(()f)-f—ZB/Q
gla

eM(

+ 87’6_w)‘52 + (m —20)(—r*+6r — )1/4\/_ (T“Timk52+cg>\53
SVTA(r 4 1)(—=r2 + 6r — 1)3/4 2vr |

15



By (7) we have I(\) = 2R <f7r e’\f(pew)ﬁ>. and the lemma then follows from (22) and

0 27
oin I1+z  3r—1+iv—r?4+6r—1
N |1 + z'r’| B 2\/57’ '
iy 4 1 r=3—iV/=r46r—1
(& = = s
|2t =1 2/2
erola) — |1 + zr|r/\|zr—1 N 1|)\ _ \/5(7‘4—1))\‘
3.2 Estimates for f and g
Lemma 16. For a/2 <0 <7 — «/2, we have
i ia Vori46r—1 (r+1) 3
f(pe”) = f(pe™) + 1 e (0 — a)? < 0.33846 = 0 —al” .
Proof. From (23) we know that
‘ ‘ (eié’ o eia)(e—ia o ei@)
g'(0) +ih'(0) = ir ST
We also have
e—ia o ei@ B e—ia o eioz (eiH o eia)(ei(G—a) T [ ei(a—l—é)))
r—e2i0 gy _ p2ia (r — 62"9)(7’ — elia) ’
which gives
—ia _ i A V=rZ+6r—1 -1
§(0) + i (0) — ir O (o0 gie| < VIR AO ANV D)
roe 2¢/r2 + 14 /r(r — 1)
since
; ; V—r?46r—1
el 41— — @) <y 14 2sina=r—1+ o ,
N
4 —1)?
lr — e =7 +1—2rcos(2a) =r* +1—2r (2—(T 1 ©_ 1) = 4r,
r
Ir— €2 =1 41 —2rcos(20) > 12 +1 —2rcos(a) =r* 4+ 1 —/r(r —1).
Moreover we find
R i(1—e*®) sin o s V-r?46r—1 9
— (¥ =€) — 0 — < —(0— = 0 —
r — e2ic (6 € ) r — e2ic ( Oé) — |7a _ €2wc| ( Oé) Ar ( Oé)




and therefore

1 — €2ia

g'(0) +ih'(0) +r

(6 —a)

r— €2ia

e Tt MRV i VW Vel T

<

We obtain the lemma by using (20), (21), (22), and checking the inequality

.2 — _ ) — 2
V=r2+6r —1+/r(r 1)+\/ r2 + 6r 1§1.01537(r+1).

2\/T2+1—|—\/7_“(T—1) 4 r2

Lemma 17. For /2 <0 <7 — «/2, we have

r+1)(=r*+6r—1 r+1
9(0) — gle) < - LN Yoy Tl ap
167
Proof. We find
r 1+ p*+2pcosf 1 1+ p* —2pcosd
0) — g(a) = -1 -
9(6) = 9(c) 2 0g(1+p2+2pcosa +2 °8 1+ p? —2pcosa

:ilog 1+2p(cos0—cosa) —i—llog 1_2p(cos€—cosa)
2 1+ p?+2pcosa 2 1+ p? —2pcosa

1
= glog (1+ p(cosf — cosa)) + 5 log (1 — p~'(cos 6 — cos av))

since 2pcosa = 1 — p?. We deduce the upper bound

1 1 — 2
9(0) — g(a) < —TZ (cos — cosa)® + 6\/7: (cosf — cos a)?
1 4
=1 Z (—(cos@ —cosa)? — COSQ(COS@ — cos a)3> :

Let us define ¢5(0) = sin® a( — «)* — (cos 6 — cos a)? — 1922 (cos § — cos av)?, so that

©2(0) = 2(cos § — cos ) (6 cos acos®f + 2(1 — cos® ) cos § — 3cos )
=: 2(cos @ — cos a)p(cos b, cos ) .

We check that
p(cos B, cosa) < p(cos(a/2),cosa) = 3+ (1 — cos® ) (\/2(1 + cosa) — 3) <3,

p(cos b, cos ) > jriilllp(x,y) =p(0,1) = —3.

0<y<1

This gives |¢Z(0)] < 6|0 — a| and p5(0) < |0 — a|?, and the lemma follows using (20).

17
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3.3 Proof of Theorem 6
We use Lemmas 15, 16, 17 to get

(=12 + 61 — 1)1/4m1
21+%1>\

3
5) 2445 AT
A)—cos | (ryr+72) e+ = || <
) =eos ((rm+ e+ )| £ P
N 8re N (m —20)(—r* + 6r — 1)1/4\/X67<r+1><—122T+6T_1)MQHTH)/\;
SNTAr + 1) (=12 + 6r — 1)3/4 2y 7

for 6 < a/2. We apply the inequalities ze™® < 1 and z3¢™® < 27¢73 to the second and third
term of the right hand side respectively to get

(r4+1)(—r246r—1)
- 167 >\62

3
—r2 4 6r — 1)Y4/7A 24.45¢(r+DAT
( SO cos (et )| <
1A 2 V(=712 + 6r — 1)7/4
12872 55206, /mr3er N

+(53)\3/2\/7_T(7’ +1)2(=r2 4 6r — 1)7/4 + e306N5/2(r 4+ 1)3(—r2 + 6r — 1)11/4°

~1/3 ‘
_  (r+DX : sin o @ :
We now choose § = (T) . By hypothesis, we have 6 < *5* < 5. We obtain

—r2 4 6r — 1)Y/4/7\ 3
' : 21—1—7';12 I(A) = cos ((7"'71 +72) Ao + §>
2(_ .2 - 3
< 1 <24A5626_T2%_6T__1)%_16r (=2 +6r 1)+_864vﬁ% )
V(=12 4 6r — 1)11/4 NGO T
16336

T V(=12 4 6r — 1)11/4 ’

which proves the theorem.

3.4 Proof of Theorem 7

For 7 > 3 + 2v/2, Theorem 4 shows that I(\) # 0 for A large enough, the implied bound
only depending on M (r). The first part of the theorem follows.

For 1 < r < 3+2+/2, define S, as the set of non negative integers A such that I(r, \) = 0.
As usual, let ||z]| denote the distance of = to the nearest integer. For A € S,., we have

T+ T . T+ 25661
A < — A — ) <
(ry1 + Y2) A + 5 H_2 sm((r%—kw) +— >'_\/X(—'r2+6r—1)11/4’
by Theorem 6. For A, € S,, A< X < X+ (_TZHESQ_GQ;M\A, we find
51322 1
[(ry +72) (N = M) < <

V(=12 +6r — 1)11/4 ~ 2N = A)

18



By Legendre’s theorem [3, pp. 27-29], this implies that A’ — A is a denominator ¢, in the con-
N n+1 N n+1
tinued fraction expansion of r~; + .. Since ¢, > F,11 = \/ig <(1+2—5> — (1‘2—5> ) >

1 (1+\/5 ) , the number of such denominators less than ¢ is upper bounded by %,
ogl —5

/5 2
and we get for x > 1:

(=12 +6r — 1)V/4 /2
#5000 {x v 102644
—r246r—1 11/4\/5
< log ery 10264)14 P (—r® +6r — 1)z — o5(2)
ST g (125) 102644 |
2
with

po(T) = 102644 ) Vzlogzr + O,(Vr).

1
(=12 4 6r — 1)1/t log (155

The second part of the theorem follows.

4 The case r close to 1

When 7 goes to 1, the angles a and  go to w/2 and 0 respectively. So we shall prove specific
estimates in this case. Before that, we establish Proposition 8.

4.1 Small values of \{ — \y

We have

dz B dz
Cap(—1,1) = 7{<Z T 1>/\1(1 B Z>/\2 il j{(l B z2)’\2(z + 1)/\1 N QimzMtl

-2 GG

Y L (hm LB )
R l%JW—fJ’[%Sm( Y (Al—zj) it Qe = )]

(-1l O VN &
g, 2 (o P12 1) T

When \; — \; is fixed, the last sum is a polynomial C in L%J of degree at most L%J — [/\ﬂ,

also depending on the parity of \; and A\s. More precisely we consider the four families of

19



polynomials

Croo(k) = o;q(_l)j (gj) ((: i;))" C f!j)! for (Aa, A1) = (2k, 2k + 20),
Croa(k) = O;Z(—l)j (%; 1) ((:i;))', T f!j)! for (Ao, A1) = (2k, 2k + 21 + 1),
Crao(k) = 0<;_1(—1)]‘ <2j2i 1) (k(i Tf;), T f!j)! for (Ao, M) = (2k + 1,2k + 20 + 1),
Cria(k) = o;q(_l)j (Z i 11> é:i i _t ?)', G f!j)! for (Ay, \1) = (2k + 1,2k 4 21 + 2).

The first values are given by Cooo(k) = Choo(k) = Cooa(k) = Cora(k) =1, Coro(k) = 0,
51,170(16) =2, 52,170(/{) = 8, 6’170,1(/@ = 2k + 1, 617171(/@ = 2k + 6. We can compute the
leading terms of each polynomial to show that the degree of 6’;70,0(16), 51,0,1(k), 6’;7171(16) is at
least 2 for [ > 2, and that the degree of 51,1,0(14:) is at least 2 for [ > 3:

Croo(k) = > (—1)i(§;> (kl + ((lgl) —j2> kL )

0<j<

(@) () 7))

=R ((1+i)2lkl+ ((lgl) - @) (14 0)*k! +>

Croa(k) =Y (-1) (2521; 1) (K +--) = m( > z’m(zl;: 1) (kl+...)>

0<;<1 0<m<2l+1
:%(<1+Z)2l+1kl+) ::l:2lkl+

= T () (04 (() )

0<j<i-1

o )

2

51,171(k):Z(_l)j(jéill)(kl—i_'”):%( > Z-m<2l;;1>(kl+...)>

0<5<l 0<m<2l+1

=3 (14" ) = 22

20



For each of the four cases, we checked with Maple that 6’; is an irreducible polynomial
for 2 <1 < 350, which proves Proposition 8 since C) then has no integer zero. Each case
required between 95000 and 98000 seconds.

4.2 The approach

We give a more specific version of Lemma 15.

Lemma 18. Let §,6; be two positive real numbers with 6 < min (2/3,3(3 —r)/4) and § <
01 < a. Assume that

1. ‘f (pe) = f (pe™™) + (9‘;”2] < 0ol L 19— )2, fora—6 <0 <a+s,

2. g(@)—g(oz)g—w—l—w, fora—96, <0 < a+ 0.

Define 71 = arccos 3 ﬂl and o = — arccos % We then have

VA
WI(A) — COS ((7’/}/1 + 72))\) <

2
1 r—1 V2e 5
2 3 -

_l’_
é)3/2 VT

3

m—20 25/2 B
A 2 HA%
( V2 \/_5(2—35))\/_6

Proof. We follow the proof of Lemma 15, and use Conditions 1 and 2:

a+o a+d 2
/+ A7 (o) =1 (oe ,-a))de _/ * e de

27T -5 27T
0—aff r—1 o —al® dff
< (’ Oz’ + r . (9 _ a)2> €—3T>\(9—a)2+/\%%
3 _ 1 _r d 0 3 —_ 1 T d
< )\/ (% = 1 u2) ef)‘uz(Sng)?u < )\/0 <% + 1 1 u2> e (55 7%)?1“
that is
a+6 ) ) a+é o —
J A e e Y
b 2 Jas 2] 7 6mA (B —9)7 16vIA (3 - )
(25)
We still have ,
2 -A
I B (20)
|6—al|>6 2T 7T)\5

and

& )\(9 04)2 d@ 1
) 2
/_oo ‘ 27T 2w\ (27)
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Let us now assume 0 < 0 < o — 9. As in the proof of Lemma 15, we deduce the following
from (23) and Condition 2:

/ " (o)1 (pein)) 4O

2 3
<0 aFnd
2| —

. (28)

Put u(f) = — =S a)2 — =9 55 that g(0) < u(f) for & < a. We check that v/(0) = 2(a —

2

0)(3—a+6) >0 for a—2/3 <0< a,and v/ (0)—u'(a—0) = —(0+a+9)(3 (9—&—5)/2—1—12) >0

for 0 <0 < a—9. We thus get ,(( >1for0<0<a-—95 We get
oa—0 a—d8 _ ﬁ ﬁ _ ﬁ ﬁ
/ eA(f(pe“’)—f(pem))ﬁ - / u'(0) 6)\“(0)% _e A AT AT HAG (20)
a—sy 21| 7 Jais, W —9) 27 3md(2/3 —9)
The estimates (28) and (29) give
a=d A(F (i)~ 1 (peie)) 40 do a—0p 3%\ e_)‘§+/\§
pe UGG L~ 30
/0 ‘ x| = o ¢ T T a3 (30)
Similarly we have
T 0 ol m—a—9¢ 53 6% e‘kﬁﬁ\g
/ A(pe?)=f(pe)) 2N c T AT AFag p €7 7 (31)
ot 27 27 (2 — 39)
From (25), (26), (27), (30), (31) we obtain
™ Y
/ eA(f(peié))_f<peia>)ﬁ 1 < 1 - r—1 - e 2
0 2 V27 e (5 -9 16v/A (32— 9) / A
IR
7T—2516_)\§+)\2+26 5 TAS
27 6(2 —30)’
and the lemma follows from
R </7r ek(f(pew)fg(a))d_e - ei)‘h(o‘)> _ I(\) B cos(Ah(a)) ‘
0 2 27\ 2 2w A
[

4.3 Estimates for f and ¢
Lemma 19. Assume 1 <r <2.282. Fora—+r—1<60<a++/r—1, we have

(0 — a)? 0 —al r—1
< +
2 - 3 4

7 (pe) = 1 (pe) + (0 a).
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Proof. We first notice that v/r — 1 < a = arccos (gfﬂ), for 1 < r < 2.282459. This implies
0<6<2a<m.
By (23) we have

3

. (62‘0 . eia)(e—ia . ei@) ' (ei((ﬁa) _ 1) (1 o 6i(9+a))
g (0) +ih' () =ir — =r RS
‘ i(0+a) (i(0—a)
= Z (61(6’_&) — 1) (1 + ‘ ’I"<i 622-9 T)) )

which gives
=) 1| +r—1 - 0 —a)?+ (r—1)|0 -«
|7 — €2i0] = |7 — e2i0] :
Since 2a — 2¢/r — 1 < 21 — 200 — 2y/r — 1, we also get
Ir— > =1+ 1 —2rcos(20) > r* +1—2rcos (20 — 2v/r — 1)

> 12 + 1 — 2rcos(2a) — 4ry/r — 1sin(2a) + 4r(r — 1) cos(2a)

=dr —2(r — 1)¥2/ =2 1 6r — 1+ 2(r — 1)(r? —4r +1)

=44 2(r—1)%? (\/mw_g)m) >4,

which leads to the upper bound

|ywy+mﬂn—i@mﬂ0—n\gw—aﬂe

|ywymmwy—uawm—¢ﬂg(9;®2+r;1w—ay
We deduce
90)+it0) + (0 — o) < L Loy O
and the lemma follows by integrating. O]

Lemma 20. For a/2 <0 <3a/2 and 1 < r < 2.11952, we have

(0—a) 0—af
> T2

9(0) — g(a) < —
Proof. From Lemma 17 we get

(-  10-af

2—4r—1 10— q
0) — gla) < — D —a)? |t .
o(6)  g(0) < - E e - ap (o B
We check that
r? —4r —1 L2
167 8 —
for 1 <r <2.119518..., and the lemma follows. O
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4.4 Proof of Theorem 9

For (r — 1)A > 702 and r — 1 < /%%, we have A > (%1 = 19609 and therefore r <

1+ @/% < 1.03581. We thus can apply Lemmas 19 and 20, and we set 6 = v/r — 1 and

01 = a/2. We then have § < 0.19 < 2/3 < 3(3 —r)/4. We therefore can use Lemma 18, and
we obtain

VA
@[()\) — cos ((ry1 +72)A)

1 r—1
< +

>~ 2 3/2
32 (35— L221) g (250 - 1) /

3

_A(r=1)
LV E (7T ol ) Ve A5
A1) \v2r | /72— 30)

Since 6(2 —30) > |/ T#(2 — 3v/0.03581) > 22 and o < 7/2, we find

NS 1 1
1+(ZT+1)A I(X) = cos ((ry1 +72)A)| < 5+ : 3/2
2 BVERR (33 = V) ot (g - )
A(r—1)
YeE <0.6267 n 0.04206\/X) Ve M-85
TA(r—1)

Let ®4(r, \) denote this last upper bound. The first two terms and the fourth term are
increasing functions of r < 1.03581 and decreasing functions of A > 19609, the third term is
a decreasing function of A(r — 1) > 702: we already get this way ®4(r, A) < 0.0165, which
proves the first inequality in the theorem.

Further assume log A < (r — DA < 1.67007vA. We find A > Ao := [—22 ] = 176688,

1.670072
\/1.670072/xo
TSl—F%{?m,aZao::arccos( / )and

2(14+4/1.670072/10)1/2

VRar ) < 1 . 1.67007 -
3o (550 - 4) o (i - )
1 oyl
T T (0.6267+ 0.04206v/\ ) Moe 0 (1=5)F < 1.05882,
V351n 0) 70

which proves the second inequality in the theorem for log A < (1 — 1)\ < 1.67007v/\.
Assume now ¢; VA < (r—=1A< coV/\, so that A > )\ := [%1 We find here

1
VD, (1, \) < -+ = -
3—r r—1 —r r—
o (G- Y5 o (3 - )
Vet o

n (0.6267 n 0.04206\60) Age o (1-5)

+—
V7TC1\/X0
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which gives

(1.05882, if 1.67007v/A < (r — 1)A < V7
1.30775, if VA < (r — 1)A < V27
1.50929, if v27A < (r — 1A < V37A;
ABa(r ) < 1.68876, if V/37A < (r — 1A < VA7A;
T ) 1.85482, if \/_ < (r— 1A < VBT
2.01189, < (r— 1A < V6m;
2.1626,  if \/67 A< (r—1)A< VT
2.30865, if V77X < (r — 1)A < V87

This completes the proof of the theorem.
We now need lower bounds for | cos(A1y1 + A2y2)|, and this is the aim of the next sub-
section.

4.5 Additional lemmas
Lemma 21. Forl1 <r< %ﬁ =4.386..., we have
(r—1)?

N S(T—l)S.

™
OS'rfyl—l—’yg—(r—S)Z 1 5

) 47 72(1) = _Z%T’ Vi(r) = _ﬁ’

(
vy (r) = \/ﬁ, and therefore y(1) = =2, 7/ = v, ¥"(r) = _Nﬁ’ v'(1) = -3,
3) (r) = —2r24+9r —1 3rt — 273 + 7012 — 15r + 1
7 Cr2(—r2 4+ 6r —1)3/2 r3(—=r2 4+ 6r — 1)5/2

Since 3r* — 27r% 4+ 70r? — 157 4+ 1 > 0, the function v is decreasing on [1,3 + 21/2). From
(1) = 3/4 and ) (2B) = 0, we get 0 < y®(r) < 3/4 for 1 < r < 2B and the
required inequality follows. m

Lemma 22. For 1 <r < 3, we have
o For A\ + X2 =0 (mod 4):
| cos(A(r71 + 72))]
COS(#A), zf)\rl) <z
- min (COS <7T - %A) , COS (7r - %(TT)Q)\)) , if = < )\(TTI < 3

o For A\ + X =1 (mod 4):
| cos(A(ry1 +72))|

Proof. Define v(r) = ry; + 7. We have 71

and AW (r) = -2

_ Jmin (5 cos (5 -257)) if A < o
~ | min ( cos (51 — (7«11)2/\) , COS (% - %(T;})ZA)) s i gty < )\(T D* < .
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o For A\ + Xy =2 (mod 4):

| cos(A(ry1 + 72))|
min | cos ( 5 — )\ﬂ) , COS (% — 3or =1 > cif A <o

> 2 4 2 1
~ | min ( cos 37“ — )\—(T_41)2> , COS (37” — 3_?/\@—41)2)) i 5 2n - < /\(r D < 2
o For A\ + Xy =3 (mod 4):
| cos(A(r1 +72))]
cos <§+)\(T_1)2>, zf)\r L2 <z
= : 3m (r—1)2 3m  3—ry (r=1)2 (r=1)2 5m
m1n<cos<4—/\ 1 >COS<4—T)\ 1 >>, 2f2(3fr)§)\ T <T

Proof. From Lemma 21 we deduce the inequalities

—1)? —1)3
0S/\171+/\272—(/\1—3)\2)%+/\2<r 1 ) S/\2(T ) .
Let us define = A1y1 + Agy2 — (A1 — 3A2) 7 so that we have
—1)2 _ _1)\2
_(T 1) )\QSUST 3(r—1) N <0,
4 2
for 1 <r < 3. We then find
(cos, if A1 + X2 =0 (mod 4) and -5 <n <0;
cos (m+1n), if)\1+)\25()(mod4)an I <=3
cos(%%—n), if A{ + Ay =1 (mod 4) an fﬁngo;
5T . — T 3T
ST ) i A 4 A =1 (mod 4 _Im << 3T
LcosOum + A = 4 < CFF 1) A+ A =1 (mod 4) and 5 < < =5
cos(§+77), 1f)\1+)\2:2(m0d4)and - <n<0;
cos (2 +n), if M+ A =2 (mod4) and —27 < < —m;
cos(—§+n), if)\1+)\253(m0d4)and T<n<0;
\cos(‘%”—l—n), if Ay + Ay =3 (mod 4) an %gng—g.
The lemma follows. [

4.6 Proof of Theorem 10

In order to get a contradiction, assume I(\y) = 0 with Ay — Ay > 702, by Proposition 8.
Theorem 9 then gives an upper bound for | cos(A1y1 + A2y2)| that may be smaller than the
lower bound given in Lemma 22. Because of the form of Theorem 9 and Lemma 22, we need
to distinguish several cases, according to the residue class of A\; + Ay modulo 4 and to the
size of %. When needed, we shall use the upper bound r < 1.03581 and the estimate
arccosng—ﬁfor0<x<1.

26



4.6.1 The case A\ + Ay =0 (mod 4)

e For 702 < A\ — Xy < log Ay, we obtain the bounds Xy > €™? and (Alz&;ﬁ < 5372022 <
From Theorem 9 and Lemma 22 we get the following contradiction:

ol

7022 (A1 — A2)?
0.9999 < cos (46702) < cos <4—)\2 < |cos(A(ry1 +72))] < 0.0165.
e For max(702,log \y) < A\ — Ay < /27wy — 1.0443, we obtain the lower bound Ay >

[%-‘ = 78666. From Theorem 9 and Lemma 22 we deduce the inequality

cos <(A1;\22)2> < 1.3/0;275’ and we get the contradiction

A — Ay)? 1.30775
M > arccos

w3075 (\/E_ 0.52215)2
AXg Vi 2 A — 1307752 2V '
e For max(702,v/2mAs + 3.1407) < A\ — A2 < /37wAg, we obtain the lower bound

Ay > {%W = 52289. From Theorem 9 and Lemma 22 we deduce the inequality

cos (ﬂ' — 3—;" (T;1)2A2> < %;’229, and we get the contradiction

— —1)2 2
T 1.50929 < 3—r(r—1) Ny <7 — L V3w (1 n 3.1407) ‘
2 /Ay —1.509292 2 4 2 2v/ o V2T Ay

e For max(702,/3m\y) < A1 — Ay < ,/%W)\g < v/12.68)\,, we obtain the lower bound

Ay > ﬁg%ﬂ = 38865. From Theorem 9 and Lemma 22 we deduce the inequalities

coS <7T — 3—?%&) < % < 0.00941, and we get the contradiction

_ _1)2 _
3-rlr 41) Aggw—%SWSO.SWG.

1.5613 < arccos(0.00941) < 7 —

e For max <702, \ /51—iﬁA2> < A1 — Ay < V61 — 0.9275, we obtain the lower bound

Ay > [%-‘ = 26214. From Theorem 9 and Lemma 22 we deduce the inequality

coS <7r — (r;1)2)\2) < 20189 “and we get the contradiction

Vo

™ 20180\ (r=1)° 3¢ (1 0.9275)2

- = -1 < — - -
2 VA, —2011892 ~ 7 4 =2 NG
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4.6.2 The case A\ + Xy =1 (mod 4)

For 703 < A1 — Xy < /279, we obtain the bound Ay > {%W = 78656. From Theorem
9 and Lemma 22 we obtain the following contradiction:

1.30775
| cos(A(ry1 + 72))| < min (0.0165, —)

1
— <
V2 T Vs
For max(703,v/2mX2) < A — Ay < /3mAy — 0.984, we obtain the bound Ay >
[M-‘ = 52585. The inequality cos (% — (“1)2)\2> < %ﬁjg follows from Theo-

3 4
rem 9 and Lemma 22, and we get the contradiction

2
© arccos (1.50929) _ 3T 150929 [3r  0.492
r —_— — = —_— = .
Ve ) T 4 Vs — 1.509292 4

For max (703, /3wy + 3.8433) < A; — Ag < /4wy, we obtain the lower bound Ay >
[%W = 39217. The inequality cos (%’r — 32;7"@)\2) < % follows from Theorem
9 and Lemma 22 | and we get the contradiction

T 1.68876 <57r 3—7“(7“—1)2)\ <57T 3%(1_ﬁ>(1 3.8433)2'

2 Vo 1683762 — 4 2 4 P44 V2

(M1 — X2)?
4o

>

=1

vV 371')\2
For max(703,v4mAs) < A\j — Ag < ~/52TOT7T)\2 < v/15.85)\9, we obtain the lower bound

Ay > [%-‘ = 31181. From Theorem 9 and Lemma 22 we deduce the inequalities

cos (% — 32;7" (T;1)2 >\2) < % < 0.0114, and we get the contradiction

bt 3—r(r—12. 51 3—
1.5593<arccos(0.0114)<£— QT(T4)A2§I”— :

A < 0.8417.

For max <703, \ /%W)\Q) < A — A < VTmAy — 0.9231, we obtain the lower bound

Ay > [%W = 22533. From Theorem 9 and Lemma 22 we deduce the inequality

cos (5—” — ﬂ/\2) < 23626 " and we get the contradiction

1 i Vo
™ 21626 _ (r—1%, b1 _Tn 0.9231\* 57
2 VA —216262 4 ° 4~ 4 N 4
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4.6.3 The case A\ + Ay =2 (mod 4)

e For max <702, 2.0582)\§/4> < A1—Ag < /TAg, we obtain the lower bound Ay > {%22} =

2 4 V2
Lemma 22 , and we get the contradiction

156865. The inequality cos (g — ﬂﬂ)\g) < L0982 fh]lows from Theorem 9 and

L5882 _m 3—r(r—1? _ <1 - 2.0582) 2.05822

- ho < o — .
Vo —1.058822 — 2 2 4 T2 )

s
2

e For max (702 \/7r)\2) <A =< ,/5%7?/\2 < 1/6.34)\5, we obtain the lower bound
2

Ay > [%_‘ = 77730. From Theorem 9 and Lemma 22 we deduce the inequalities

coS (% — %@)\ﬁ < %/\9229 < 0.00542, and we get the contradiction

3—r(r—1 3
1.5653 < arceos(0.00542) < & — 3= SV et

5 o 1 5 m < 0.7995.

e For max <702 \/ 5o 7r)\2> < A — A < 21y — 0.9535, we obtain the lower bound
Ay 2 [%W = 39323. From Theorem 9 and Lemma 22 we deduce the inequality

cos (% — (T_41)2)\2> < %, and we get the contradiction
2

1.68876 (r —1)?2 ™ ( 0.9535 ) > o
< - <w(l-—22) -2
Vs — 1.688762 4 2 T2 2

e For max 702 24/ Ay + 4. 5938) < A1 — Ay < /DAy, we obtain the lower bound
{mQﬂ = 31373. From Theorem 9 and Lemma 22 we deduce the inequality

T
2

/\2> < 185482 "and we get the contradiction

s 3—r
o8 ( 2 T 2 VA2

o 185482 _ 37 3—r(r—1) 3 ( \/57r> (1 4.5938)2

T A < 2T VYOI (g4 22222
2 e —18hd82 — 2 2 4 ‘2= " 2/ N

o For /by < A — Xy < ,/2—f7r)\2 < /19.02);, we obtain the lower bound Ay, >

il - ™ —r (r=1)? .
Hg%z-‘ 25910. The inequalities cos <3 — %TAQ) < % < 0.01344 follow

from Theorem 9 and Lemma 22, and we get the contradiction

33— 12 37 3-
1.5573 < arccos(0.01344) < g -5 rir= ; S\ < 2”
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e For max (702, \/ %77)\2) < A — A < 2¢/2mAy — 0.9218, we obtain the lower bound

Ay > [%W = 19660. From Theorem 9 and Lemma 22 we deduce the inequality

cos (3—” — ﬂAg) < 230865 “and we get the contradiction

2 7 VAo
12 2
T 230865 _(r—1) )\2_3_7r§27r(1_ 0.9218> 3
2 s — 2.308652 4 2 2/27 X 2

4.6.4 The case A\ + Xy =3 (mod 4)

e For 703 < A\ — Ay < log \g, we still find (A1 —29) < 70%23 < T and we get the contradic-
& o de 2 8
tion cos (g + 7031) < 0.0165.

470

e For max(703,log A2) < Aj—Ay < /mA2—1.1958, we obtain the bound Ay > [—704;9582-‘ =

157848. The inequality cos <§ + (T;}V >\2) < % follows from Theorem 9 and

Lemma 22, and we get the contradiction
M=) <1.05882) omom_ L0Ss2 (\/E_ o.5979>2
4Ny = Vo ~ 4 g — 1.058822 4 )
e For max(703,v/7As +2.5913) < A1 — Ay < /27 \g, we obtain the bound Ay > {M-‘ =

2

N

78656. The inequality cos <3—“ — ﬂﬂ)\g) < % follows from Theorem 9 and

1 2 1 X2
Lemma 22 , and we get the contradiction
T 1.30775 3t 3—r(r—1)?2 3t w N 2.5913 >
- < A VA VA iy (y 1+ .
2 VA —1.307752 4 2 4 4 4 V2o VT Ag

e For max(703,v/27mXs) < Ap — Ay < 1/%%)\2 < 1/9.51 )9, we obtain the lower bound

Ay > [%—‘ = 51968. From Theorem 9 and Lemma 22 we deduce the inequalities

cos (3F — 3_—Tﬂ/\g < LO8T6 - ().00741, and we get the contradiction
1 2 4 Vo

3t 3—r(r—12. 31 3
1.5633 < arceos(0.00741) < ox _ 2=rr= V7, 3m 3o

2 .8136.
1 5 1 1 m < 0.8136

e For max (703, , /%WAQ) < A — Ay < VBTAy — 0.9367, we obtain the bound Ay >

[%W = 31547. From Theorem 9 and Lemma 22 we deduce the inequality
coS (%’r — @)\» < %;1282, and we get the contradiction

™ 1.85482 (r—1)2 3r 5w 0.9367\° 3«

- < Ao — o< (1 D) -2

2 /Ay — 1.854822 4 4 4 VDT A9 4
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5 Concluding remarks

In the introduction, we discussed the irreducibility of Cx ,, and noticed how different are
the cases Ay even and Ay odd. We checked both cases for Ay < 240, but we can go further in
the even case. Using Maple during 35101 seconds, we showed that Cx ), is irreducible over
Q when A <600 is even. This motivates the following conjecture.

Conjecture 23. For Ay > 2 even, the polynomial Cx ), is irreducible over Q. For Ay > 3
odd, the polynomial C ,, is the product of X — Ay by an irreducible polynomial over Q.

We used the same technics, together with hypergeometric transformations, to study the
case A\{ — Ay small and to prove Proposition 8. We introduced the four families of polynomials
and checked their irreducibility over Q for [ < 350. It is quite likely that this property holds
for all larger values of [.

Conjecture 24. For [ > 3, the polynomials 51,070()(), 513071()(), 517170()() and 517171()() are
irreducible over Q.

Let us now discuss the results obtained in Theorem 10. The first thing we noticed is that
the case A\; + Ay = 2 (mod 4) differs from the other cases. It would be nice to be nice to deal

with the interval 702 < A\; — Ay < 2.0582)34 for any o, to fill the initial gap. Secondly we
chose to reach the second explicit intervals with no solutions. How far could we go with this
method? It would be nice to get improvements that enable to break the v/A, barrier and to
go up to )\;/QJFE for some € > 0.
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