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Abstract

The Delannoy numbers and the figurate numbers for n-dimensional cross polytopes
are doubly-recursive sequences that satisfy the same recursion, and indeed have similar
formulae, differing by one parameter. Further varying that parameter, we discover
an infinite collection of doubly recursive sequences that satisfy the same recursion.
These sequences enumerate certain types of lattice paths using the steps (1, 0), (0, 1),
and (1, 1) and certain types of words on three letters. We use these combinatorial
interpretations to prove relationships among the sequences.

1 Introduction

Henri-Auguste Delannoy came to mathematics after a career as a French military officer,
eventually establishing a correspondence with Edouard Lucas and publishing recreational
mathematics [2]. He is best known for his Delannoy numbers (see sequence A008288 in
[9]), which count queen’s walks: paths a queen can take from one square to another on a
chessboard. The number of queen’s walks from (0, 0) to (m,n) is known as the Delannoy
number D(m,n). Equivalently, D(m,n) counts the number of lattice paths using only the
steps (1, 0), (0, 1), and (1, 1). His original results in the area of lattice paths [4] were published
in 1895. Through combinatorial proofs inspired by Delannoy’s work, we generalize his results.

Note first that any lattice path from (0, 0) to (m,n) has three possible final steps: a
horizontal step from (m − 1, n), a vertical step from (m,n − 1), or a diagonal step from
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(m − 1, n − 1). The recurrence D(m,n) = D(m − 1, n) + D(m,n − 1) + D(m − 1, n − 1)
follows immediately. The standard formula, due to Delannoy, is

D(m,n) =
n

∑

j=0

(

m+ n− j

n

)(

n

j

)

.

We can verify the standard formula by letting j count the number of diagonal steps. With j

diagonal steps to (m,n), the path has m+n− j total steps. Choose n of the steps to have a
vertical component (either (0, 1) or (1, 1)) in

(

m+n−j

n

)

ways. (The remaining m− j steps are
horizontal steps.) Choose j of those n steps with vertical component to be diagonal steps in
(

n

j

)

ways. The remaining n− j steps are vertical (0,1) steps. Sum through all values of j to
get the formula.

Another array of numbers satisfying the same recursion as the Delannoy numbers is the
cross polytope numbers (or the figurate numbers of the cross polytopes), usually denoted
T (m,n). A cross polytope is a type of regular, convex polytope [3, §7.21, pp. 121–122]. Kim
[8] constructed the cross polytope numbers. The standard formula for the cross polytope
numbers is T (m,n) =

∑m−1

j=0

(

n+j

m

)(

m−1

j

)

; see A142978 in [9]. Edwards and Griffiths [6] found
two additional formulas for the cross polytope numbers, which are as follows:

T (m,n) =

⌊n
2
⌋

∑

j=0

(

m+ n− 1− 2j

n− 1

)(

n

2j

)

=

⌊n−1

2
⌋

∑

j=0

(

m+ n− 1− (2j + 1)

n− 1

)(

n

2j + 1

)

.

The cross polytope numbers are partial row sums of the Delannoy numbers (A142978 in
[9]):

n−1
∑

j=0

D(m, j) = T (m+ 1, n)

. Also, adjacent cross polytope numbers sum to a Delannoy number: T (m,n)+T (m,n+1) =
D(m,n). We will give generalizations of these identities in section 5. Summing the two
versions of T (m,n) above gives

T (m,n) =
1

2

n
∑

j=0

(

m+ n− 1− j

n− 1

)(

n

j

)

,

which is tantalizingly similar to the formula for D(m,n). Besides the factor of 1

2
, the other

difference is the occurrences of 1 in the first binomial coefficient. We generalize T (m,n) by
replacing the 1’s by an arbitrary integer k. We define, for m,n ≥ k ≥ 0,

Dk(m,n) =
n

∑

j=0

(

m+ n− k − j

n− k

)(

n

j

)

.
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While we could allow k to be negative, it is more convenient to define, for m,n, k ≥ 0,

Dk(m,n) =
n

∑

j=0

(

m+ n+ k − j

n+ k

)(

n

j

)

.

We refer to both Dk(m,n) and Dk(m,n) as generalized Delannoy numbers. Note that
D0(m,n) = D0(m,n) = D(m,n). Furthermore, T (m,n) = 1

2
D1(m,n).

We also define, generalizing the formulas for T (m,n) above:

Ek(m,n) =

⌊n
2
⌋

∑

j=0

(

m+ n− k − 2j

n− k

)(

n

2j

)

Ok(m,n) =

⌊n−1

2
⌋

∑

j=0

(

m+ n− k − (2j + 1)

n− k

)(

n

2j + 1

)

Ek(m,n) =

⌊n
2
⌋

∑

j=0

(

m+ n+ k − 2j

n+ k

)(

n

2j

)

Ok(m,n) =

⌊n−1

2
⌋

∑

j=0

(

m+ n+ k − (2j + 1)

n+ k

)(

n

2j + 1

)

.

Clearly E1(m,n) = O1(m,n) = T (m,n). Some identities involving these numbers, including
their recursion formulas, have been previously realized [7].

2 Combinatorial interpretations

We next give applications of generalized Delannoy numbers to counting lattice paths. We
first show that Dk(m,n) counts the number of paths to (m,n + k), but with a restriction
on diagonal steps. In what follows, we will use, as convenient, V , H, and D for vertical,
horizontal, or diagonal steps in a lattice path. Also, we will use a step with vertical component

to mean either V or D.

Proposition 1. The number Dk(m,n) counts the number of lattice paths from (0, 0) to

(m,n+ k) with no diagonals allowed after the path reaches height n.

Proof. As with D(m,n), let j be the number of diagonals in such a path. There are m+(n+
k)− j steps in the path. We choose n+ k steps to have a vertical component in

(

m+n+k−j

n+k

)

ways, leaving m− j steps to be H. Then, from the first n steps with vertical component, we
choose j steps to be D in

(

n

j

)

ways. The remaining m+ k− j steps are V , including each of

the last k steps with vertical component. In this way, we obtain all paths to (m,n+ k) with
no diagonals after reaching height n.
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There are multiple lattice path interpretations of Dk(m,n). We begin with the lattice
path interpretation most similar to the one above for Dk(m,n).

Proposition 2. The number Dk(m,n) counts the number of lattice paths from (0, 0) to (m,n)
with the following restriction: Each of the last k horizontal steps is immediately followed by a

step with vertical component. If there are fewer than k horizontal steps, say k− i, 1 ≤ i ≤ k,

then every horizontal step is followed by a step with vertical component, and the final i + 1
steps of the path are steps with a vertical component.

Proof. Again allowing j to be the number of diagonals, there will be m + n − j total steps
in a path from (0, 0) to (m,n) with j diagonals. If such a path has k or more horizontal
steps, first choose n− k steps to have vertical component in

(

m+n−k−j

n−k

)

ways, leaving m− j

steps to be H. To such a path, add a step with vertical component after each of the last k
horizontal steps. If a path has k − i horizontal steps, 1 ≤ i ≤ k, add a step with vertical
component after each H, and the remaining i steps with vertical component to the end of
the path. Finally, from the now n steps with vertical component, choose j of them to be
diagonal. If the path has k − i horizontal steps, it follows that step m+ n− j − i must not
be horizontal. Hence we obtain lattice paths to (m,n) with either the last k horizontal (1, 0)
steps being followed by a step with vertical component, or all k− i horizontal steps followed
by a step with vertical component, and ending with i+1 steps with vertical component.

The number Ek(m,n) as defined above is the number of paths as described for Dk(m,n),
with an even number of diagonals, and Ok(m,n) those with an odd number of diagonals.
The numbers Ek(m,n) and Ok(m,n) are interpreted similarly. It is useful to provide an
alternate combinatorial interpretation for these number collections, inspired by Delannoy’s
original work in interpreting his queen’s walks as words in the letters D, H, and V .

3 The word interpretation

The number Dk(m,n) can be also be interpreted as the number of words of length m+n−k

using the letters {D,H, V }, with the property that there are n − k occurrences of V , and
D can only appear in the first n letters. Certainly there are Dk(m,n) =

∑n

j=0

(

m+n−k−j

n−k

)(

n

j

)

such words: choose j of the first n letters to be D, and then from the remaining m+n−k−j

letters, choose n − k to be V , with the remainder H. Then Ek(m,n) and Ok(m,n) are
the numbers of such words with an even or odd number of occurrences of D, respectively.
Similarly, we can interpret Dk(m,n) as the number of words of length m+ n+ k with n+ k

occurrences of V, and with D appearing only in the first n letters.
Note that the word interpretation is distinct from the path interpretation. For example,

each word has the same length (m+n−k or m+n+k), but the paths have varying numbers
of steps ( m+n− j or m+n+k− j, where j is the number of diagonal steps). The following
three theorems use the word interpretations for generalized Delannoy numbers, beginning
by showing that Ek(m,n) and Ok(m,n) are each exactly half of Dk(m,n).
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Proposition 3. For all integers m,n ≥ k ≥ 1 we have Ek(m,n) = Ok(m,n) = 1

2
Dk(m,n).

Proof. Begin with a word from the set enumerated by Ek(m,n). Since there are fewer than
n occurrences of V , one of the first n letters must be a D or an H. Toggling the first such
D to H or H to D, we now have a word with an odd number of D’s. The toggle creates a
bijection between the set of words enumerated by Ek(m,n) and the set of words enumerated
by Ok(m,n).

The numbers Ek(m,n) and Ok(m,n) are not equal, but differ by a binomial coefficient.

Proposition 4. For all integers m,n ≥ k ≥ 0 we have Ek(m,n) = Ok(m,n) +
(

m+k

k

)

.

Proof. For any word in the set enumerated by Ek(m,n), if there is a non-V letter in the first
n letters, toggle that letter from H to D or D to H. The resulting word belongs to the set
enumerated by Ok(m,n). The mapping described by this toggling is easily reversible. Thus,
for words where the first n letters are not all V , the number of words with an even number
of D’s is the same as the number of words with an odd number of D’s. The Ek(m,n) also
count words which have V for the first n letters, and hence no occurrences of D. Such a
word would have k more occurrences of V in the final m+ k letters, so there are

(

m+k

k

)

such
words.

As a consequence of interest, note that E0(m,n) = O0(m,n) + 1. As D0(m,n) =
E0(m,n) + O0(m,n), every Delannoy number is odd. The proposition also shows that,
to any given point, the number of lattice paths with an even number of diagonals is always
one more than the number of paths with an odd number of diagonals.

We now proceed to prove the recurrence for Dk(m,n). By Proposition 3, D can be
replaced by E or O in the following:

Theorem 5. For all integers m,n > k ≥ 0 we have

Dk(m,n) = Dk(m− 1, n) +Dk(m,n− 1) +Dk(m− 1, n− 1).

Proof. We consider words counted by Dk(m,n) as being of four types which can be denoted
XXH, V XX, HXV , DXV . The first two types have words in common. We consider each
type in turn. In the first type, the last letter is H, leaving m−1 additional H’s. The number
of potential D’s is still n, and there are still n − k V ’s, which makes Dk(m − 1, n) words
with the last letter H.

For the second type, the first letter is V . Then (n− 1)− k more V ’s are needed, and the
first V means only n− 1 D’s are possible. Discounting the first V, the remaining word has
length m+ (n− 1)− k. So there are Dk(m,n− 1) words with first letter V .

The first two terms have counted words where the first letter is V and the last letter is H
twice, but the number of such words is exactly the same as the number with the first letter
H and the last letter V . Thus the first two terms on the right count the first three types of
words.

Finally, when the first letter is D and the last is V , m+ n− k− 2 letters remain, and of
these n− 1 may be D. There are Dk(m− 1, n− 1) such words.
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While we can use a similar argument to prove the same recurrence for Dk(m,n), we prefer
to describe a bijection between the set of words enumerated byDk(m,n) and the set of lattice
paths enumerated by Dk(m,n): given a word of length m+ n+ k with n+ k occurrences of
V and D appearing only in the first n letters, create a lattice path to (m,n+ k) by reading
the word from left to right, with an H contributing a (1, 0) step and a V contributing a
(1, 1) step if it is the ith V and the ith letter of the word is D and a (0, 1) step otherwise.
In this way, we will obtain all lattice paths to (m,n + k) which have no diagonals after the
path reaches a height of n.

We end this section by using the lattice path interpretation to prove the recurrence for
Dk(m,n).

Theorem 6. For all integers m,n, k, with m,n > 0, k ≥ 0 we have

Dk(m,n) = Dk(m− 1, n) +Dk(m,n− 1) +Dk(m− 1, n− 1).

Proof. The terms on the RHS count, in turn, paths that begin with a horizontal step, a
vertical step, and a diagonal step.

D0 0 1 2 3 4 5

0
(

0

0

) (

1

1

) (

2

2

) (

3

3

) (

4

4

) (

5

5

)

1 1 3 5 7 9 11
2 1 5 13 25 41 61
3 1 7 25 63 129 231
4 1 9 41 129 321 681
5 1 11 61 231 681 1683

1

2
D1 1 2 3 4 5 6

1
(

1

1

) (

2

1

) (

3

1

) (

4

1

) (

5

1

) (

6

1

)

2 1 4 9 16 25 36
3 1 6 19 44 85 146
4 1 8 33 96 225 456
5 1 10 51 180 501 1182
6 1 12 73 304 985 2668

1

22
D2 2 3 4 5 6 7

2
(

2

2

) (

3

2

) (

4

2

) (

5

2

) (

6

2

) (

7

2

)

3 1 5 14 30 55 91
4 1 7 26 70 155 301
5 1 9 42 138 363 819
6 1 11 62 242 743 1925
7 1 13 86 390 1375 4043

1

23
D3 3 4 5 6 7 8

3
(

3

3

) (

4

3

) (

5

3

) (

6

3

) (

7

3

) (

8

3

)

4 1 6 20 50 105 196
5 1 8 34 104 259 560
6 1 10 52 190 553 1372
7 1 12 74 316 1059 2984
8 1 14 100 490 1865 5908

Table 1: Values of D0, D1, D2, D3. Rows correspond to m is row and columns to n.

4 The central theorem

We turn our attention to relationships among these numbers. Note that D1(m,n) is even,
D2(m,n) is divisible by 4, D3(m,n) is divisible by 8, and so on. We will see that by dividing
Dk by 2k, we obtain the collection Dk, albeit with a shift.
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We begin with a lemma [5, 5.28, p. 171], one of the few identities known for a product
of two binomial coefficients. A combinatorial/probabilistic proof of the lemma is known [1].
We find it likely there is an easier proof of the lemma using lattice paths, but have not yet
found one.

Lemma 7.
(

a

b

)(

c

d

)

=
∑a+d−c

j=0

(

a+d−j

a+d−b

)(

a+d−c

j

)(

c−b

d−j

)

.

We use Lemma 7 for a simple proof of the central theorem relating Dk(m,n) and
Dk(m,n). As a consequence, we get a second lattice path interpretation of Dk(m,n).

Theorem 8 (The central theorem). For all m, n, and k positive integers, we have

Dk(m,n) =
1

2k
Dk(n+ k,m+ k).

Proof. We have, using the lemma,

Dk(n+ k,m+ k) =
m+k
∑

i=0

(

m+ n+ k − i

m

)(

m+ k

i

)

=
m+k
∑

i=0

n
∑

j=0

(

m+ n+ k − j

n+ k

)(

n

j

)(

k

i− j

)

=
n

∑

j=0

(

m+ n+ k − j

n+ k

)(

n

j

)m+k
∑

i=0

(

k

i− j

)

=
n

∑

j=0

(

m+ n+ k − j

n+ k

)(

n

j

) k
∑

s=0

(

k

s

)

= 2kDk(m,n).

Corollary 9. The number Dk(m,n) is divisible by 2k.

Consider now the terms of the proof. These terms have a natural interpretation as certain
words in the letters H, D, and V , and in lattice paths corresponding to these words. We let
(

m+n+k−j

n+k

)

=
(

m+n+k−j

m−j

)

count words with m+ n+ k − j letters, of which m− j are H. Let
(

n

j

)

choose j from the first n non-H letters to be D. If we let the remaining n+ k− j letters

be V , we have Dk(m,n). But now let
(

k

i−j

)

choose i− j of the last k V ’s and change them

to D. The remaining last k − (i− j) V’s are changed to V H. Thus, while Dk(m,n) counts
paths to (m,n+ k) with no diagonal above n, the number Dk(n+ k,m+ k) counts paths to
(m+k, n+k) where each of the last k steps with vertical component is either a V followed by
an H, or a D. More directly, the number Dk(m,n) counts paths to (n,m) where the last k
“steps” with vertical component are either V H or D. Because of this second interpretation
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of Dk, in what follows, for convenience we will speak of paths with “step” V H, although of
course V H is two steps in the path.

The second line of the proof also gives a natural correspondence between a path to
(m,n + k) counted by Dk(m,n) and the corresponding 2k paths to (m + k, n + k) counted
by Dk(n + k,m + k). Given such a path to (m,n + k), after reaching a height of n, there
are k more V ’s. Paths to (m + k, n + k) can be obtained by altering the last k V ’s in two
ways: either by changing a V to a D, or by inserting an H after a V . The

(

k

i−j

)

term counts

the number of V ’s changed to D (versus inserting an H). The number of V ’s changed to D

could be between 0 and k. In all, there are 2k choices, and so 2k times as many paths.

5 Relationships among generalized Delannoy numbers

A consequence of the central theorem is that every result aboutDk(m,n) has a corresponding
result for Dk(n − k,m − k). We focus on Dk(m,n), bearing in mind corresponding results
about Dk.

Our second interpretation of Dk(m,n) is that it counts paths to (n,m) with the last k

vertical steps either D or V H. We use this interpretation to prove results in this section,
including a simpler proof of Theorem 5, the recurrence for Dk(m,n):

For m,n > k ≥ 0 we have Dk(m,n) = Dk(m− 1, n) +Dk(m,n− 1) +Dk(m− 1, n− 1).

Proof. Each path to (n,m) must start with H, V , or D. As m > k, the first step is not one
of the last k vertical steps. Hence removing the first step results in paths counted by the
three expressions on the right.

The “first” row of 1

2k
Dk(m,n) consists of binomial coefficients. Row Dk(k, n) is the first

which has an interpretation as counting lattice paths. Higher rows (Dk(m,n) with m < k)
involve terms with negative integers.

Theorem 10. For n ≥ k ≥ 0 we have Dk(k, n) = 2k
(

n

k

)

.

Proof. A path to (n, k) has k steps with vertical component, so the interpretation that the
last k steps are eitherD or V H means every vertical step is such. So

(

n

k

)

counts the placement
of the k steps with vertical component, each of which has two choices, D or V H.

We now begin cataloging results relating the Dk(m,n) tables for different values of k:

Theorem 11 (horizontal difference). For m,n ≥ k ≥ 1 we have

Dk(m,n)−Dk(m,n− 1) = 2Dk−1(m− 1, n− 1).

Proof. A path to (n,m) cannot come from (n,m− 1), since the last vertical step must be D
or V H and not just V . If the path comes from (n− 1,m− 1), it can get to (n,m) either by
adding D or V H to the end. If the path comes from (n− 1,m), add an H as the last step.
Thus, Dk(m,n) = 2Dk−1(m− 1, n− 1) +Dk(m,n− 1).
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Theorem 12 (vertical difference). For m,n > k ≥ 0 we have

Dk(m,n)−Dk(m− 1, n) = Dk+1(m,n).

Proof. The numbers Dk(m,n) and Dk+1(m,n) count paths to (n,m) with the last k or
k + 1 vertical steps, respectively, either D or V H. Thus Dk(m,n) − Dk+1(m,n) counts
paths to (n,m) with the last k verticals D or V H, but at height m − (k + 1) there must
be a V not followed by H. Remove this V to get a path to (n,m − 1) with the last k

verticals D or V H, counted by Dk(m − 1, n). This process is reversible, which shows that
Dk(m,n)−Dk+1(m,n) = Dk(m− 1, n), or Dk(m,n)−Dk(m− 1, n) = Dk+1(m,n).

The preceding two theorems give the following theorem.

Theorem 13 (horizontal sum). For m,n > k ≥ 1 we have

Dk(m,n) +Dk(m,n− 1) = 2Dk−1(m,n− 1).

Proof. Dk(m,n) +Dk(m,n− 1) = (2Dk−1(m− 1, n− 1) +Dk(m,n− 1)) +Dk(m,n− 1) by
the horizontal difference theorem. Now use the vertical difference theorem to get

2(Dk−1(m− 1, n− 1) +Dk(m,n− 1)) = 2Dk−1(m,n− 1).

The horizontal sum theorem is a generalization of the fact that the sum of two adjacent
cross polytope numbers is a Delannoy number.

Theorem 14 (vertical sum). For m,n ≥ k ≥ 0 we have

Dk(m,n) +Dk(m− 1, n) = Dk+1(m,n+ 1).

Proof. If we add the formulas for horizontal difference and horizontal sum, we have

Dk−1(m,n− 1) +Dk−1(m− 1, n− 1) = Dk(m,n).

Re-indexing gives the result.

The preceding four theorems are, in turn, special cases of the following four identities.
Each of these four identities can be proved by induction, using the theorems above as base
case.
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Theorem 15.

2rDk(m,n) =
r

∑

i=0

(−1)r+i

(

r

i

)

Dk+r(m+ r, n+ i)

Dk(m,n) =
r

∑

i=0

(−1)i
(

r

i

)

Dk−r(m− i, n)

2rDk(m,n) =
r

∑

i=0

(

r

i

)

Dk+r(m,n+ i)

Dk(m,n) =
r

∑

i=0

(

r

i

)

Dk−r(m− i, n− r).

It is not hard to see, looking at tables for Dk(m,n), that twice the sum of the first row
entries of Dk is equal to an entry in Dk+1, e.g., 2(D2(4, 2) +D2(4, 3) +D2(4, 4)) = D3(5, 5).
This is a particular instance of a more general theorem, which breaks down paths to (n,m)
counted by Dk(m,n) into subcollections determined by the rightmost point at which the
paths are at various heights.

Theorem 16. For j = 1, . . . , k we have Dk(m,n) = 2j
∑n−k

i=0

(

j+i−1

i

)

Dk−j(m− j, n− j − i).

Proof. Fix m, n, k, j. For i = 0, 1, . . . n − k, the expression Dk−j(m − j, n − j − i) counts
paths to (n− j − i,m− j) such that the last k − j steps with vertical component are either
D or V H, while Dk(m,n) counts paths to (n,m) with the last such k D or V H. Paths from
(n − j − i,m − j) to (n,m) are equivalent to those from (0, 0) to (j + i, j). Now given a
path whose rightmost position at height m − j is at the point (n − j − i,m − j), the path
can be extended to a desired path to (n,m) by adding j “steps” of either D or V H, plus i
steps that are H. Now the first added step cannot be H, because this violates the rightmost
condition. This leaves j + i− 1 steps, of which i are H, and the rest either D or V H. Thus
there are

(

j+i−1

i

)

ways to choose which steps are H, and 2j choices of either D or V H for
the j diagonal steps.

From the proof, we see that the expression 2j
∑n−k

i=0

(

j+i−1

i

)

Dk−j(m− j, n− j− i) gives an

account of paths at height m−j that reach (n,m), namely that there are 2j
(

j+i−1

i

)

Dk−j(m−
j, n− j− i) such paths, requiring still that the point (n− j− i,m− j) is the rightmost point
of the path at height m− j.

This theorem generalizes the fact that partial row sums of Delannoy numbers give a cross
polytope number. The case j = 1 gives the result about sums of the first entries in a row:

Corollary 17. For k ≥ 1 we have

Dk(m,n) = 2 (Dk−1(m− 1, n− 1) +Dk−1(m− 1, n− 2) + · · ·+Dk−1(m− 1, k − 1)) .

The case j = k gives every generalized Delannoy number directly in terms of traditional
Delannoy numbers, and we see again that Dk(m,n) must be divisible by 2k:

10



Corollary 18. For k ≥ 1 we have

Dk(m,n) = 2k
n−k
∑

j=0

(

k − 1 + j

j

)

D0(m− k, n− k − j).

The next theorem groups the paths counted byDk(m,n) according to the highest diagonal
below m− k.

Theorem 19. Dk(m,n) = 1

2m
Dm(m,n+m− k) +

∑m−k

j=1

1

2j
Dk+j(m,n+ j − 1).

Proof. For j = 1, 2, . . . m − k, we have the following 2j to one mappings from lattice paths
counted by Dk+j(m,n+j−1) to those counted by Dk(m,n). Denote by D a part of a lattice
path that is either a D or a V H. Then a path counted by Dk+j(m,n + j − 1)) has its last
k+j verticals steps as D . Leave the last k D ’s alone, and but for the remaining j D ’s change
the first to D, and change the next j− 1 to V. Then 2j paths from Dk+j(m,n+(j− 1)) map
to the same path, which is counted by Dk(m,n), since the j − 1 D ’s which are changed to
V move the end of the path horizontally from (n+(j− 1),m) to (n,m). For different values
of j, the paths obtained from Dk+j(m,n + j − 1) are distinct, since, for each j, the highest
diagonal below the height of m− k is at the height m− (k+ j). For Dm(m,n+m− k), map
each of the first m − k D ’s to V , giving the paths from Dk(m,n) with no diagonals below
the height of m− k.

As a consequence of the theorem, we get a new interpretation: for i = 1, . . . ,m− k, the
expression 1

2i
Dk(m,n) counts paths to (n− i + 1,m) with the last k − i vertical steps D or

VH, and the highest diagonal below height m− (k − i) is at height m− k.

6 Summary and conclusions

Our applications of generalized Delannoy numbers to lattice paths involve paths where the
last k vertical steps have a certain form. We note that in each of these interpretations, last
k can be replaced by specified k to give further interpretations. Also, paths can be reflected
through y = x and V and H swapped for further applications. Using such a reflection, we
can therefore express Dk(m,n) as lattice paths from (0, 0) to (m,n) such that the last k

steps with horizontal component are either D or HV .
We also note that most of our results can be stated in terms of a binomial identity. For

example, the central theorem could be restated as

2c
b

∑

j=0

(

a− j

b+ c

)(

b

j

)

=
a−b
∑

j=0

(

a− j

a− (b+ c)

)(

a− b

j

)

.

There are as many directions to proceed from here as sequences in this collection. The
generalized Delannoy numbers include many known number sequences [9]. Identities from
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this paper can be applied to these integer sequences, providing an underlying, unifying
theory. Examples of such sequences follow. These examples illustrate the appearance of
generalized Delannoy numbers in a variety of fields such as physics, graph theory, geometry,
and permutation pattern avoidance. These examples are primarily columns in the Dk(m,n)
tables, which, due to the central theorem, are also rows of the Dk(m,n) tables.

1

2
D1(m, 3), or A058331 in the On-Line Encyclopedia of Integer Sequences (OEIS) gives

the maximal number of regions in the plane that can be formed with n hyperbolae. This
sequence also finds the number of different determinants obtainable in all 2×2 matrices with
integer entries from 0 to n.

1

4
D2(m, 4), or A051890 in the OEIS, gives the number of regions into which the plane

is divided when n ellipses are drawn in the plane, with any two meeting in 4 points. This
sequence also shows numerical differences between filled spin-split suborbitals sharing all
quantum numbers except the principal quantum number n, for neutron shell filling in spher-
ical atomic nuclei.

1

4
D2(m, 5), or A034827 in the OEIS, is the number of pairs of non-intersecting lines when

each of n points around a circle is joined to every other point by straight lines. It also gives
the orchard crossing number of the complete graph Kn.

1

8
D3(m, 5), or A005893 in the OEIS, is the sum of 4 consecutive triangular numbers. It

is also the number of n-matchings of the wheel graph W2n.
1

16
D4(m, 6), or A097080 in the OEIS, is the sum of the pairwise averages of five consecutive

triangular numbers. Their doubles are the curvatures of the touching circle of the large
semicircle and the nth and (n− 1)st circles of the Pappus chain of the symmetric arbelos.

1

32
D5(m, 7), or A093328 in the OEIS, is the number of 132-avoiding two-stack sortable

permutations which also avoid 4321. It has been conjectured that this sequence contains no
perfect powers.

D3(m, 1) = 1

8
D3(4,m + 3), or A002415 in the OEIS, is the 4-dimensional pyramidal

numbers. It is the number of ways to legally insert two pairs of parentheses into a string of
length m + 1. It is also the number of permutations with exactly 2 descents that avoid the
pattern 132.

Many of the identities for the generalized Delannoy numbers provide a common structure
to the varying objects enumerated here. Other identities will find relationships and suggest
bijections among these objects. In this unifying theory, a relationship between the number of
n-matchings of the wheel graph and the orchard crossing number of Kn is revealed to a graph
theorist while a geometer may be fascinated by the same connection between pairs of non-
intersecting lines around a circle being connected to the maximal number of regions formed
by hyperbolae. As everything we learn about these families of sequences has interesting
applications, this is a rich area for further study.
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