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Abstract

We study Dedekind sums S(a, b) for arguments a near Farey points of the interval
[0, b]. The Petersson-Knopp identity connects each of these Dedekind sums with a set
of other Dedekind sums. In the case considered here, this identity has a very specific
interpretation, inasmuch as each Dedekind sum occurring in this identity is close to a
certain expected value. Conversely, each of these expected values occurs with a certain
frequency, a frequency that is consistent with the Petersson-Knopp identity.

1 Introduction and results

Let b be a positive integer and a ∈ Z. The classical Dedekind sum s(a, b) is defined by

s(a, b) =
b

∑

k=1

((k/b))((ak/b))

where ((. . .)) is the “sawtooth function”, defined by

((t)) =

{

t− ⌊t⌋ − 1/2, if t ∈ Rr Z;

0, if t ∈ Z;
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see, for instance, [7]. In many cases it is more convenient to work with

S(a, b) = 12s(a, b)

instead. We call S(a, b) a normalized Dedekind sum. In addition, we say that S(a, b) is a
primitive Dedekind sum if gcd(a, b) = 1. In the opposite case S(a, b) is called imprimitive.
Note that

S(ad, bd) = S(a, b)

for every positive integer d; see [7, Th. 1]. Therefore, each imprimitive Dedekind sum S(a, b)
is equal to the primitive Dedekind sum S(a/d, b/d), where d = gcd(a, b). We also note the
periodicity

S(a+ b, b) = S(a, b) (1)

of (not necessarily primitive) Dedekind sums.
Let us start with a special case of what we are going to do in the sequel. Let a < b

be positive integers, gcd(a, b) = 1, and p a prime not dividing a, b. Then the normalized
Dedekind sums

S(pa, b) and S(a+ jb, pb), j ∈ {0, . . . , p− 1}, (2)

are primitive with one exception. Indeed, if a + jb ≡ 0 (mod p), then S(a + jb, pb) =
S((a + jb)/p, b). Suppose we know that all Dedekind sums (2) are positive. Then we also
know that S(a, b) is positive. Moreover, we know that at least one of the Dedekind sums
(2) is ≥ S(a, b), whereas the sum of any p of them must be < (p + 1)S(a, b). This is an
immediate consequence of the Petersson-Knopp identity, which, in this special case, reads

S(pa, b) +

p−1
∑

j=0

S(a+ jb, pb) = (p+ 1)S(a, b).

In what follows we discuss a situation where we know much more, namely, that one of
the Dedekind sums (2) is close to pS(a, b), whereas each of the p remaining ones is close
to S(a, b)/p. Hence the Petersson-Knopp identity has a very specific interpretation in this
context.

In two previous papers [1, 2] we studied the behavior of primitive Dedekind sums near
Farey points. We briefly recall the necessary notation. Let the positive integer b be given
and assume b ≥ 4. For a positive integer d, d < b1/4, let c ∈ Z, gcd(c, d) = 1. Then c/d is a
Farey fraction of an order < b1/4 in the usual sense; see [4, p. 125]. We say that b · c/d is a
Farey point with respect to b. Put

α =
√

b/d3. (3)

We consider the interval
{x ∈ R : |x− b · c/d| ≤ α− 1}
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around the Farey point b · c/d. Let a be an integer, gcd(a, b) = 1, inside this interval. Then
the primitive Dedekind sum S(a, b) satisfies

S(a, b)

{

< 0, if a < b · c/d;

> 0, if a > b · c/d;

see [1, Th. 1 and formula (5)]. In order to avoid tedious distinctions, we restrict ourselves
to integers a in the right half of this interval, so S(a, b) > 0. The whole theory remains valid
for integers in the left half, but with S(a, b) negative.

Hence we say that a ∈ Z, gcd(a, b) = 1, is a neighbor of the Farey point b · c/d if

0 ≤ a− b · c/d ≤ α− 1. (4)

Note that a − b · c/d 6= 0 since a/b = c/d is impossible (both fractions are reduced, and
0 < d < b). For such a neighbor a, S(a, b) is not only positive, but its value is, as a rule,
close to an expected value, which can be defined as follows. Put

q = ad− bc. (5)

Then q > 0 since q/d = a− b · c/d > 0. Now the expected value of S(a, b) is

E(a, b) =
b

dq
(6)

(which is > 0).
Of course, this definition requires some justification. To this end we consider the three-

term relation for Dedekind sums

S(a, b) =
b

dq
+ S(c, d) + S(t, q) +

d

bq
+

q

db
− 3; (7)

see [1, Lemma 3]. Here q is defined by (5) and t is an integer defined by a, b, c, d. The exact
value of t is not of interest for our purpose. First we observe d < b and, by (4) and (5),
q <

√

b/d < b. We have, thus,

0 <
d

bq
+

q

db
< 2.

Next we note
|S(c, d)| < d and |S(t, q)| < q; (8)

see [6, Satz 2]. Hence S(a, b) is close to E(a, b) = b/(dq) whenever d and q are small.
For instance, we may assume a − b · c/d ≤ b1/12 for a sufficiently large number b. Then
q ≤ b1/12b1/4 = b1/3, but b/(dq) ≥ b5/12. Because b1/3 is small relative to b5/12, S(a, b) is close
to E(a, b).

In most cases, however, S(a, b) is close to E(a, b) even if a is only a neighbor of b · c/d
in the above sense, since |S(c, d)| is much smaller than d and |S(t, q)| much smaller than q.
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Indeed, it is reasonable to expect |S(c, d)| ≤ 5 log d and |S(t, q)| ≤ 5 log q, say. This is due
to the main result of the paper [8], which allows to determine the asymptotic proportion of
pairs (c, d), 0 ≤ c < d ≤ N , gcd(c, d) = 1, such that |S(c, d)| < C log d for a given constant
C > 0, as N tends to infinity. For C = 5 this proportion is about 76.8% , and for C = 10
about 88.0%.

Another argument in favor of small values of |S(c, d)| and |S(t, q)| is the mean value of
all numbers |S(c, d)|, 0 ≤ c < d, gcd(c, d) = 1, for a given positive integer d. As d tends to
infinity, this mean value is ≤ log2 d · 6/π2 +O(log d); see [3].

The Petersson-Knopp identity is a relation between S(a, b) and certain other Dedekind
sums; see [5]. Indeed, if n is a natural number, then

∑

r |n

r−1
∑

j=0

S
(n

r
a+ jb, rb

)

= σ(n)S(a, b). (9)

Here r runs through the (positive) divisors of n and σ(n) =
∑

r |n r is the sum of the divisors
of n.

The Dedekind sums in (9) are not necessarily primitive. In order to apply results about
neighbors of Farey points, we need primitive Dedekind sums, however. In view of the peri-
odicity (1), it suffices to restrict c to the range 0 ≤ c < d, gcd(c, d) = 1. Let a be a neighbor
of b · c/d. For r |n and j ∈ {0, . . . , r − 1} put

k(r, j) =
(n

r
a+ jb, rb

)

and m(r, j) =
(n

r
c+ jd, rd

)

.

So both k(r, j) and m(r, j) are positive integers. Moreover, put

a(r, j) =
n
r
a+ jb

k(r, j)
, b(r, j) =

rb

k(r, j)
,

c(r, j) =
n
r
c+ jd

m(r, j)
, d(r, j) =

rd

m(r, j)
.

In the sequel we simply write

S ′(r, j) = S(a(r, j), b(r, j)) = S
(n

r
a+ jb, rb

)

and
E ′(r, j) = E(a(r, j), b(r, j)).

Then we have the following result.

Theorem 1. In the above setting, let 0 ≤ c < d, gcd(c, d) = 1, α ≥ n3/2 + n and

0 < a− b · c/d ≤ α/n− 1.
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For each pair (r, j), r |n, j ∈ {0, . . . , r − 1}, the number a(r, j) is a neighbor of the Farey

point b(r, j) · c(r, j)/d(r, j) of the interval [0, b(r, j)]. Hence S ′(r, j) is positive. Its expected

value is

E ′(r, j) =
m(r, j)2

n
· E(a, b), (10)

where E(a, b) is the expected value of S(a, b), see (6).

In view of the Petersson-Knopp identity (9), one expects that

∑

r |n

r−1
∑

j=0

E ′(r, j) = σ(n)E(a, b). (11)

This is true, but we have a much more precise result about the expected values E ′(r, j).
Indeed, they follow a very regular pattern.

Theorem 2. In the above setting, the numbers m(r, j) divide n. Conversely, for every

positive divisor m of n,

#

{

(r, j) : r |n, j ∈ {0, . . . , r − 1}, E ′(r, j) =
m2

n
E(a, b)

}

=
n

m
. (12)

By (10) and (12), the left hand side of (11) reads

∑

m |n

n

m
·
m2

n
E(a, b),

which obviously equals σ(n) · E(a, b).

Example 3. Let n = 12. In this case there are σ(12) = 28 Dedekind sums S ′(r, j). The
corresponding values of E ′(r, j)/E(a, b) are 1/12, 1/3, 3/4, 4/3, 3, 12, respectively. Let d = 9
and c = 1. We chose b so large that α/n − 1 ≥ 10. This means b ≥ 12702096. Then it
is obvious that α ≥ 132 ≥ n3/2 + n ≈ 53.569. We used a random generator to produce
a number b, 1.28 · 107 < b < 108. It gave us b = 31537789. The Farey point b · c/d is
approximately 3504198.78. Since α/n − 1 ≈ 16.33, we can choose a = 3504214, which is
prime to b, and a− b · c/d ≈ 15.22. Then S(a, b) ≈ 25537.432 and E(a, b) ≈ 25578.093. We
computed the relative deviation

∣

∣

∣

∣

S ′(r, j)

E ′(r, j)
− 1

∣

∣

∣

∣

(13)

of each of the said 28 Dedekind sums from its expected value. It turns out that the largest
relative deviation is ≈ 0.04659 or nearly 4.7%. It occurs for r = 6, j = 1, where E ′(r, j) =
(1/12)E(a, b). The mean relative deviation, i.e., the arithmetic mean of all values (13), is
≈ 0.0060 or 0.6%. Further empirical results can be found in Section 3.
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Remark 4. The example shows that there are, compared with the size of b, only few integers
a such that 0 < a − b · c/d ≤ α/n − 1 for a fixed value of d and 0 ≤ c < d, gcd(c, d) = 1.
In the case of the example their number amounts to ≈ 6 · 15 = 90. However, one should be
aware of the fact that each number a of this kind also satisfies a − b · c/d ≤ α/n′ − 1 for
all integers n′, 1 ≤ n′ < n. Therefore, if gcd(a, b) = 1, the number a gives rise not only to
the σ(n) Dedekind sums S ′(r, j) for n, but also to σ(n′) analogous Dedekind sums for each
positive integer n′ < n (the case n′ = 1 includes S(a, b)). For n = 12 their totality amounts
to σ(1) + σ(2) + · · ·+ σ(12) = 112. In general,

n
∑

n′=1

σ(n′) =
π2

12
n2 +O(n log n);

see [4, p. 113]. Hence there is quite a number of Dedekind sums whose expected values are
known.

2 Proofs

Suppose that the assumptions of Theorem 1 hold. In particular, let r divide n and j ∈
{0, . . . , r − 1}.

We first show that m(r, j) divides n. Let p be a prime. We use the p-exponent vp(t) of an
integer t 6= 0, which is given by t = pvp(t)t′, gcd(p, t′) = 1. We show that vp(m(r, j)) ≤ vp(n)
for all primes p. To this end recall that m(r, j) = gcd(n

r
c+jd, rd). First suppose p ∤ d. Then

vp(m(r, j)) ≤ vp(r) ≤ vp(n). Next let p | d, so vp(d) = s ≥ 1. Since gcd(c, d) = 1, vp(c) = 0
and vp(

n
r
c) = vp(

n
r
). If vp(

n
r
) < s, then vp(

n
r
c + jd) = vp(

n
r
) ≤ vp(n). If vp(

n
r
) ≥ s, then

vp(n) ≥ vp(r) + s. In this case vp(rd) = vp(r) + s ≤ vp(n), and vp(m(r, j)) ≤ vp(rd) ≤ vp(n).
The same arguments work for k(r, j) = (n

r
a + jb, rb) and a, b instead of c, d. They show

that k(r, j) divides n.

Proof of Theorem 1. In order to simplify the notation for the purpose of this proof, we write
a′ = a(r, j), b′ = b(r, j), c′ = c(r, j), d′ = d(r, j), k′ = k(r, j), and m′ = m(r, j). First we
observe b′ ≥ b/k′ ≥ b/n, and since α ≥ 2n, we have b′ ≥ 4.

Next we consider
q′ = a′d′ − b′c′. (14)

A short calculation shows
q′ =

n

k′m′
q, (15)

where q = ad− bc; see (5). Now a′ is a neighbor of b′ · c′/d′, if 0 < a′− b′ · c′/d′ ≤
√

b′/d′3−1,
i.e.,

0 < q′ ≤
√

b′/d′ − d′;
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see (4). Here q′ > 0 follows from (15), since q > 0. Because
√

b′/d′ =
√

m′/k′ ·
√

b/d, a′ is
a neighbor of b′ · c′/d′, if

n

k′m′
q ≤

√

m′

k′
·

√

b

d
−

rd

m′
,

by (15). This condition can be written as

a− b ·
c

d
=

q

d
≤

k′1/2m′3/2

n
· α−

rk′

n
. (16)

Let ρ be the right hand side of (16), i.e.,

ρ =
k′1/2m′3/2

n
· α−

rk′

n
.

If k′ = m′ = 1 and r = n, then ρ becomes α/n − 1. We show that ρ is always ≥ α/n − 1,
provided that α ≥ n3/2 + n. In this case the condition q/d ≤ α/n − 1 implies that a′ is a
neighbor of b′ · c′/d′ for all r, j in question.

In the case k′ = 1 we have rk′/n ≤ r/n ≤ 1 and ρ ≥ α/n − 1. Hence assume k′ > 1.
Since ρ is ≥ k′1/2α/n − rk′/n, ρ < α/n − 1 implies k′1/2α − rk′/n < α/n − 1. Because
k′1/2 > 1, this inequality can be written as α < (rk′ − n)/(k′1/2 − 1). Since r ≤ n, it implies
α < n(k′1/2 + 1). We know that k′ divides n, hence we obtain α < n3/2 + n as a necessary
condition for ρ < α/n− 1.

Finally, we compute

E(a′, b′) =
b′

d′q′
=

rb/k′

rd/m′ · q · n/(k′m′)
=

m′2

n

b

dq
=

m′2

n
E(a, b).

In the sequel we need the following notation. For positive integers r and d let (r)d and
(r)⊥d denote the d-part and the d-free part of r, respectively, i.e.,

(r)d =
∏

p | r, p | d

pvp(r) and (r)⊥d =
∏

p | r, p ∤ d

pvp(r),

where vp(r) is defined as above. The proof of Theorem 2 is more complicated than that of
Theorem 1 and is based on the following lemmas.

Lemma 5. Let r, d be positive integers and s ∈ Z such that gcd(s, d) = 1. Then

#{k ∈ Z/rZ : s+ kd ∈ (Z/rZ)×} = (r)d ϕ((r)
⊥
d ),

where ϕ denotes Euler’s totient function.
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Proof. We use the Chinese remainder theorem to decompose Z/rZ into its p-parts Z/pepZ,
where ep = vp(r) ≥ 1.

Case 1: p | d. Then for all k ∈ Z we have s+ kd ≡ s 6≡ 0 (mod p), i.e., s+ kd ∈ (Z/pepZ)×.
Hence

#{k ∈ Z/pepZ : s+ kd ∈ (Z/pepZ)×} = pep .

Case 2: p ∤ d. Let k ∈ Z. Let d∗ be an inverse of d (mod p). Then s + kd 6≡ 0 (mod p) if,
and only if, k 6≡ −sd∗ (mod p). Therefore,

#{k ∈ Z/pepZ : s+ kd ∈ (Z/pepZ)×} = pep(1− 1/p) = ϕ(pep).

Lemma 6. Let n be a positive integer and m > 0 a divisor of n. Let c, d ∈ Z, 0 ≤ c < d,
gcd(c, d) = 1, and δ = gcd(m, d). Put n′ = n/δ, m′ = m/δ and d′ = d/δ. Then

#
{

(r, j) : r |n, 0 ≤ j ≤ r − 1,m = gcd
(n

r
c+ jd, rd

)}

=
∑

m′ | r |n′

gcd(n/r,d)=δ

(r/m′)d′ ϕ((r/m
′)⊥d′). (17)

Proof. For given positive divisors m, r of n we determine

#
{

j : 0 ≤ j ≤ r − 1,m = gcd
(n

r
c+ jd, rd

)}

. (18)

First we show that (18) equals 0 if gcd(n/r, d) 6= δ. To this end suppose that m = gcd(n
r
c+

jd, rd) for some j. Since δ |m, we have δ | n
r
c + jd, and because δ | d, we obtain δ | n

r
c. But

gcd(c, d) = 1, and so δ | n
r
. Put dr = gcd(n

r
, d). We have seen δ | dr. Conversely, dr divides

both n
r
c+ jd and rd, whence dr |m. But dr | d, which implies dr | gcd(m, d) = δ. Altogether,

dr = δ. This means that m = gcd(n
r
c+ jd, rd) can hold only if dr = δ.

Therefore, we can restrict our investigation of (18) to those r for which gcd(n
r
, d) = δ.

As above, put d′ = d/δ and n′ = n/δ. Since δ |n/r, r divides n′. Suppose that m =
gcd(n

r
c + jd, rd). Then m = δm′ with m′ = gcd(n

′

r
c + jd′, rd′). Because gcd(n

r
, d) = δ, we

have gcd(n
′

r
, d′) = 1 and gcd(n

′

r
c+ jd′, d′) = 1. Accordingly,

m′ = gcd

(

n′

r
c+ jd′, r

)

. (19)

Conversely, suppose that m′ = m/δ divides r. Since gcd(m′, d′) = 1, there is a number
j0 ∈ {0, . . . ,m′− 1} such that n′

r
c+ j0d

′ ≡ 0 (mod m′). If m′ has the form (19) for a number
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j ∈ {0, . . . , r − 1}, then j ≡ j0 (mod m′), and so j = j0 + km′ for a uniquely determined
k ∈ {0, . . . , r/m′ − 1}. For such a number j, we have

(

n′

r
c+ jd′

)

/m′ = s+ kd′

with s = (n
′

r
c+ j0d

′)/m′. Now (19) holds if, and only if,

gcd(s+ kd′, r/m′) = 1.

Therefore, we have to count the k ∈ Z/ r
m′
Z such that s+ kd′ ∈ (Z/ r

m′
Z)×. From Lemma 5

we know that the number of these elements k equals

(r/m′)d′ ϕ
(

(r/m′)
⊥
d′

)

. (20)

This number equals that of (18). We have to sum up the numbers (20), observing that
gcd(n/r, d) = δ. This yields (17).

For positive integers n,m, m |n, let A(m,n) denote the number of (17), i.e.,

A(m,n) = #
{

(r, j) : r |n, 0 ≤ j ≤ r − 1,m = gcd
(n

r
c+ jd, rd

)}

.

Lemma 7. Let n,m be positive integers, m |n, and suppose n = n1n2 for positive integers

n1, n2 such that gcd(n1, n2) = 1. Put m1 = gcd(m,n1) and m2 = gcd(m,n2). Then

A(m,n) = A(m1, n1)A(m2, n2).

Proof. All entries of the right hand side of (17) are multiplicative. Indeed, put δ1 = gcd(δ, n1)
and δ2 = gcd(δ, n2). Then δ = δ1δ2. In the same way, r = r1r2 with r1 = gcd(r, n1) and
r2 = gcd(r, n2). We also have n′ = n′

1n
′
2 with n′

1 = n1/δ1 and n′
2 = n2/δ2. The respective

identity holds for m′ and m′
1 = m1/δ1 and m′

2 = m2/δ2. Further, gcd(n/r, d) = δ if, and only
if, gcd(n1/r1, d) = δ1 and gcd(n2/r2, d) = δ2. We note (r/m′)d′ = (r1/m

′
1)d′1(r2/m

′
2)d′2 , where

d′1 = d/δ1 and d′2 = d/δ2. The same identity holds when we apply the ⊥ to the respective
items. Finally, the function ϕ is also multiplicative. In view of all that, we can write the
sum over r as the product of two sums over r1 and r2 and obtain the desired result.

Proof of Theorem 2. We have to show that A(m,n) = n/m. By Lemma 7, it suffices to
prove this identity for prime powers n = pe and m |n. Suppose that m = pk, k ≤ e, and
(d)p = ps.

Case 1: k ≥ s. Then δ = ps. We have m′ = pk−s and n′ = pe−s. Let r = pt with
k − s ≤ t ≤ e− s. By Lemma 6,

A(m,n) =
∑

k−s≤t≤e−s
gcd(pe−t,ps)=ps

ϕ(pt+s−k),
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since r/m′ = pt+s−k and (d′)p = (d/δ)p = 1. Obviously, gcd(pe−t, ps) = ps holds for all t in
question, because e− t ≥ s. We obtain

A(m,n) =
e−k
∑

u=0

ϕ(pu) = pe−k = n/m.

Case 2: k < s. Then δ = pk. Moreover, m′ = 1 and n′ = pe−k. If r = pt, 0 ≤ t ≤ e− k, we
have

gcd(n/r, d) = gcd(pe−t, ps) =

{

pe−t, if e− t ≤ s,

ps, if e− t > s.

Since r must satisfy gcd(n/r, d) = δ = pk and k < s, only the first case is suitable for our
purpose, and, indeed, only for e− t = k, i.e., t = e− k. So only the summand for r = pe−k

remains. We have (d′)p = ps−k with s− k ≥ 1. Accordingly, (r/m′)d′ = (r)d′ = r = pe−k and
A(m,n) = n/m, again.

3 Numerical evidence for the expected values

We return to the setting of the Theorems 1 and 2. Suppose that the size of d is fixed,
say d ≤ n, whereas b may become large. As in Theorem 1, assume α ≥ n3/2 + n and
q/d ≤ α/n − 1. Accordingly, all Dedekind sums S(a(r, j), b(r, j)) = S ′(r, j) are positive for
r |n, 0 ≤ j ≤ r − 1. The expected value of S ′(r, j) equals E ′(r, j) = (m(r, j)2/n)E(a, b). By
Theorem 2, we know that m(r, j) is a divisor of n, and, conversely, each positive divisor m
of n has the form m = m(r, j) for exactly n/m pairs (r, j).

Empirical data shows that the relative deviation (13) of S ′(r, j) from E ′(r, j) may be
large, in the main, if m(r, j) = k(r, j) = 1 and q/d is close to α/n. In this case E ′(r, j) =
(1/n)E(a, b). This empirical observation can be explained as follows. We have

q(r, j) = a(r, j)d(r, j)− b(r, j)c(r, j) =
n

k(r, j)m(r, j)
q;

see (14), (15). Because m(r, j) = k(r, j) = 1, we obtain q(r, j) = nq. The influence of
S(c(r, j), d(r, j)) on S ′(r, j) in the sense of (7) is limited since |S(c(r, j), d(r, j))| ≤ d(r, j) ≤
rd ≤ n2. However, the influence of S((t(r, j), q(r, j)) may be significant if q(r, j) = nq is
close to E ′(r, j) = (1/n)E(a, b) = b/(ndq), i.e., if q/d is close to α/n.

Let (r, j) be of this kind and, in addition, the pair (r1, j1) such that m(r1, j1) ≥ 2. Then
we have

q(r1, j1) =
n

k(r1, j1)m(r1, j1)
q ≤

n

2
q =

q(r, j)

2
.

On the other hand E ′(r1, j1) ≥ (4/n)E(a, b) = 4E ′(r, j). This means

q(r1, j1)

E ′(r1, j1)
≤

1

8
·
q(r, j)

E ′(r, j)
,

10



which is a much better proportion than q(r, j)/E ′(r, j), in particular, in the bad case q(r, j) ≈
E ′(r, j).

As to empirical data, we performed numerous computations, of which, however, we
present only the case n = 12 and d = 9. We computed the mean value of the relative
deviation (13) both for all 28 pairs (r, j), r | 12, j = 0, . . . , r − 1, and only for those (r, j)
with m(r, j) = 1 (and expected value E ′(r, j) = (1/12)E(a, b)). By the above, it is not
surprising that the first mean value is always smaller than the second.

We consider b = 108 + k, 1 ≤ k ≤ 10000, and choose the integer a close to b · c/d+ α/n.
To be precise, a is either ⌊b · c/d+α/n⌋ − 1 or ⌊b · c/d+α/n⌋ − 2. If none of these values of
a satisfies gcd(a, b) = 1, the number b is ruled out. In this way there always remain ≥ 8000
pairs (b, a) to be investigated. The following table lists the percentage of b’s such that the
first mean value

M1 =
1

σ(n)

∑

r |n

r−1
∑

j=0

∣

∣

∣

∣

S ′(r, j)

E ′(r, j)
− 1

∣

∣

∣

∣

is either ≥ 0.05 or < 0.01. The table also displays the percentage of b’s such that the second
mean value

M2 =
1

n

∑

m(r,j)=1

∣

∣

∣

∣

S ′(r, j)

E ′(r, j)
− 1

∣

∣

∣

∣

is either ≥ 0.05 or < 0.01.

c 1 2 4 5 7 8

M1 ≥ 0.05 1.2 % 1.3 % 1.3 % 1.3 % 1.3 % 1.3 %

M1 < 0.01 93.4 % 93.7 % 93.7 % 93.6 % 93.8 % 92.9 %

M2 ≥ 0.05 1.9 % 2.0 % 1.9 % 2.0 % 2.0 % 2.0 %

M2 < 0.01 73.6 % 80.5 % 78.7 % 78.8 % 80.6 % 70.6 %

Table 1: n = 12, d = 5, b = 108 + k, 1 ≤ k ≤ 10000

We list the same data for numbers b = 109 + k, 1 ≤ k ≤ 10000.

c 1 2 4 5 7 8

M1 ≥ 0.05 0.4 % 0.4 % 0.4 % 0.3 % 0.3 % 0.4 %

M1 < 0.01 97.9 % 98.0 % 98.0 % 98.2 % 98.2 % 97.9 %

M2 ≥ 0.05 0.6 % 0.6 % 0.6 % 0.5 % 0.5 % 0.6 %

M2 < 0.01 94.4 % 94.5 % 94.7 % 95.2 % 95.1 % 94.2 %

Table 2: n = 12, d = 5, b = 109 + k, 1 ≤ k ≤ 10000

11



We obtain similar results when we use (pseudo-) random numbers b of the same order
of magnitude instead of the (more or less) consecutive numbers b of the tables. The tables
suggest that the approximation of E ′(r, j) by S ′(r, j) becomes better when b increases while
d and n are fixed. This observation is supported by further computations.
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