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Abstract

Let A,B ⊆ N be two finite sets of natural numbers. We say that B is an additive

divisor of A if there exists some C ⊆ N with A = B + C, where ‘+’ denotes the
sumset operation, also called Minkowski sum or pairwise sum. We prove that among
subsets of {0, 1, . . . , k} containing 0 as an element, the full set {0, 1, . . . , k} has the most
additive divisors. To remove the restriction of having 0 as an element, we first prove a
correspondence between the sumset operation and binary lunar multiplication. Lunar
arithmetic (originally named “dismal arithmetic”) is a kind of min/max arithmetic
introduced by Applegate, LeBrun, and Sloane. The number of binary lunar divisors
is related to restricted compositions of integers—restricted in that the first part must
be greater or equal to all other parts. We establish some bounds on the number of
such compositions and conclude that {1, . . . , k} has the most additive divisors among
all subsets of {0, 1, . . . , k}. These two results prove two conjectures of LeBrun et al.
regarding the maximal number of lunar binary divisors, a special case of a more general
conjecture about lunar divisors in arbitrary bases. We prove this third conjecture by
introducing a sumset-like operation for multisets.

1 Introduction

Definition 1. Let (G,+) be a commutative group, and let A,B ⊆ G be subsets. The sumset
(also called Minkowski sum) of A and B, denoted A+ B, is the set of pairwise sums:

A+ B := {a+ b : a ∈ A, b ∈ B}.
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(In particular, A+ ∅ = ∅ for any A ⊆ G.) The difference set of A and B, denoted A−B, is
the set

A−B := {a− b : a ∈ A, b ∈ B}.
Notation 2. In this paper, we shall use the backward slash, A \ B, to denote the relative
complement:

A \B := {a ∈ A : a /∈ B}.
Here is another way of thinking about the sumset of A and B, which will become impor-

tant later in the paper. For each b ∈ B we are shifting the elements of A by b to form the
set A+ {b}, then we take the union A+B =

⋃

b∈B(A+ {b}). Figure 1a contains a graphical
representation of this process, and Figure 1b some examples of the operations above with
the integers as the ambient group.

0123456· · ·

  {0, 2}+ {1}
  {0, 2}+ {2}

  {0, 2}+ {4}
     {0, 2}+ {1, 2, 4}

(a) Graphical representation of
{0, 2}+ {1, 2, 4}.

{1, 2, 3} + {1, 2, 3} = {2, 3, 4, 5, 6};
{1, 2, 3} − {1, 2, 3} = {−2,−1, 0, 1, 2};
{1, 2, 3} \ {1, 2, 3} = ∅;
{2, 3} + {1, 3, 7} = {3, 4, 5, 6, 9, 10};
{2, 3} − {1, 3, 7} = {−5,−4,−1, 0, 1, 2};
{1, 3, 7} − {2, 3} = {−2,−1, 0, 1, 4, 5};
{0, 2} + {1, 2, 4} = {1, 2, 3, 4, 6}.

(b) Examples of the operations, with Z as the
ambient group.

Figure 1: Examples of sumsets, difference sets, and relative complement, with Z as the
ambient group.

Classical additive number theory studies direct problems: given a certain set A, what can
we say about its sumset A + A, or iterated sumsets nA := A + · · · + A (with n summands,
for some n ∈ N)? (We recommend Nathanson’s book [12] for an excellent introduction.)
In contrast, inverse problems in additive number theory aim to extract information about
a set A from information about its sumsets. (Nathanson’s second volume [13] deals with
inverse problems, while Tao and Vu’s book [17] gives an overview of both direct and inverse
problems.) One such inverse problem is the question: which subsets are sumsets? The
asymptotic version of this question was first raised by Ostmann [14].

Definition 3. A set A ⊆ N+ of positive integers is said to be Ostmann reducible if there
are sets B,C ⊆ N+ each with more than one element, such that A = B + C. Otherwise,
the set A is said to be Ostmann irreducible. Similarly, we call a set A ⊆ N+ asymptotically
(additively) reducible if there are some sets B,C ⊆ N+ each with more than one element,
and a natural number m ∈ N such that

(B + C) ∩ [m,∞) = A ∩ [m,∞).

Otherwise, the set A is said to be asymptotically (additively) irreducible.
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Let P denote the set of prime numbers. It is easy to see that P is Ostmann irreducible
(because 2, 3 ∈ P ), and Ostmann conjectured that it is in fact asymptotically irreducible.
This conjecture is sometimes referred to as the “inverse Goldbach problem”, and it remains
unsolved. The conjecture has since been placed in the wider context of the “sum-product
phenomenon” as exemplified by Erdős and Szemerédi [4] (Elsholtz [3] reviewed some more
recent progress).

Regardless of any multiplicative structure, Wirsing [18] has proved that almost all subsets
of N are asymptotically irreducible, and hence also Ostmann irreducible. (To interpret
“almost all”, one identifies subsets of N with their binary encoding, and thus with the
interval [0, 2] ⊆ R. We use a similar encoding in Section 3 below.)

Rather than asking which sets are irreducible, this paper is concerned with the opposite
question: given some k ∈ N, which subsets A ⊆ {0, . . . , k} ⊆ N are maximally reducible?

Definition 4. Let A ⊆ N be a set of natural numbers. We say that a set B ⊆ N is an additive
divisor (or sumset divisor, or divisor, or factor) for A, if there exists some set C ⊆ N such
that A = B + C. We then call B + C a factorization of A.

Every set A ( N has a trivial factorization A = A + {0}. If the trivial factorization is
the only possible factorization of A we say that A is (additively) irreducible, otherwise we
say that A is (additively) reducible.

If the set A is finite, we let d(A) denote the number of sumset divisors of A.

The trivial factorization A = A + {0} shows that every set A 6= {0} has at least two
divisors. Additively irreducible sets have exactly two divisors (except {0} which has exactly
one divisor). In Ostmann’s definition, Definition 3, shifting a set is considered a trivial
factorization and is thus excluded from consideration—that is the meaning of the restriction
that each set must have more than one element. We place no restrictions on the nature of
our divisors. As an example, the set {2, 3} is Ostmann irreducible, but additively reducible
since {2, 3} = {1}+ {1, 2}.

We now fix some k ∈ N and consider the set of all subsets of {0, . . . , k}. In Section 2
we introduce an operation called “k-promotion”, acting on divisors of subsets which have
0 as an element. Theorem 13 of Section 2 shows that among those subsets which have 0
as an element, the full set {0, 1, . . . , k} has the most divisors. At first blush it may appear
unsurprising that the full set has the most divisors, but if we remove the restriction that 0
is an element this is no longer the case. Theorem 30 in Section 5 shows that {1, . . . , k} has
the most divisors among all subsets of {0, . . . , k}.

In Section 3 we assign each finite subset of N a binary number, and Theorem 1 proves
that the sumset operation corresponds to binary lunar multiplication. Lunar multiplication
is an operator defined by Applegate, LeBrun, and Sloane [1] in their study of alternative
systems of arithmetic in which long addition and long multiplication can be performed
without “carries”. This new correspondence connects the number of sumset divisors to
the number of lunar divisors. In their paper, Applegate, LeBrun, and Sloane established a
correspondence between the number of binary lunar divisors of 11 · · · 1|2 with k repetitions of
the digit 1, and the number of restricted compositions of k. The compositions are restricted
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in that the first part must be greater or equal to all other parts. In Section 4 we study
the link between such compositions and generalized Fibonacci numbers. We use this link to
establish some bounds leading to the proof of Theorem 30 in Section 5, which states that
{1, . . . , k} has the most divisors among all subsets of {0, . . . , k}.

Due to the correspondence between sumset divisors and binary lunar divisors, Theorem
13 and Theorem 30 resolve two conjectures of Applegate, LeBrun, and Sloane, reproduced
in Section 3 as Conjecture 16 and Conjecture 15. These conjectures are a binary version
of a more general Conjecture 14, since lunar arithmetic can be defined for arbitrary bases.
Section 6 prepares the groundwork for proving this general conjecture by further exploring
the restricted compositions from Section 4. Theorem 31 establishes a new recurrence rela-
tion for the function enumerating such restricted compositions. Section 6 discusses in detail
the following interesting combinatorial interpretation of Theorem 31: the table enumerating
these restricted compositions can be easily constructed using properties of the forward dif-
ference from the finite calculus. Bounds established by using this new recurrence allow us
to prove Conjecture 14 in Theorem 47 of Section 7. Theorem 37 of Section 7 extends the
correspondence between sumsets and binary lunar multiplication to arbitrary bases by using
multisets instead of sets, and introducing a sumset operation on multisets.

We conclude with some open questions in Section 8.

2 Divisors of 0-rooted sets

Notation 5. Fix some k ∈ N. Throughout the paper we let [k] denote the full interval

[k] := [0, k] ∩ N = {0, . . . , k}.

Definition 6. We say that a set A ⊆ N of nonnegative integers is 0-rooted if minA = 0.
For any k ∈ N , we denote by Zk the collection of 0-rooted sets whose maximal element

is k:
Zk := {A ⊆ N : minA = 0,maxA = k}.

For convenience we also introduce the notation Z≤k for the collection of 0-rooted sets whose
maximal element does not exceed k:

Z≤k :=
⋃

ℓ≤k

Zℓ.

We let Z denote the collection of finite 0-rooted sets:

Z :=
⋃

k∈N

Zk.

An interesting feature of 0-rooted sets is that the divisors are subsets. Indeed, suppose
A ∈ Z is a 0-rooted set, with a factorization A = B + C for some B,C ⊆ N. Since the only
way to obtain 0 by adding natural numbers is 0+0 = 0, we must have 0 ∈ B,C so that B,C

4



are themselves 0-rooted. Moreover, since 0 ∈ C we have that B = B + {0} ⊆ B + C = A,
and similarly C ⊆ A. Thus, the divisors of a 0-rooted set A are always subsets of A.

The purpose of this section is to prove that among the 0-rooted sets Z≤k, the full interval
[k] has the most divisors. The key idea is a procedure for converting divisors of any set
A ∈ Z≤k into divisors of [k]. We call this procedure k-promotion.

Definition 7. Let k ∈ N, and let A ∈ Z≤k. Suppose that B,C ⊆ N such that A = B + C,
and such that maxB ≤ maxC. We now define a new set CB as the union of three sets C,
B1, and B2, where

B1 = ([k] \ A) ∩ [maxB − 1],

B2 = (([k] \ A)− {maxB}) ∩ N.

That is, CB is constructed by the following algorithm:

for each s ∈ [k] \ A:

if s < maxB, append s to C;

if s ≥ maxB, append s−maxB to C.

Note that set CB resulting from the k-promotion procedure depends not only on the set
B, but also on the set A, and on the natural number k. Some examples of the procedure are
shown in Figure 2.

B C A B CB [k]
{0, 3} + {0, 4} = {0, 3, 4, 7} ; {0, 3} + {0, 1, 2, 3, 4} = [7]
{0, 3} + {0, 4} = {0, 3, 4, 7} ; {0, 3} + {0, 1, 2, 3, 4, 5} = [8]
{0, 3} + {0, 1, 3} = {0, 1, 3, 4, 6} ; {0, 3} + {0, 1, 2, 3} = [6]
{0, 1, 3} + {0, 3} = {0, 1, 3, 4, 6} ; {0, 1, 3} + {0, 2, 3} = [6]

Figure 2: Examples of k-promotion.
In the top row A is regarded as a subset of Z≤7, while in the next it is regarded as a subset
of Z≤8. In the bottom two rows A is regarded as a subset of Z≤6. Its divisors {0, 3} and
{0, 1, 3} share the same maximal element, so either one of them could be promoted.

Lemma 8. Let k ∈ N, and let A ∈ Z≤k. Suppose that B,C ⊆ N such that A = B + C, and
such that maxB ≤ maxC. Then B + CB = [k].

Proof. Since C ⊆ CB we have A = B + C ⊆ B + CB. Moreover, by construction, [k] \ A ⊆
B + CB. Thus, [k] = A ∪ ([k] \ A) ⊆ B + CB.

To prove the reverse inclusion, note that max(B+CB) = maxB+maxCB. By construc-
tion, maxCB ≤ max{k −maxB,maxC} so that

maxB +maxCB ≤ max{k,maxB +maxC} = max{k,maxA} ≤ k.

Moreover, min(B + CB) = 0. Thus, B + CB ⊆ [k].
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Each factor C of A appears in one or more factorizations. We may apply the promotion
procedure to each such factorization, each time obtaining a factor of [k]. We let FA(C)
denote the resulting sets of factor of [k]. Some examples follow the formal definition below.

Definition 9. Let k ∈ N, and let A ∈ Z≤k. Suppose C is a factor of A. We define the set
FA(C) by the following algorithm:

For each B ⊆ A such that B + C = A:

if maxB ≥ maxC, let C ∈ FA(C);

if maxB ≤ maxC, let CB ∈ FA(C).

(Note that this means that if there is some B with maxB = maxC, then both C and CB

are elements of FA(C).)

We note that, as with the promotion procedure itself, FA(C) depends not only on the set
A and the factor C, but also on the integer k. Figure 3 presents some examples of FA(C)
for different choices of C.

A = {0, 2, 3, 4, 5, 6} = {0, 2, 3}+ {0, 2, 3} FA({0, 2, 3}) = {{0, 2, 3} , {0, 1, 2, 3}};
= {0, 2}+ {0, 3, 4} FA({0, 2}) = {{0, 2}};
= {0, 2}+ {0, 2, 3, 4}. FA({0, 3, 4}) = {{0, 1, 3, 4}};

FA({0, 2, 3, 4}) = {{0, 1, 2, 3, 4}}.

Figure 3: Examples of FA(C) for A = {0, 2, 3, 4, 5, 6} ∈ Z≤6.

Theorem 10. Let k ∈ N, and let A ∈ Z≤k. If C and D are different divisors of A, then
FA(C) ∩ FA(D) = ∅.

Proof. First note that for A = [k] and any divisor C of A we have FA(C) = {C} so the claim
follows. Assume therefore that A ( [k], so in particular [k] \ A 6= ∅. Suffice it to show that
no element of FA(C) is an element of FA(D).

Step 1: C ∈ FA(C) =⇒ C /∈ FA(D).
Suppose that C ∈ FA(C). Then there exists some B ⊆ A with maxB ≥ maxC and
B + C = A. By assumption, C 6= D, and all other elements of FA(D) are the result
of k-promotion; that is, are of the form DE for some E ⊆ A with maxE ≤ maxD and
D + E = A. Since D ⊆ DE, if D 6⊆ C we are done. Assume therefore that D ⊆ C, so in
particular maxD ≤ maxC. We therefore have the chain of inequalities:

maxE ≤ maxD ≤ maxC ≤ maxB.
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On the other hand, we also know that

maxA = maxD +maxE = maxB +maxC.

Therefore, none of the inequalities in the chain above can be strict, so we have a chain of
equalities:

maxE = maxD = maxC = maxB.

Let us denote this common maximal value by m. Consider now the algorithmic construction
of the set DE. For any s ∈ [k] \ A there are two options:

• s < m, in which case s ∈ DE. Since s /∈ A ⊇ C, this shows that C 6= DE.

• s ≥ m, in which case s −m ∈ DE. Assume for contradiction that s −m ∈ C. Since
m ∈ B we would then have s = m + (s − m) ∈ B + C = A, a contradiction. Thus,
s−m /∈ C and C 6= DE.

We conclude that C ∈ FA(C) =⇒ C /∈ FA(D), as we wanted to show.

Step 2: The rest of FA(C). All other elements of FA(C) are of the form CB for some suitable
B ⊆ A, so we will now show that CB ∈ FA(C) implies CB /∈ FA(D). First note that by the
argument above, if D ∈ FA(D) we know that D /∈ FA(C). All other elements of FA(D) are
of the form DE for some suitable E ⊆ A. Specifically, we are assuming that there exist some
B,E ⊆ A such that

A = B + C and maxB ≤ maxC,

A = D + E and maxD ≥ maxE.

Assume for contradiction that CB = DE.
First, suppose that C ⊆ D. Since C 6= D by assumption, there must exist some d ∈ D

such that d /∈ C. Since D ⊆ A we have d /∈ [k] \ A. However, since D ⊆ DE we have
d ∈ DE = CB, so there must be some s ∈ [k]\A with d = s−maxB. Now, s = d+maxB /∈ A
implies maxB /∈ E. Therefore, maxE 6= maxB. However, [k] = CB +B = DE + E implies

k = maxCB +maxB = maxDE +maxE.

Since CB = DE we have maxCB = maxDE which implies maxB = maxE, a contradiction.
We conclude that if C ⊆ D we must have CB 6= DE, as we wanted to show.

On the other hand if C 6⊆ D, there is some c ∈ C such that c /∈ D. Analogous argument
to the one above then shows that maxE 6= maxB, which again contradicts the assumption
CB = DE.

Theorem 10 is enough to establish the maximality of d([k]) among the sets in Z≤k. The
following two lemmas will help show that d([k]) is also the unique maximum among the sets
in Z≤k.
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Lemma 11. Let k ∈ N be an odd number such that k ≥ 3. Then the set Fk := {0, (k+1)/2}
is a factor of [k] which does not arise from k-promotion. That is, for any A ∈ Z≤k such that
A ( [k], and any divisor C of A, we have Fk /∈ FA(C).

Proof. It is clear that Fk is a factor of [k], since

[k] = [(k − 1)/2] + Fk.

Let A ∈ Z≤k such that A ( [k], and let C be a divisor of A. Assume for contradiction that
Fk ∈ FA(C). Then either:

• C = Fk and C ∈ FA(C). That is, there exists some B ⊆ A for which B + Fk = A and
maxB ≥ maxFk. But maxFk = (k + 1)/2 and (k + 1)/2 + (k + 1)/2 = k + 1 > k =
maxA. This is a contradiction.

• Fk = CB for some B ⊆ A such that B+C = A and maxB ≤ maxC. Since C ⊆ CB =
Fk we must have C ⊆ {0, (k + 1)/2}. Moreover, since C is a divisor of A, it must be
0-rooted. We therefore have two options:

– Suppose C = {0}. The assumption maxB ≤ maxC forces B = {0}, in which case
the k-promotion procedure results in CB = [k] 6= Fk (since k ≥ 3), a contradiction.

– Suppose C = Fk. Lemma 8 gives [k] = B + CB = B + Fk. Since C = Fk we also
have A = B + C = [k], contradicting the assumption that A ( [k].

These contradictions show that Fk /∈ FA(C).

In contrast with the odd case, it is straightforward to verify that all factors of the interval
[4], for example, arise from a process of 4-promotion. We must weaken the hypothesis in the
previous lemma from an absolute statement to a relative one:

Lemma 12. Let k ∈ N be an even number such that k ≥ 4. Then for any A ∈ Z≤k with
A ( [k], there exists some set Fk, such that Fk is a divisor of [k] and Fk /∈ FA(C) for any
divisor C of A.

Proof. We distinguish between two cases: A = [k] \ {2}, and A 6= [k] \ {2}.
• A = [k] \ {2}. In this case we choose Fk = {0, 2}. Observe that this is indeed a factor
of [k], since (for example)

[k] = [k − 2] + Fk.

Now, fix some divisor C of A. If A = B+C is a factorization of A, then B,C ⊆ A and
B,C are 0-rooted sets, and so 2 /∈ C (for otherwise 2 = 0+2 ∈ B+C ∈ A). Therefore
Fk could only be an element of FA(C) if Fk = CB for a suitable B.

Assume therefore that there exists some B ⊆ A with A = B + C, maxB ≤ maxC,
and Fk = CB. Since C ⊆ CB = Fk and 2 /∈ C, we must have C = {0}. Since
maxB ≤ maxC we also have B = {0}. But then A = B +C = {0}, contradicting the
assumption that A = [k] \ {2} for k ≥ 4. This contradiction proves that Fk /∈ FA(C)
for any factor C of A.
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• A 6= [k] \ {2}. In this case we choose Fk = {0, 1, 3, 5, . . . , k − 1}. Observe that this is
indeed a factor of [k], since (for example)

[k] = {0, 1}+ Fk.

Now, fix some divisor C of A, and assume for contradiction that Fk ∈ FA(C). We have
the following two possibilities:

– Fk = C and C ∈ FA(C). That is, there exists some B ⊆ A with B + Fk = A and
maxB ≥ maxFk. Since maxFk = k − 1 we obtain

maxA = maxB +maxFk ≥ (k − 1) + (k − 1) = 2k − 2.

Since maxA ≤ k we also have 2k − 2 ≤ k, so that k ≤ 2. This contradicts the
assumption that k ≥ 4.

– Fk = CB for some B ⊆ A such that A = B + C and maxB ≤ maxC. Lemma 8
then implies [k] = B + CB = B + Fk. In particular,

k = max([k]) = maxB +maxFk = maxB + (k − 1)

shows that maxB = 1. Since B is also 0-rooted (being a divisor of A) we must
have B = {0, 1}.
Having determined the set B, we now turn our attention to the set C. Since
C ⊆ CB, we know that A = B + C ⊆ B + CB = [k]. However, A ( [k], so we
must have C ( CB = Fk. We now show that the only element of Fk missing from
C is 1.

Indeed, since C is 0-rooted (being a divisor of A), we know that 0 ∈ C. All other
elements of Fk are of the form 2x + 1 for some natural number x ∈ N. Suppose
2x + 1 ∈ CB \ C, and assume for contradiction that x > 0. Then we claim that
2x+ 1, 2x+ 2 /∈ A. This is because

A = B + C = {0, 1}+ C,

and all nonzero elements of C are odd numbers. Then, from the k-promotion
procedure, we have 2x = (2x + 1) − maxB ∈ CB = Fk. But the only even
element in Fk is 0, contradicting the assumption that x > 0. This contradiction
shows that the only possible element of Fk missing from C is 1. In other words,
C = {0, 3, 5, . . . , k − 1}. But then

A = B + C = [k] \ {2},

contradicting our assumption that A 6= [k] \ {2}.

We conclude that Fk /∈ FA(C) for any factor C of A.
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For any A ∈ Z≤k with A ( [k], we have found a divisor Fk of [k], such that Fk /∈ FA(C) for
any divisor C of A.

We can now conclude that every other set in Z≤k has fewer divisors than [k].

Theorem 13. The set [k] is the unique maximum of d(·) in Z≤k.

Proof. Given some 0-rooted set A ( [k], we have a map C 7→ FA(C) taking each divisor of
A to a nonempty set of divisors of [k]. Theorem 10 shows that if C,D are different divisors
of A, then FA(C) and FA(D) are disjoint. Therefore,

d([k]) ≥
∑

C divides A

cardFA(C) ≥
∑

C divides A

1 = d(A).

This proves that [k] is a maximum of d(·) in Z≤k.
Next, it is easy to see by direct computation that [k] is the unique maximum of d(·) for

k = 0, 1, 2 (with 1, 2, 3 factors respectively). Lemma 11 and Lemma 12 show that [k] is the
unique maximum of d(·) for k ≥ 3.

3 Lunar arithmetic

We now introduce lunar arithmetic1, a type of min/max carry-less arithmetic defined and
studied by Applegate, LeBrun, and Sloane [1]. The following paragraph recounts the defini-
tions from their paper [1, Section 2] with a slight change of notation.

Given a natural number b ≥ 2, one starts with a set of digits Db = {0, 1, . . . , b − 1}
equipped with two binary operations, defined as follows: base b lunar addition, denoted ⊕b,
is the max operator on digits. That is, for any p, q ∈ Db,

p⊕b q = max{p, q}.

Base b lunar multiplication, denoted ⊗b, is the min operator on digits. That is, for any
p, q ∈ Db,

p⊗b q = min{p, q}.
As with any positional counting system, a base b lunar number is identified with a polynomial
in Db[X], i.e., a formal expression of the form

∑m

i=0
piX

i, where pi ∈ Db (for all 0 ≤ i ≤ m).
Such an expression is also written in positional notation as pmpm−1 · · · p1p0|b. We can identify
lunar numbers with natural numbers by evaluating the polynomial at the base b. Suppose
P =

∑m

i=0
piX

i and Q =
∑n

j=0
qjX

j are two lunar numbers, and assume without loss of

1Originally published under the name dismal arithmetic, the authors have come to prefer the name “lunar
arithmetic” instead [7]. Relevant OEIS [16] entries have also been renamed.
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generality that m ≤ n. The lunar sum of P and Q, denoted by P ⊕b Q, is defined by
performing digit-wise lunar addition:

P ⊕b Q =
n∑

j=0

(pj ⊕b qj)X
j,

where pi = 0 for i > m. Figure 4a (reproduced from Applegate, LeBrun, and Sloane [1,
Figure 1a]) shows an example of base 10 lunar addition. Note the similarity to the traditional
“long addition” of school arithmetic, except there are no carries. The lunar product of P
and Q, denoted by P ⊗b Q, is defined by convolution of digits, in an analogous way to
multiplication in traditional arithmetic:

P ⊗b Q =
m+n∑

ℓ=0

rℓX
ℓ,

where

r0 = p0 ⊗b q0,

r1 = (p0 ⊗b q1)⊕b (p1 ⊗b q0),

...

That is, for any 0 ≤ ℓ ≤ m+ n, we have

rℓ = (p0 ⊗b qℓ)⊕b (p1 ⊗b qℓ−1)⊕b · · · ⊕b (pℓ ⊗b q0),

where pi = 0 for i > m and qj = 0 for j > n. Figure 4b (reproduced from Applegate,
LeBrun, and Sloane [1, Figure 1b]) shows an example of base 10 lunar multiplication. Note
the similarity to the traditional “long multiplication” of school arithmetic, except there are
no carries.

169
⊕10 248

269

(a) Base 10 lunar addition.

169
⊗10 248

168
⊕10 144
⊕10 122

12468

(b) Base 10 lunar multiplication.

Figure 4: Examples in base 10 lunar arithmetic (from Applegate, LeBrun, and Sloane [1,
Figure 1]).

Applegate, LeBrun, and Sloane proved [1, Theorem 1] that (Db[X],⊕b,⊗b) is a com-
mutative semiring; that is, that ⊕b and ⊗b are commutative and associative operations on
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Db[X], and that ⊗b distributes over ⊕b. They then defined and studied different analogues
of number-theoretic constructions including “primes, number of divisors, sum of divisors,
and the partition function.” [1, Abstract] In particular, they defined db(n) as the number of
lunar divisors (i.e., with respect to lunar multiplication) of n in base b. Section 6 of their
paper [1, Section 6] contains a series of conjectures about the properties of db(n), which we
reproduce below for ease of reference.

Conjecture 14 ([1, Conjecture 12]). In any base b ≥ 3, among all k-digit numbers n, db(n)
has a unique maximum at n = (bk − 1)/(b− 1) = 111 · · · 1|b.
Conjecture 15 ([1, Conjecture 13]). In base 2, among all k-digit numbers n, the maximal
value of d2(n) occurs at n = 2k − 2 = 111 · · · 10|2, and this is the unique maximum for
n 6= 2, 4.

Conjecture 16 ([1, Conjecture 14]). In base 2, among all odd k-digit numbers n, d2(n) has
a unique maximum at n = 2k − 1 = 111 · · · 11|2.
Conjecture 17 ([1, Conjecture 14]). In base 2, among all odd k-digit numbers n, if k ≥ 3
and k 6= 5, the second-largest value of d2(n) occurs at n = 2k−3 = 111 · · · 101|2, and possibly
other values of n.

The sequence d2(1|2), d2(11|2), d2(111|2), . . . from Conjecture 16 in particular appears to
count many different combinatorial phenomena. Applegate, LeBrun, and Sloane [1, Remark
after Theorem 16] mentioned several different contexts and referred to sequences A007059
and A079500 of the OEIS [16]. Frosini and Rinaldi [5] constructed explicit bijections between
several of these combinatorial interpretations. As we discuss in Section 4 below, Applegate,
LeBrun, and Sloane counted d2(1 · · · 1|2) by exhibiting a generating function for the sequence,
based on an argument originally due to Richard Schroeppel.

We now prove that binary lunar multiplication corresponds to sumset addition, a new
context for lunar arithmetic. This correspondence immediately proves Conjecture 16 by
using Theorem 13; see Corollary 19. We then build on this result, and the investigation of
Applegate, LeBrun, and Sloane to prove Conjecture 15; see Theorem 30. Finally, Section 7
extends this correspondence to lunar multiplication in other bases, which ultimately allows
us to prove Conjecture 14; see Theorem 47. Conjecture 17 remains open.

Let F denote the collection of finite subsets of N, and let B2 denote the set of binary
numbers, written using the digits in D2 = {0, 1}. There is a natural bijection β2 : F → B2

based on the idea of encoding membership as a binary sequence. First, define β2(∅) = 0.
Next, for any nonempty P ∈ F we define the binary number β2(P ) = pmaxP · · · p1p0|2, where
pi for 0 ≤ i ≤ maxP is defined as follows:

pi =

{

1, if i ∈ P ;

0, if i /∈ P.

Let P,Q ∈ F . The key observation, which we prove in Theorem 18, is

β2(P +Q) = β2(P )⊗2 β2(Q). (1)

12

https://oeis.org/A007059
https://oeis.org/A079500


It is most intuitive why this should be the case when interpreting P + Q as
⋃

q∈Q(P +
{q}). We then have a natural correspondence between sumsets and long multiplication, as
is demonstrated in the example in Figure 5.

0123456· · ·

  {0, 2}+ {1}
  {0, 2}+ {2}

  {0, 2}+ {4}
     {0, 2}+ {1, 2, 4}

(a) Graphical representation of
{0, 2}+ {1, 2, 4}.

101
⊗2 10110

000
⊕2 101
⊕2 101
⊕2 000
⊕2 101

1011110

(b) Binary lunar representation of
{0, 2}+ {1, 2, 4}.

Figure 5: Two representations of sumsets.

Theorem 18. The map β2 : F → B2 is a monoid-isomorphism, where F is equipped with
the sumset operation and B2 is equipped with binary lunar multiplication.

Proof. Note that the fact that (F ,+) is a commutative monoid follows from the fact that
(N,+) is a commutative monoid. The fact that (B2,⊗2) is a commutative monoid follows
from the fact that (D2[X],⊕2,⊗2) is a commutative semiring. It is also easy to see (e.g., by
considering the inverse map) that the map β2 is a bijection, and it remains to prove that it
is a monoid-homomorphism.

We have β2({0}) = 1|2, so the neutral elements are mapped to each other. Next, let
P,Q ∈ F . We need to prove Equation (1) holds. The result is clear when P = ∅ or
Q = ∅. Assume therefore that P,Q 6= ∅, and the corresponding binary numbers are β2(P ) =
∑maxP

i=0
pi2

i and β2(Q) =
∑maxQ

j=0
qj2

j . By definition of lunar multiplication we have

β2(P )⊗2 β2(Q) =

maxP+maxQ
∑

ℓ=0

rℓ2
ℓ,

where, for any 0 ≤ ℓ ≤ maxP +maxQ, we have

rℓ = (p0 ⊗2 qℓ)⊕2 (p1 ⊗2 qℓ−1)⊕2 · · · ⊕2 (pℓ ⊗2 q0)

= max{min{pi, qj} : i+ j = ℓ}.

(As always, pi = 0 for i > maxP , and qj = 0 for j > maxQ). Let us now compare the ℓ-th
digit of β2(P )⊗2 β2(Q) and the ℓ-th digit of β2(P +Q).

• According to the convolution product above, rℓ = 1 if and only if there exist i, j ∈ N

with i+ j = ℓ, such that pi = 1 and qj = 1.
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• By definition of the mapping β2, the ℓ-th digit of β2(P+Q) is 1 if and only if ℓ ∈ P+Q;
that is, if and only if there exist i, j ∈ N with i + j = ℓ, such that i ∈ P and j ∈ Q.
Again, by the definition of the mapping β2, this happens if and only if pi = 1 and
qj = 1.

We see that by the definition of the map β2 these two conditions are in fact the same, so
β2(P +Q) = β2(P )⊗2 β2(Q) as we wanted to show.

The least significant digit of an odd binary number must be 1, so the monoid-isomorphism
β2 identifies odd binary numbers with 0-rooted sets. In this correspondence the length of
the binary number corresponds to the maximal element of the 0-rooted set (with an offset of
1, since 0|2 is of length 1). Thus, Conjecture 16 becomes an immediate corollary of Theorem
13 above.

Corollary 19. In base 2, among all odd k-digit numbers n, d2(n) has a unique maximum
at n = 2k − 1 = 111 · · · 11|2.

4 Counting d([k])

In Section 5 we find the maximum of d(·) among all subsets of [k], not just the 0-rooted
ones. One important part of the proof is the observation, already made by Applegate,
LeBrun, and Sloane [1, Theorem 15], that d(11 · · · 10|2) = 2d(11 · · · 1) with k occurrences
of 1 on each side of the equality. Translated to the language of sumsets the equality reads
d([k] \ {0}) = 2d([k − 1]). We then prove the inequality 2d([k − 1]) > d([k]). The purpose
of the current section is to help us establish this inequality by highlighting the connection
between the sequence d([k]) and Fibonacci numbers of higher-order.

Recall that a composition of a positive natural number n ∈ N+ is an ordered tuple of
positive natural numbers (c1, c2, . . . , cm) such that n =

∑m

i=1
ci. If the length of the tuple

is m, the composition is called an m-composition. Each of the entries ci in the composition
is called a part of the composition. It is an easy exercise to show that the total number of
compositions of n (of any length) is 2n−1. Placing different restrictions on such compositions
leads to a rich theory. For example, one may restrict the length of a composition, the size of
the parts, the type of the parts, the arrangement of the parts, and so forth. In particular,
integer partitions are integer compositions arranged in a non-decreasing order. Other types
of restrictions have to do with the so-called “statistics” of the composition: If (c1, c2, . . . , cm)
is a composition of n, we say that a rise occurs in position i (for 1 ≤ i ≤ m− 1) if ci+1 > ci,
a fall in position i is defined analogously as ci+1 < ci, and a level in position i occurs when
ci+1 = ci. In the context of compositions, statistics have to do with the number of such
rises and falls. Another type of restriction one may place on compositions is to demand that
certain patterns be avoided. MacMahon [11] was among the first mathematicians to study
such questions in detail, and we also refer the reader to the recent book of Heubach and
Mansour [8] for an excellent survey of the field.
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LeBrun conjectured that d2(11 · · · 11|2), with n occurrences of 1, counts the number of
compositions of n with the added restriction that the first part is greater or equal to all other
parts. Figure 6 shows an example of such a correspondence. For ease of reference we shall
use the appellation headstrong compositions to refer to compositions where the first part is
greater or equal to all other parts. The number of headstrong compositions of n is sequence
A079500 of the OEIS [16]. LeBrun’s conjecture was proved by Schroeppel [1, Theorem 16]
and again by Frosini and Rinaldi [5]. For the sake of completion, we reproduce the proof
below translated to the language of sumsets.

Theorem 20 (Schroeppel, 2001). For any n ∈ N, the number d([n]) equals the number of
headstrong compositions of n+ 1.

Proof.
Step 1 : Associate a divisor with each headstrong composition. Suppose (c1, c2, . . . , cm) is a
headstrong composition of n+ 1. We define the following two sets:

A := {n+ 1} − {c1, (c1 + c2), . . . , (c1 + c2 + · · ·+ cm)}
= {0, cm, (cm + cm−1), . . . , (cm + cm−1 + · · ·+ c2)};

B := [c1 − 1].

We claim that A + B = [n]. Indeed, it is clear that A + B ⊆ [n]. To prove the reverse
inclusion, consider any 0 ≤ j ≤ n, and let i be the smallest index 1 ≤ i ≤ m such that
(n+1)−(c1+c2+· · ·+ci) ≤ j. Note that such an index i always exists since c1+· · ·+cm = n+1
by the definition of a composition. Let a denote (n − 1) − (c1 + · · · + ci), and we clearly
have a ∈ A. Let b denote j − a, and our task is now to prove that b ∈ B, for then we have
j = a+ b, and we are done. We distinguish between two cases:

• Suppose i = 1, so (n+ 1)− c1 ≤ j < n+ 1, and subtracting a from this inequality we
find 0 ≤ b < c1, so that b ∈ [c1 − 1] = B.

• Suppose i > 1, so that by the minimality of i we have

(n+ 1)− (c1 + c2 + · · ·+ ci) ≤ j < (n+ 1)− (c1 + c2 + · · ·+ ci−1),

and subtracting a from this inequality we fine 0 ≤ b < ci. Since (c1, c2, . . . , cm) is a
headstrong composition we have ci ≤ c1 so that 0 ≤ b < c1 and once again b ∈ [c1−1] =
B.

Step 2: Associate a headstrong composition with each divisor.
Suppose that A+B = [n] for some sets A,B, in which case we also have A+[maxB] = [n].

Suppose A = {a0, a1, . . . , aℓ} with a0 < a1 < · · · < aℓ. We have the telescoping sum:

n+ 1 = (maxB + 1) + (aℓ − aℓ−1) + (aℓ−1 − aℓ−2) + · · ·+ (a1 − a0).
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(Note that [n] is a 0-rooted set and so all of its divisors are also 0-rooted, which means
a0 = 0.) Thus, we obtain a composition of n+ 1, namely:

(maxB + 1, aℓ − aℓ−1, aℓ−1 − aℓ−2, . . . , a1 − a0),

and we claim it is a headstrong composition. To prove this, fix some index 1 ≤ r ≤ ℓ and
we need to show that maxB + 1 ≥ ar − ar−1. We have n ≥ ar > a0 = 0 and therefore
ar − 1 ∈ [n] = A + B, so we may choose some a ∈ A and b ∈ B such that a + b = ar − 1.
Since a < ar and a ∈ A, we have a ≤ ar−1. Therefore,

maxB + 1 ≥ b+ 1 = ar − a ≥ ar − ar−1,

as we wanted to prove.

Step 3: Bijection. Notice that the procedure from Step 1 and the procedure from Step 2 are
inverses of each other. Therefore, we have a bijection between divisors of [n] and headstrong
compositions of n+ 1.

Headstrong compositions of 4 Divisors of [3]
(4) ; {0};
(3, 1) ; {0, 1};
(2, 2) ; {0, 2};
(2, 1, 1) ; {0, 1, 2};
(1, 1, 1, 1) ; {0, 1, 2, 3}.

Figure 6: Example of the correspondence between the 5 divisors of [3] and the 5 headstrong
compositions of 4.

As Applegate, LeBrun, and Sloane remarked [1, Remark (i) following Theorem 16], the
bijection in the proof shows that the following corollary holds. It will be further used in
Section 5 as it plays an important role in the proof of Conjecture 15.

Corollary 21. The number of divisors of [n] whose cardinality is exactly m equals the number
of headstrong compositions of n+ 1 with exactly m parts.

Headstrong compositions were first studied by Knopfmacher and Robbins [10] who de-
rived generating functions and asymptotics for them. The (ordinary) generating function for
the number of headstrong compositions of n, for a positive natural number n ≥ 1, is given
by the coefficient of zn in

∞∑

ℓ=1

(1− z)zℓ

1− 2z + zℓ+1
.

(Here ℓ corresponds to the leading term of the composition.) By comparing generating
functions it is easy to see that the number of headstrong compositions of n with leading
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term ℓ is given by F (ℓ, n), the n-th element of the generalized Fibonacci sequence F (ℓ, ·)
defined by the recurrence relation

F (ℓ, n) =







0, if 1 ≤ n < ℓ;

1, if n = ℓ;
∑ℓ

i=1
F (ℓ, n− i), if n > ℓ.

It is traditional to start enumerating the Fibonacci sequence at the index 0, i.e., F0 = 0,
F1 = 1, and so forth. However, since 0 is not allowed to be a part of a composition, the
generating function in the sum above starts at the index ℓ = 1, and to maintain a simple
equality we shall also start our indexing of the generalized Fibonacci sequence at 1; so the
Fibonacci sequence, for example, will start F1 = 0, F2 = 1, and so forth. Note that the
Fibonacci sequence, A000045 in the OEIS [16], is exactly F (2, ·) according to the recurrence
above. Similarly, F (3, ·) are the so-called “Tribonacci numbers”, A000073 in the OEIS [16].
Table 1 below displays the first few entries of the table for F (ℓ, n), reproduced from the
entry for the generalized Fibonacci sequence, A092921 in the OEIS [16].

F (ℓ, n) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
ℓ = 1 1 1 1 1 1 1 1 1 1 1
ℓ = 2 0 1 1 2 3 5 8 13 21 34
ℓ = 3 0 0 1 1 2 4 7 13 24 44
ℓ = 4 0 0 0 1 1 2 4 8 15 29
ℓ = 5 0 0 0 0 1 1 2 4 8 16

Table 1: First entries of the table for the generalized Fibonacci sequence F (ℓ, n).

To obtain d([n]) = d2(11 · · · 1|2) (with n+1 occurrences of 1), simply sum the (n+1)-th
column in Table 1. Note that this immediately implies that d([n + 1]) > d([n]) for any
natural number n ∈ N. One can also prove that the number of headstrong compositions
of n with leading term ℓ is given by F (ℓ, n) without using generating functions by the
following reasoning. Each headstrong composition of n with leading term ℓ can be obtained
by appending 1 to the end of a headstrong composition of n− 1 with leading term ℓ; or by
appending 2 to the end of a headstrong composition of n−2 with leading term ℓ; so on until
we append ℓ to the end of a headstrong composition of n−ℓ with leading term ℓ. We are not
double-counting since the compositions differ in their last term. We can prove inductively
that all headstrong compositions of n with leading term ℓ are obtained in this manner.

In summary, the total number of headstrong compositions of n is given by
∑n

ℓ=1
F (ℓ, n) =

∑

ℓ≥1
F (ℓ, n). As mentioned in the beginning of this section, this characterization simplifies

the proof that 2d([k − 1]) > d([k]), as a consequence of the following lemma.

Lemma 22. For n ≥ ℓ we have 2F (ℓ, n) ≥ F (ℓ, n+1), and the inequality is strict for n ≥ 2ℓ.
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Proof. Since the claim holds trivially for ℓ = 1, we may assume that ℓ ≥ 2. Since F (ℓ, ℓ) =
F (ℓ, ℓ+1) = 1, the claim is clearly true for n = ℓ. For n > ℓ we have by definition of F (ℓ, n):

F (ℓ, n+ 1) =
ℓ∑

i=1

F (ℓ, n+ 1− i)

= F (ℓ, n) +
ℓ−1∑

i=1

F (ℓ, n− i)

= 2F (ℓ, n)− F (ℓ, n− ℓ)

≤ 2F (ℓ, n),

with strict inequality for n ≥ 2ℓ.

Lemma 22 gives a lower bound on F (ℓ, n) in terms of the next element of the sequence,
F (ℓ, n+ 1), and Lemma 23 gives an upper bound; these lemmas together show that

1

2
F (ℓ, n+ 1) ≤ F (ℓ, n) ≤ 2

3
F (ℓ, n+ 1). (2)

Inequality (2) will be used to show that [k] \ {0} is d(·)-maximal among all non-0-rooted
subsets of [k]. These bounds are not asymptotically tight; the reader may recall that
F (2, n)/F (2, n + 1) → 1/φ, where φ = (1 +

√
5)/2 ≈ 1.618 is the golden ration. By

considering the characteristic equation of the linear recurrence, Wolfram [19] found that
F (ℓ, n)/F (ℓ, n + 1) → 1/r, where r is the single positive real root of xℓ −∑ℓ−1

i=0
xi = 0,

though we shall not use this result.

Lemma 23. For any ℓ > 1 and n > ℓ we have 3F (ℓ, n) ≤ 2F (ℓ, n + 1). Equality holds if
and only if ℓ = 2 and n = 4.

Proof. We have F (2, 3) = 1, F (2, 4) = 2, F (2, 5) = 3, which proves the claim for ℓ = 2 and
n ≤ 4.

If ℓ = 2 and n > 4, then n− 1 ≥ 2ℓ so Lemma 22 shows that

2F (ℓ, n+ 1) = 2F (ℓ, n) + 2F (ℓ, n− 1) > 3F (ℓ, n).

Assume therefore that ℓ ≥ 3. If n = ℓ+ 1 we have

2F (ℓ, ℓ+ 2) = 4 > 3 = 3F (ℓ, ℓ+ 1).

On the other hand, if n ≥ ℓ+ 2 we have by Lemma 22:

2F (ℓ, n+ 1) ≥ 2F (ℓ, n) + 2F (ℓ, n− 1) + 2F (ℓ, n− 2)

≥ 3F (ℓ, n) + 2F (ℓ, ℓ)

> 3F (ℓ, n).

This completes the proof.

18



5 Divisors of non-0-rooted sets

Most of the groundwork for proving Theorem 30 is now done. The remaining key observation
is the relationship between the divisors of a non-0-rooted set and the 0-rooted set obtained by
shifting its elements. In the language of lunar arithmetic, this translates to the relationship
of trailing zeros, and Applegate, LeBrun, and Sloane observed:

Lemma 24 ([1, Lemma 15]). If the base b expansion of n ends with exactly r ≥ 0 zeros, so
that n = mbr, with b 6 |m, then

db(n) = (r + 1)db(m). (3)

They give a short proof based on lunar arithmetic. For completeness, Lemma 26 proves
the binary case in the language of sumsets.

Notation 25. We denote
[k+] := [k] \ {0} = {1, 2, . . . , k}.

For any positive natural number 1 ≤ k ∈ N, we let Z+

k denote the collection of sets of
positive natural numbers whose maximal element is k:

Z+

k := {A ⊆ N : minA > 0,maxA = k}.

Finally, we denote

Z+

≤k :=
⋃

0<ℓ≤k

Z+

ℓ .

Note that we have a partition of P([k]), the collection of subsets of [k], given by

P([k]) = {∅} ⊔ Z≤k ⊔ Z+

≤k.

(We use “⊔” to denote disjoint union.)

Lemma 26 (Based on [1, Lemma 15]). Let A be a finite subset of N, and let r := minA.
Then,

d(A) = (r + 1)d(A− {r}).

Proof. Note that A − {r} ∈ Z is a 0-rooted set. Suppose B,C are sets such that B + C =
A− {r}. Then, for any 0 ≤ s ≤ r, we have that B + {s} is a divisor of A, since

(B + {s}) + (C + {r − s}) = (B + C) + {r} = (A− {r}) + {r} = A.

Now, suppose B and B′ are divisors of A−{r}, and s, s′ are numbers such that 0 ≤ s, s′ ≤ r.
We claim that B + {s} = B′ + {s′} if and only if B = B′ and s = s′. To see this,
assume without loss of generality that s ≤ s′. Then we can rewrite B + {s} = B′ + {s′} as
B = B′ + {s′ − s}. However, both B and B′ are 0-rooted, so we must have s′ − s = {0},
which then implies B = B′.

19



We have found that each divisor of A−{r} gives rise to r+1 divisors of A, and they are
all distinct, so that d(A) ≥ (r + 1)d(A− {r}).

Conversely, suppose that B,C are sets such that B+C = A. Let b, c denote the minimal
elements of B,C respectively, so that b+ c = minA = r. We therefore have

(B − {b}) + (C − {c}) = (B + C)− {r} = A− {r}.

That is, the map F 7→ F − minF maps divisors of A to divisors of A − {r}. Since 0 ≤
minF ≤ r (and F 6= F ′ implies F − {s} 6= F ′ − {s} for any 0 ≤ s ≤ r), each divisor of
A−{r} is the image of at most (r+1) divisors of A. That is, d(A) ≤ (r+1)d(A−{r}).

A particular case of Lemma 26 is the equality d([k+]) = 2d([k − 1]), mentioned in the
beginning of Section 4. The following theorem implies that [k+] has more divisors than any
set in Z≤k.

Theorem 27. For any positive natural number k ≥ 1 we have

2d([k − 1]) ≥ d([k]),

and the inequality is strict for k > 1.

Proof. Note that d([0]) = 1 and d([1]) = 2, which proves the claim for k = 1. Assume
therefore that k ≥ 2. We have seen in Section 4 that

d([k − 1]) =
k∑

ℓ=1

F (ℓ, k).

By Lemma 22 we have 2F (ℓ, k) ≥ F (ℓ, k + 1) so that

2d([k − 1])− d([k]) =
k∑

ℓ=1

(2F (ℓ, k)− F (ℓ, k + 1))− F (k + 1, k + 1).

Now, F (1, ·) is the constant 1 sequence, so 2F (1, k) − F (1, k + 1) = 1. Moreover, F (k +
1, k + 1) = 1 by definition. Thus,

2d([k − 1])− d([k]) =
k∑

ℓ=2

(2F (ℓ, k)− F (ℓ, k + 1)).

Since k ≥ 2 the sum is nonempty, and Lemma 22 shows that each term in the sum is
nonnegative. In fact, the sum includes the term 2F (k, k) − F (k, k + 1) = 2 − 1, so it is
positive.

To show that [k+] is the maximum of d(·) in Z+

≤k, we use Lemma 23.
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Theorem 28. For any 1 ≤ r ≤ k we have

2d([k − 1]) ≥ (r + 1)d([k − r]).

Equality holds if and only if r = 1, or k = 3 and r = 2.

Proof. Since d([0]), d([1]), d([2]) = 1, 2, 3 respectively, it is easy to verify that the claim holds
for k ≤ 3. In particular, for k = 3 and r = 2 we have

3d([1]) = 3 · 2 = 2 · 3 = 2d([2]).

Suppose therefore that k ≥ 4. The claim holds trivially with equality for r = 1. We shall
prove strict inequality holds for r ≥ 2 by induction on r. To prove the base case r = 2, recall
that F (1, ·) = F (k, k) = F (k, k + 1) = 1 (for any positive k). We have by Lemma 23:

3d([k − 2]) = 3
k−1∑

ℓ=1

F (ℓ, k − 1)

= 3 + 3 +
k−2∑

ℓ=2

3F (ℓ, k − 1)

< 2(F (1, k) + F (k − 1, k) + F (k, k)) +
k−2∑

ℓ=2

2F (ℓ, k)

= 2
k∑

ℓ=1

F (ℓ, k)

= 2d([k − 1]).

(Note that the strict inequality is justified by Lemma 23, since the sum contains at least one
element different from F (2, 4).)

For the induction step, suppose that for some r ≥ 2 we know that for all k ≥ max(4, r)
we have (r+ 1)d([k− r]) < 2d([k− 1]). Note that 3d([k− 2]) ≤ 2d([k− 1]) for any k ≥ 2 (it
is only when we require the inequality to be strict that we need k ≥ 4). Thus, if r + 1 ≤ k,
we have

(r + 2)d([k − r − 1]) = (r − 1)d([k − r − 1]) + 3d([k − r − 1])

≤ (r − 1)d([k − r]) + 2d([k − r])

= (r + 1)d([k − r])

< 2d([k − 1]).

This completes the induction step.

Theorem 29. For any nonempty set A ( [k+] we have

d([k+]) ≥ d(A),

and the inequality is strict for k 6= 3.
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Proof. Let a := minA, and note that A ( [k+] implies a ≥ 1. By Lemma 26 and Theorem
13 we have

d(A) = (a+ 1)d(A− {a}) ≤ (a+ 1)d([maxA− {a}])
and the inequality is strict if A− {a} 6= [maxA− a]. Moreover, d([maxA− a]) ≤ d([k − a])
and the inequality is strict if maxA 6= k. Therefore, by Theorem 28 we have

d(A) ≤ (a+ 1)d([k − a]) ≤ 2d([k − 1]) = d([k+]),

and the inequality is strict if k 6= 3 and a > 1.
In summary, d(A) ≤ d([k+]) and if k 6= 3 equality may only hold if a = 1, and maxA = k,

and A−{1} = [k−1]; but this contradicts the assumption that A ( [k+]. This contradiction
proves that the inequality is strict for k 6= 3.

It is also true that for k = 3 the inequality can fail to be strict. For example, d([3+]) =
6 = d({2, 3}). We may now prove Conjecture 15.

Theorem 30. For any natural number k ≥ 1, the set [k+] is the maximum of d(·) in
P([k]) \ {∅}, and it is the unique maximum for k 6= 1, 3.

Equivalently, in base 2, among all k-digit numbers n, the maximal value of d2(n) occurs
at n = 2k − 2 = 111 · · · 10|2, and it is the unique maximum for n 6= 2, 4.

Proof. By Lemma 26 we have d([k+]) = 2d([k−1]), and by Theorem 27 we have 2d([k−1]) ≥
d([k]) with strict inequality for k > 1. By Theorem 13 we know that [k] is the unique
maximum of d(·) in Z≤k, so we conclude that d([k+]) ≥ d(A) for any A ∈ Z≤k, and the
inequality is strict for k > 1.

Next, Theorem 29 shows that for any A ∈ Z+

≤k we have d([k+]) ≥ d(A), and the inequality
is strict if k 6= 3 (and A 6= [k+]).

Since P([k]) = {∅} ⊔ Z≤k ⊔ Z+

≤k, we conclude that [k+] is the maximum of d(·) in
P([k]) \ {∅}, and it is the unique maximum for k 6= 1, 3.

6 The triangle of headstrong compositions

In Section 7 we prove Conjecture 14. One important part of the proof is the observation
that db can be given in terms of powers of base 2 divisors; see Theorem 43. Theorem
43 generalizes a result from Applegate, LeBrun, and Sloane [1, Theorem 17], whose proof
compares headstrong compositions by the number of parts, rather than simply count the
total number. The purpose of this section is to help us establish a new, more convenient
recurrence relation for these numbers, and use it to derive some bounds.

Since 0 is not allowed as a part of a composition, a composition of a positive natural
number n may have at most n parts. Letting the rows indicate n, and the columns the num-
ber of parts, we obtain a triangle of compositions. In the case of unrestricted compositions
it is easy to see that the triangle thus obtained is the Pascal triangle of binomial coefficients,
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sequence A007318 of the OEIS [16]. We are interested in the triangle of headstrong compo-
sitions, enumerated in sequence A184957 of the OEIS [16]. The first few rows of the triangle
are reproduced in Table 2. We let H(n, p) denote the number of headstrong p-compositions
of the integer n. Recall from Section 4 that F (·, n) enumerates headstrong compositions
by leading term, so summing the rows of table 2 leads to the same result as summing the
columns of table 1. Thus, we have the equality

∑n

p=1
H(n, p) =

∑n

ℓ=1
F (ℓ, n), even though

the rows and columns of these two tables do not in general agree.

H(n, p) p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
n = 1 1
n = 2 1 1
n = 3 1 1 1
n = 4 1 2 1 1
n = 5 1 2 3 1 1
n = 6 1 3 4 4 1 1
n = 7 1 3 6 7 5 1 1
n = 8 1 4 8 11 11 6 1 1
n = 9 1 4 11 17 19 16 7 1 1
n = 10 1 5 13 26 32 31 22 8 1 1

Table 2: Triangle of H(n, p), the number of headstrong p-compositions of n.

We are after the following recurrence relation:

Theorem 31. Let p, n be positive natural numbers, and let H(n, p) denote the number of
headstrong p-compositions of the integer n, as above. We have

H(n, p) =







0, if p > n;

1, if p = n;

1, if p = 1.

In all other cases, i.e., n > p > 1, we have

H(n, p) =

n−p
∑

j=1

H(n− p, j)

(
p− 1

j − 1

)

. (4)

Before proving Theorem 31, let us explain its meaning in terms of the triangle of head-
strong compositions, Table 2. It is well-known how to generate a given row in Pascal’s
triangle by use of the previous row. Similarly, but more complicated, one can generate a
given diagonal of the triangle of headstrong compositions by use of the row above it. To
introduce this procedure we first recall that given a function f : N → R, its first forward
difference, denoted ∆f , is another function ∆f : N → R defined by

∆f(n) := f(n+ 1)− f(n).
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One then defines the k-th order first forward difference recursively by

∆kf := ∆(∆k−1f).

We can conveniently extend this notation by adopting the convention that ∆0f = f . Starting
with the sequence given by the function f , and writing the sequence represented by ∆kf
in row k we obtain the difference table for the sequence f . It is conventional to align the
table in a similar manner to Pascal’s triangle, so that the difference of two items appears in
between them; thereby a difference triangle is obtained (of course, it is only by curtailing
the sequence that the shape of a triangle emerges). An example with f(n) =

∑n

j=0
j2 the

sequence of the sum of the first n squares is shown in Table 3.

∆0f 0 1 5 14 30 55
∆1f 1 4 9 16 25
∆2f 3 5 7 9
∆3f 2 2 2
∆4f 0 0

Table 3: Difference table for the sum of squares f(n) =
∑n

j=0
j2.

There are many analogies between forward differences and differentiation. The h-th
forward difference plays an important role in the analysis of difference equations, numerical
methods for solving differential equations, and in statistics. We refer the interested reader to
Graham, Knuth, and Patashnik’s book [6] for an introduction, and to Jordan’s classic book
[9] for an extensive treatment of the so-called “finite calculus”. One easy analogy we shall
exploit is the fact that f(n) is a polynomial of degree m if and only if ∆m+1f = 0. In which
case, the entire difference table can be recovered from its first diagonal. The first diagonal
of the difference table consists of the first entry in each row; in Table 3 the first diagonal is
(0, 1, 3, 2, 0). In general, if the first diagonal is (a0, a1, . . . , am, 0) the sequence is given by

f(n) =
m∑

j=0

aj

(
n

j

)

. (5)

(Here we adopt the convention that
(
n

j

)
= 0 for j > n.) This formula, as well as the fact that

∆m+1f = 0 if and only if f(n) is a polynomial of degree m, can easily be proven by induction
on the degree m. As an example, applying this formula to the first diagonal (0, 1, 3, 2, 0) of
Table 3 we obtain the familiar formula for the sum of the first n squares:

f(n) = 0

(
n

0

)

+ 1

(
n

1

)

+ 3

(
n

2

)

+ 2

(
n

3

)

=
1

6
n(n+ 1)(2n+ 1).

Below we shall apply these ideas to the triangle of headstrong compositions. Because of
the enumeration we adopted in Section 4, we shall be working with sequences whose first
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element has the index 1, rather than the index 0. That is, the sequence will be represented
by a function f : N \ {0} → R, and Equation (5) will therefore take the form

f(n) =
m∑

j=0

aj

(
n− 1

j

)

. (6)

We are now in a position to explain the recurrence from Theorem 31. First, by the defini-
tion of H(n, p) as the number of headstrong p-compositions of n, it is clear that H(n, 1) = 1
and H(n, n) = 1 for any positive natural number n. It is also clear that H(n, p) = 0 for any
p > n. We take these facts as our initial data, and we obtain the first column and the first
diagonal of Table 2, the triangle of headstrong p-compositions of n, as shown in Table 4a.

The (r + 1)-st diagonal of the triangle of headstrong p-compositions of n is given by the
entries

H(r + 1, 1), H(r + 2, 2), H(r + 3, 3), . . .

The corresponding sequence is given by the function f(m) = H(r +m,m) for m ≥ 1. The
recurrence formula in Theorem 31 can be interpreted as follows: if we construct the difference
table for the sequence f(m), the first diagonal of the difference table is the r-th row of the
triangle of headstrong p-compositions of n.

Thus, starting with the initial data as in Table 4a, we can recover the second diagonal
from Equation (6). That is, entry s in the sequence corresponding to the second diagonal
will be given by the formula 1 ·

(
s−1

0

)
, so the second diagonal is the constant sequence 1, as

shown in Table 4b.
We now know the second row of the triangle H(n, p), which means we can recover the

third diagonal. Entry s in the sequence corresponding to the third diagonal will be given by
the formula

1 ·
(
s− 1

0

)

+ 1 ·
(
s− 1

1

)

= s,

as shown in Table 4c.
We now know the third row of the triangle H(n, p), which means we can recover the

fourth diagonal. Entry s in the sequence corresponding to the fourth diagonal will be given
by the formula

1 ·
(
s− 1

0

)

+ 1 ·
(
s− 1

1

)

+ 1 ·
(
s− 1

2

)

=
s2 − s+ 2

2
,

as shown in Table 4d.
In this manner one may recover the whole triangle H(n, p) in Table 2 from the initial

data, and this is the claim in Theorem 31.
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1
1 1
1 H(3, 2) 1
1 H(4, 2) H(4, 3) 1
1 H(5, 2) H(5, 3) H(5, 4) 1
1 H(6, 2) H(6, 3) H(6, 4) H(6, 5) 1

(a) Initial data.

1
1 1
1 1 1
1 H(4, 2) 1 1
1 H(5, 2) H(5, 3) 1 1
1 H(6, 2) H(6, 3) H(6, 4) 1 1

(b) Filled 2nd diagonal.

1
1 1
1 1 1
1 2 1 1
1 H(5, 2) 3 1 1
1 H(6, 2) H(6, 3) 4 1 1

(c) Filled 3rd diagonal.

1
1 1
1 1 1
1 2 1 1
1 2 3 1 1
1 3 4 4 1 1

(d) Filled table.

Table 4: Recovering the triangle H(n, p) of headstrong p-compositions of n from its initial
data.

In order to prove Theorem 31 we shall use generating functions. For that purpose we
introduce the sequence C(n, p, s), the number of p-compositions of n such that no part ex-
ceeds s. The appearance of Pascal’s triangle already signifies the importance of compositions
in probability. The sequence C(n, p, s) is another example, it arises in the solution of the
following Montmort-Moivre2 type problem: consider p urns, each containing s balls labeled
1, . . . , s. If one ball is drawn uniformly at random from each of the p urns, what is the
probability that the sum of the labels is n? The process of answering the Montmort-Moivre
puzzle leads to a definition of C(n, p, s), which has been studied by statisticians in this con-
text. The sequence already appears in Jordan’s book [9], and is expanded upon in an article
by Charalambides [2]; we also refer the reader to the more recent work of Rao and Agarwal
[15] which considered generalizations where each part is bounded above and below. Below
we shall use the generating function of C(n, p, s), given by

g(z) = (z + z2 + · · ·+ zs)(z + z2 + · · ·+ zs) · · · (z + z2 + · · ·+ zs)

= zp
(1− zs)p

(1− z)p
.

Proof of Theorem 31. As we have already remarked, it follows directly from the definition of
H(n, p) as the number of headstrong p-compositions of n, thatH(n, 1) = 1, thatH(n, n) = 1,
and that H(n, p) = 0 for any p > n. It remains to prove Equation (4) for n > p > 1.

2A similar formulation with a deck of cards is sometimes referred to as Simon Newcomb type problem,
popularized in [11].
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It is easy to see that for p > 1 we have

H(n, p) =
n−1∑

s=1

C(n− s, p− 1, s).

(The idea is that given an (p−1)-composition of n−s, no part of which exceeds s, prepending
s turns it into a headstrong p-composition of n. The converse, chopping off the head of a
headstrong composition, shows that this is a bijection.) The generating function for C(n, p, s)
therefore gives us a generating function for H(n, p):

f(z) =
∑

s=1

zszp−1 (1− zs)p−1

(1− z)p−1
=
∑

s=1

zp+s−1

(
1− zs

1− z

)p−1

.

Observe that this generating function gives the correct result for p = 1 as well, so it is indeed
the generating function for H(n, p). On the other hand, the hypothesized recurrence for
n > p > 1,

H(n, p) =
∑

j=1

H(n− p, j)

(
p− 1

j − 1

)

= 1 +
∑

j=2

H(n− p, j)

(
p− 1

j − 1

)

= 1 +
∑

j=2

((
p− 1

j − 1

)
∑

s=1

C(n− p− s, j − 1, s)

)

,

gives the generating function

h(z) = zp +
∑

s=1

zp+s +
∑

j=2

((
p− 1

j − 1

)
∑

s=1

zp+szj−1 (1− zs)j−1

(1− z)j−1

)

.

(Note that the coefficient of zp accounts for the case n = p, while
∑

s=1
zp+s accounts for

the cases where n > p and p = 1.) However, this is the same as the generating function for
H(n, p), since

h(z) = zp +
∑

s=1

zp+s
∑

j=1

(
p− 1

j − 1

)(

z
1− zs

1− z

)j−1

= zp +
∑

s=1

zp+s

(

1 + z
1− zs

1− z

)p−1

=
∑

s=1

zp+s−1

(
1− zs

1− z

)p−1

.

That is, h(z) = f(z), and the proof is complete.
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Using Theorem 31 we may now prove a relation between the rows of the triangle of
headstrong compositions that will play a key role in our proof of Conjecture 14.

Corollary 32. Let b ≥ 2 be a natural number. Then, for any positive natural number n,

n+1∑

p=1

H(n+ 1, p)bp > 2
n∑

p=1

H(n, p)bp. (7)

Proof. When n = 1, the claim reduces to 2b < b + b2, and when n = 2 it reduces to
2b+2b2 < b+b2+b3. Assume therefore that n > 2. For n > p > 0 we have n+1 > p+1 > 1,
and applying Theorem 31:

H(n+ 1, p+ 1) =
∑

j=1

H(n− p, j)

(
p

j − 1

)

=
∑

j=1

H(n− p, j)

(
p− 1

j − 1

)

+
∑

j=2

H(n− p, j)

(
p− 1

j − 2

)

= H(n, p) +
∑

j=2

H(n− p, j)

(
p− 1

j − 2

)

.

The last step is justified, since the recurrence formula in Equation (4) is valid in all cases
where n > p > 0, including the case p = 1 with the conventions

(
0

0

)
= 1 and

(
p

j

)
= 0

for j < 0. Note that the last summand is 0 unless n − ℓ > 1, reflecting the fact that
H(n+ 1, n) = H(n, n− 1) = 1; i.e., plug p = n− 1 into Inequality (7) above.

For convenience, let h(n, p) denote the second summand:

h(n, p) :=
∑

j=2

H(n− p, j)

(
p− 1

j − 2

)

.

We find that

n+1∑

p=1

H(n+ 1, p)bp = b+
n∑

p=1

H(n+ 1, p+ 1)bp+1

= b+
n∑

p=1

(H(n, p) + h(n, p))bp+1

= b+ b
n∑

p=1

H(n, p)bp + b
n∑

p=1

h(n, p)bp.
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By assumption, b ≥ 2, and since all summands are nonnegative we have

n+1∑

p=1

H(n+ 1, p)bp = b+ b

n∑

p=1

H(n, p)bp + b

n∑

p=1

h(n, p)bp

≥ b+ b

n∑

p=1

H(n, p)bp

≥ b+ 2
n∑

p=1

H(n, p)bp

> 2
n∑

p=1

H(n, p)bp.

This is exactly the inequality we wanted to prove.

7 Sumsets arrays

We have seen that sumset addition corresponds to binary lunar multiplication, and this cor-
respondence can be used to analyze lunar divisors. Lunar arithmetic is defined for arbitrary
bases b ≥ 2. We now extend the correspondence by showing that lunar multiplication in
higher bases corresponds to multiset addition. Recall that a multiset is a “set with repeti-
tions.” While {1, 1, 2} and {1, 2}, for example, represent the same set, they represent two
different multisets. A set of natural numbers can be identified with a function f : N → {0, 1}
that decides set-membership, i.e., n is an element of the set if and only if f(n) = 1.

Definition 33. A multiset of natural numbers is a function f : N → N. We say that a
natural number n ∈ N is an element of the multiset, if f(n) > 0. We call the value f(n) the
multiplicity of n. A multiset that is not a set, i.e., f(n) > 1 for at least one n ∈ N, is called
a proper multiset.

All multisets in this section will be finite multisets of natural numbers. There is a grading
of multisets by multiplicity.

Notation 34. For any natural number b, we let Mb denote the collection of finite multisets (of
natural numbers) with the property that no element of the multiset has multiplicity greater
than b. Formally,

Mb := {f : N → N : f(N) ⊆ [b], and f(j) = 0 for all but finitely many j ∈ N}.

Note that M1 is simply the collection of finite subsets of natural numbers, while M0 = {∅}.
We have the grading

M0 ( M1 ( M2 ( · · · .
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We adopt the following notation, analogous to the notation from Section 3. For any natural
number k, let Mk denote the collection of multisets of natural numbers whose maximal
element is k:

Mk := {f : N → N : f(k) > 0 and f(j) = 0 for any j > k}.
For convenience we also introduce

M≤k :=
⋃

ℓ≤k

Mℓ,

the collection of multisets of natural number whose maximal element does not exceed k. The
collection of all finite nonempty multisets of natural numbers is then denoted by M:

M :=
⋃

k∈N

Mk.

Finally, we may combine superscripts and subscripts, so thatMb
k is the collection of multisets

of natural numbers whose maximal element is k and such that the multiplicity of any element
does not exceed b:

Mb
k := Mk ∩Mb.

Such a multiset M ∈ Mb
k can be viewed as extending a function f : [k] → [b] to a multiset

f : N → N by the rule that f(j) = 0 for any j > k. Note that we have the disjoint union:

Mb \ {∅} =
⊔

k∈N

Mb
k.

We are now faced with the question of how to define an addition operation for multisets.
One approach is to simply treat multisets as sets, for example {1, 1, 2} + {2} = {3, 3, 4},
and also {1, 1, 2} + {2, 2} = {3, 3, 4}. Such a definition ignores multiplicity, and thus fails
to take advantage of the extra structure of multisets. In contrast, Definition 36 below takes
multiplicity into account, and allows different interactions between “multiplicity levels”, so
that {1, 1, 2} + {2} = {3, 4}, while {1, 1, 2} + {2, 2} = {3, 3, 4}. Definition 36 is most
transparent when one views finite multisets as an array of sets, as in the following definition.

Definition 35. Let b be a natural number, and f ∈ Mb a multiset. The b-ary array
representation of f is an ordered b-tuple of (F1, F2, . . . , Fb) where the coordinate Fi (for
1 ≤ i ≤ b) is defined as follows: for any natural number n, we have n ∈ Fi if and only if
f(n) ≥ i.

For ease of readability, it is often convenient to represent the array (F1, F2, . . . , Fb) as a
column vector, and we shall do so in the figures below. The array representation depends on
b as well as on the multiset f . For example, {1, 1, 2} has an array representation ({1, 2}, {1})
when viewed as a multiset in M2, but it has the array representation ({1, 2}, {1}, ∅) when
viewed as a multiset in M3. Note that one feature of the array representation is that the
coordinates form a descending chain F1 ⊇ F2 ⊇ · · · ⊇ Fb. We are now ready to define
multisumsets, it is simply the coordinate-wise sumset operation.
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Definition 36. Let f, g ∈ M be two finite multisets of natural numbers. Let b be the
largest multiplicity of any element in f or in g; that is, b is the smallest natural number
such that f, g ∈ Mb. Let F = (F1, F2, . . . , Fb) and G = (G1, G2, . . . , Gb) be the b-ary array
representations for f and g, respectively.

The multisumset of f and g, denoted f + g, is the multiset corresponding to the array
F +G := (F1 +G1, F2 +G2, . . . , Fb +Gb).

Figure 7 gives an example of the multisumset operation, showing how it takes advantage
of different “multiplicity levels”.

(
{1, 2}
{1}

)

+

(
{2}
∅

)

=

(
{3, 4}
∅

)

(a) The multisumset {1, 1, 2}+ {2} = {3, 4}.

(
{1, 2}
{1}

)

+

(
{2}
{2}

)

=

(
{3, 4}
{3}

)

(b) The multisumset {1, 1, 2}+ {2, 2} = {3, 3, 4}.

Figure 7: Examples of the multisumset operation via the array representation of multisets,
here displayed as column vectors.

It is easy to see that the multisumset operation makes Mb into a commutative monoid.
We have a correspondence between the multisumset operation on Mb and base (b+1) lunar
multiplication, extending Theorem 18. Extending the notation of Theorem 18, we let Bb+1

denote the set of base (b+1) numbers, written using the digits in Db+1 = {0, 1, . . . , b}. There
is a natural bijection βb+1 : Mb → Bb+1 based on the idea of encoding multiplicity as a base
(b + 1) sequence. First, define βb+1(∅) = 0|b+1. Next, let f ∈ Mb be a finite nonempty
multiset, and let k be its maximal element, so f ∈ Mb

k. We define the base (b+ 1) number
βb+1(f) by encoding the multiplicity of each element

βb+1(f) := f(k)f(k − 1) · · · f(1)f(0)|b+1.

For example, the multiset {1, 1, 2} will be encoded as the base 3 number 120|3. Another
example, the multiset corresponding to 169|10 is {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2}.

Let f, g ∈ M, and let b be the smallest natural number such that f, g ∈ Mb. The key
observation, which we prove in Theorem 37, is a generalization of Equation (1):

βb+1(f + g) = βb+1(f)⊗b+1 βb+1(g). (8)

Figure 8 shows an example of a multisumset in M9 and the corresponding base 10 lunar
multiplication, demonstrating Equation (8).

Theorem 37. For any positive natural number b, the map βb+1 : Mb → Bb+1 is a monoid-
isomorphism between Mb equipped with the multisumset operation, and base (b+1) numbers
equipped with lunar multiplication ⊗b+1.
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Proof. Fix some positive natural number b. It is easy to see that the map βb+1 is a
bijection—for example, by considering the inverse map—so it remains to show it is a monoid-
homomorphism. Let 0 denote the multiset {0, 0, . . . , 0} with b repetitions of 0. We have
βb+1(0) = b|b+1, which is the maximal digit in Db+1. This shows that the neutral elements
are mapped to each other.

Next, let f, g ∈ Mb, and we need to prove that Equation (8) holds. This is easy to see if
one of f, g is the empty multiset. Assume therefore that each of f, g has at least one element.
Let r, s denote the maximal elements of f, g, respectively. Consider the base (b + 1) lunar
product βb+1(f)⊗b+1 βb+1(g) = t:

f(r) · · · f(0)|b+1 ⊗b+1 g(s) · · · g(0)|b+1 = tr+s · · · t0|b+1.

Let F = (F1, . . . , Fb) be the set array representation of f , and let G = (G1, . . . , Gb) be the
set array representation of g. The base (b + 1) number corresponding to the multisumset
F + G is the (r + s)-digit number βb+1(f + g). By definition of the mapping βb+1, for any
0 ≤ j ≤ r+ s, the j-th digit of βb+1(f + g) is the multiplicity of j in the multisumset f + g.
By definition of the multisumset operation, the multiplicity of j in the multisumset f + g
equals the number of indices i (for 1 ≤ i ≤ b) such that Fi + Gi contains j. Consider all
possible representations of j as the sum of two natural numbers:

0 + j, 1 + (j − 1), 2 + (j − 2), . . . , j + 0.

When constructing the set F1 + G1, the specific sum ℓ + (j − ℓ) (for 0 ≤ ℓ ≤ j), in this
specific order, appears as part of the construction if and only if f(ℓ) ≥ 1 and g(j − ℓ) ≥ 1.
The specific sum ℓ + (j − ℓ) appears in the construction of F2 + B2 if and only if f(ℓ) ≥ 2
and g(j − ℓ) ≥ 2. In general, the specific sum ℓ + (j − ℓ) will appear in the construction
of Fi + Gi for exactly min{f(ℓ), g(j − ℓ)}-many indices. The number of indices i such that
Fi +Gi contains j is therefore

max{min{f(0), g(j)},min{f(1), g(j − 1)}, . . . ,min{f(j), g(0)}}.

However, by the definition of the lunar arithmetic operations, this is exactly

tj = (f(0)⊗b+1 g(j))⊕b+1 (f(1)⊗b+1 g(j − 1))⊕b+1 · · · ⊕b+1 (f(j)⊗b+1 g(0)).

This proves that βb+1(f + g) = βb+1(f)⊗b+1 βb+1(g), as we wanted to show.
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















{0, 1, 2}
{0, 1}
{0, 1}
{0, 1}
{0, 1}
{0, 1}
{0}
{0}
{0}

















+

















{0, 1, 2}
{0, 1, 2}
{0, 1}
{0, 1}
{0}
{0}
{0}
{0}
∅

















=

















{0, 1, 2, 3, 4}
{0, 1, 2, 3}
{0, 1, 2}
{0, 1, 2}
{0, 1}
{0, 1}
{0}
{0}
∅

















(a) Multiset addition in M9.

169
⊗10 248

168
⊕10 144
⊕10 122

12468

(b) Base 10 lunar multiplication.

Figure 8: Two representations of multiset addition.

Having defined multisumset we can define divisors in a way analogous to Definition 4.

Definition 38. Let f ∈ M be a finite multiset of natural numbers. We say that the multiset
g ∈ M is a divisor (or multisumset divisor, or factor) of f , if there exists some multiset
h ∈ M such that f = g + h. We then call g + h a factorization of f .

Multiplicity may be lost in the process of multiset addition. For example {1, 1, 2} +
{2, 2} = {3, 3, 4} and also {1, 1, 2} + {2, 2, 2} = {3, 3, 4}; in fact, {1, 1, 2} + {2, 2, . . . , 2} =
{3, 3, 4} as long as the second set has at least two 2’s. Thus, it only make sense to count the
number of divisors up to a given multiplicity level, i.e., when we restrict ourselves to Mb.

Definition 39. Let f ∈ M be a finite multiset of natural numbers, and let b be a positive
natural number. We say that the multiset g ∈ M is a b-divisor of f , if g ∈ Mb and there
exists some multiset h ∈ M such that f = g + h.

If f 6= 0 is not the constant 0 function, we let db(f) denote the number of b-divisors of f .

The constant 0-function corresponds to the empty-set, which has any multiset as a divisor
and so must be excluded from the definition above. Observe that if f /∈ Mb then db(f) = 0,
since one cannot gain multiplicity. If f is a set rather than a proper multiset, so that
f ∈ M1, then d1(f) = d(f) in agreement with Definition 4. Note that the notation db(·) has
now been overloaded; it denotes the number of lunar divisors for a base b lunar number, and
the number of b-divisors for a multiset. If f ∈ Mb is nonempty, Theorem 37 implies that

db(f) = db+1(βb+1(f)).

Since any set is a divisor for ∅, an array with more empty entries will have more divisors,
as is shown in the next lemma.
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Lemma 40. Let b be a positive natural number, f ∈ Mb a multiset, and F = (F1, F2, . . . , Fb)
its b-ary array representation. Suppose f 6= 0 is not the constant zero function, so that
F1 6= ∅.

Let f ∗ ∈ Mb be the multiset given by the b-ary array representation F ∗ = (F1, ∅, . . . , ∅).
Then db(f

∗) ≥ db(f), and the inequality is strict if F2 6= ∅.

Proof. Let g ∈ Mb be a b-divisor of f , with array representation G = (G1, G2, . . . , Gb).
That is, there exists some h ∈ Mb with array representation H = (H1, H2, . . . , Hb) such that
f = g + h, which means, by definition of the multisumset operation, F = G + H. Letting
h∗ ∈ Mb denote the multiset given by the array representation H∗ = (H1, ∅, . . . , ∅) we have
f ∗ = g + h∗. Thus, every b-divisor g of f is also a b-divisor of f ∗. That is, db(f

∗) ≥ db(f).
If F2 6= ∅ then for any b-divisor g of f we must also have G2 6= ∅. Thus, f ∗ itself is a

b-divisor of f ∗ that is not a b-divisor of f . We therefore have in this case db(f
∗) > db(f).

Notation 41. Let b be a positive natural number. We let [k]b denote the multiset f ∈ Mb

with b-ary array representation ([k], ∅, . . . , ∅).
The correspondence from Theorem 37 gives βb+1([k]b) = 11 · · · 1|b+1, where 1 repeats k+1

times. Conjecture 14 states that this is the db+1(·)-maximal element among all (k + 1)-digit
lunar numbers in base (b+1). Applegate, LeBrun, and Sloane used headstrong compositions
H(n, p) to count the number of divisors of 11 · · · 1|b:

Theorem 42. [1, Theorem 17]

db

(
bk − 1

b− 1

)

= db(11 . . . 1︸ ︷︷ ︸

k

|b) =
k∑

p=1

H(k, p)(b− 1)p. (9)

Applegate, LeBrun, and Sloane calculated [1, Table 10] the first few values of db(11 · · · 1|b),
which we reproduce in Table 5. We have already remarked on the combinatorial nature of
the first column of Table 5 as counting headstrong compositions, sequence A079500 of the
OEIS [16]. One wonders whether other columns have similarly interesting combinatorial
interpretations. For example, the second column is sequence A186523 of the OEIS [16], and
has no other combinatorial interpretation as of yet. Applegate, LeBrun, and Sloane pointed
out that the rows may also be of interest; the second, third, and fourth rows are sequences
A002378, A027444, and A186636 of the OEIS [16], respectively.
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b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9 b = 10
k = 1 1 2 3 4 5 6 7 8 9
k = 2 2 6 12 20 30 42 56 72 90
k = 3 3 14 39 84 155 258 399 584 819
k = 4 5 34 129 356 805 1590 2849 4744 7461
k = 5 8 82 426 1508 4180 9798 20342 38536 67968
k = 6 14 206 1434 6452 21830 60594 145586 313544 619902
k = 7 24 526 4890 27828 114580 375954 1044246 2555080 5660208

Table 5: The number of base b lunar divisors of 11 · · · 1|b with k repetitions of the digit 1.
Reproduced from Applegate, LeBrun, and Sloane [1, Table 10].

Lemma 40 shows that in order to prove the maximality of db([k]b) among sets in Mb
≤k, it

suffices to prove its maximality among sets of the form (A, ∅, . . . , ∅) with A a finite nonempty
subset such that maxA ≤ k. Theorem 43 shows how to count the number of divisors of such
multisets in terms of the number of divisors of the set A. Note that by Corollary 21, Equation
(9) is a special case of Equation (10).

Theorem 43. Let b be a positive natural number, and let f ∈ Mb be a nonempty set, i.e.,
not a proper multiset. Thus, f has the b-ary array representation F = (F1, ∅, . . . , ∅). Then,

db(f) =
∑

G divisor of F1

bcardG. (10)

Proof. Let S be a finite set of natural numbers, and let c = cardS. Fix an enumeration
S = {s1, . . . , sc} of the elements of S. Consider all possible descending chains of length b:

S = S1 ⊇ S2 ⊇ · · · ⊇ Sb.

The question of which sets in the chain contain a given s ∈ S is answered by a single number
1 ≤ ℓ ≤ c; namely, the largest natural number ℓ such that s ∈ Sℓ. Thus, each chain is
uniquely identified with a sequence (ℓ1, ℓ2, . . . , ℓc) where each entry 1 ≤ ℓi ≤ b, and there are
a total of bc such possible sequences.

Let G be a divisor of F1, so that there exists some H with F1 = G+H. Each descending
chain G = G1 ⊇ G2 ⊇ · · · ⊇ Gb gives rise to a b-divisor g of f with the b-ary array
representation (G1, G2, . . . , Gb), since

(G,G2, . . . , Gb) + (H, ∅, . . . , ∅) = (F1, ∅, . . . , ∅).

Conversely, if (G1, G2, . . . , Gb) is the array representation of a b-divisor of f , then

G1 ⊇ G2 ⊇ · · · ⊇ Gb,

and G1 is a divisor of F1.
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Theorem 43 allows us to carry over our knowledge of divisors of sumsets to divisors
of multisumsets. For example, Theorem 13 proves that [k] is d(·)-maximal in Z≤k, and
Corollary 44 is the corresponding statement for multisets.

Corollary 44. Let b be a positive natural number, and let f ∈ Mb
≤k be a nonempty 0-rooted

set, i.e., it has array representation (A, ∅, . . . , ∅) for some A ∈ Z≤k. Then db(f) ≤ db([k]b),
and the inequality is strict for f 6= [k]b.

Proof. The k-promotion procedure from Definition 7 either adds elements to the promoted
set, or leaves the set as is. Thus, with the notation as in Definition 9, for every divisor C
of A there corresponds a divisor C ′ ∈ FA(C) of [k] with cardC ′ ≥ cardC, and Theorem 10
shows that different divisors of A give rise to different divisors of [k]. The claim now follows
by Equation (10), and the observation from Lemma 11 and Lemma 12 that there are divisors
of [k] that do not arise from k-promotion.

Next, Corollary 45 generalizes Lemma 26, and gives a more explicit version of Equation
(3).

Corollary 45. Let b be a positive natural number, and let f ∈ Mb be a nonempty set, i.e.,
it has set array representation (A, ∅, . . . , ∅), for some finite nonempty set of natural numbers
A. Let a := minA. Then,

db(f) = (a+ 1)
∑

C divisor of A− {a}

bcardC .

Proof. According to the proof of Lemma 26, each divisor C of B−{a} gives rise to a divisor
B + {s} of A, for 0 ≤ s ≤ a. Moreover, all divisors of A are obtained in this manner. Since
cardB = card (B + {s}), we are done by Equation (10).

The stage is now set for proving the maximality of db([k]b) among all sets in Mb
≤k.

Theorem 46. Let b be a positive natural number b ≥ 2, and let f ∈ Mb
≤k be a nonempty

set, i.e., f has the set array representation (A, ∅, . . . , ∅) for some A ∈ Z≤k ⊔ Z+

≤k. Then
db(f) ≤ db([k]b), and the inequality is strict for f 6= [k]b.

Proof. Let a := minA. If a = 0, then A ∈ Z≤k and the claim reduces to Corollary 44.
Otherwise, a > 0 so that f 6= [k]b, and we have by Corollary 45

db(f) = (a+ 1)
∑

B divisor of A− {a}

bcardB.

Let n := maxA− a, so that A− {a} ∈ Zn. By Corollary 21 we have

db(f) = (a+ 1)
n∑

p=1

H(n, p)bp.
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On the other hand,

db([k]b) =
k∑

p=1

H(n+ a, p)bp ≥
n+a∑

p=1

H(n+ a, p)bp.

By Corollary 32 we know that

n+1∑

p=1

H(n+ 1, p)bp > 2
n∑

p=1

H(n, p)bp,

and by induction it follows that

n+a∑

p=1

H(n+ a, p)bp > 2a
n∑

p=1

H(n, p)bp

≥ (a+ 1)
n∑

p=1

H(n, p)bp.

(The last inequality is valid since a > 0, and 2s ≥ s + 1 for any s ≥ 1.) We conclude that
db([k]b) > db(f).

We can now prove Conjecture 14.

Theorem 47. Let b, k be natural numbers such that b ≥ 2, and let f ∈ Mb
≤k be a nonempty

multiset, i.e., f 6= 0 is not the constant 0 function. Then db(f) ≤ db([k]b), and the inequality
is strict if f 6= [k]b.

Equivalently, in any base b + 1 ≥ 3, among all (k + 1)-digit numbers n, db+1(n) has a
unique maximum at n = ((b + 1)k+1 − 1)/((b + 1)− 1) = 11 · · · 1|b+1 (with k + 1 repetitions
of the digit 1).

Proof. Let F = (F1, F2, . . . , Fb) be the array representation of f , and let f ∗ ∈ Mb
≤k be

the multiset given by the b-ary array representation F ∗ = (F1, ∅, . . . , ∅). Lemma 40 gives
db(f

∗) ≥ db(f) and the inequality is strict if F2 6= ∅. Theorem 46 then gives db([k]b) ≥ db(f
∗)

and the inequality is strict if f ∗ 6= [k]b. Thus, db(f) ≤ db([k]b) and the inequality is strict if
f 6= [k]b.

8 Further questions

We have found that {1, . . . , k} has the most additive divisors among all subsets of {0, 1, . . . , k}.
It is natural to restrict the size of the set instead of its maximal element, and one may then
ask: among all sets of a given size k, which have the most number of divisors? We expect
the answer to be the arithmetic progressions, and if true this would be an additional tool in
quantifying additive structure. We thank Almut Burchard for this observation.
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We have seen that sumset divisors of finite subsets of N correspond to binary lunar divisor,
as proved in Theorem 18. The setting of lunar arithmetic naturally inspires number-theoretic
questions. This paper investigated divisibility questions for sumsets. Applegate, LeBrun, and
Sloane [1] investigated a whole panoply of number-theoretic constructions for lunar numbers.
Do other constructions have natural sumset counterparts? If so, may lunar arithmetic lead to
new insights on sumsets? We single out two important examples. One, sumsets of the form
A+A, also denoted 2A, are of particular importance in additive number theory and additive
combinatorics. They correspond to binary lunar squares, sequence A067398 of the OEIS
[16], mentioned briefly in Section 4 of Applegate, LeBrun, and Sloane’s paper [1, Section 4].

Two, irreducible finite subsets of N, as defined in Definition 4, correspond to binary lu-
nar primes, sequence A171000 of the OEIS [16]. Applegate, LeBrun, and Sloane investigated
lunar primes in different bases [1, Section 3]. We have mentioned in Section 1 above Wirs-
ing’s proof [18] that almost all subsets of N are asymptotically irreducible. If we restrict
our attention to finite subsets only, Applegate, LeBrun, and Sloane made a more precise
conjecture:

Conjecture 48 ([1, Conjecture 10]). Let πb(k) denote the number of base b lunar primes
with k digits. Then,

πb(k) ∼ (b− 1)2bk−2.

In particular, this predicts that about half of all subsets of [k] are irreducible.
Theorem 13 undergirds many of the results of this paper, as the proofs of Theorem 30 and

Theorem 47 proceed via reductions to the 0-rooted case. The load-bearing part of the proof
of Theorem 13 is the k-promotion procedure from Definition 7. However, this procedure is
somewhat unique for the full interval [k]. For example,

{0, 2}+ {0, 4} = {0, 2, 4, 6},
and even though {0, 2, 4, 6} ⊆ {0, 2, 3, 4, 5, 6}, an attempt to promote these to factors of
{0, 2, 3, 4, 5, 6} is unsuccessful:

{0, 2}+ {0, 1, 3, 4} = [6].

This is the difficulty in proving Conjecture 17 regarding the runner-up to d([k]); the number
of divisors of the runner-up is enumerated in sequence A188524 of the OEIS [16]. Is there a
way to generalize the promotion procedure to other sets?

Section 4 describes a bijection between divisors of [k] and headstrong compositions, which
is expanded upon in Section 6. Is there a similar bijection between divisors of arbitrary sets
and different kinds of compositions? What are the possible combinatorical interpretations of
the different columns of Table 5, such as sequence A186523 of the OEIS [16]? What about
the rows of Table 5? These kind of questions may be another possible way of making inroads
into resolving Conjecture 17 via direct counting. Indeed, Applegate, LeBrun, and Sloane
[1, Theorem 18] constructed a generating function for d2(2

k − 3) by considering a subtle
relation with restricted compositions, which is then used to prove the asymptotic relation
d2(2

k − 3)/d2(2
k − 1) → 1/5. Sequence A188288 of the OEIS [16] enumerates d2(2

k − 3).
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