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Abstract

Let a3(n) and a9(n) be 3- and 9-regular cubic partitions of n. In this paper, we
establish several infinite families of congruences modulo powers of 3. For example, for
all non-negative integers n and α we find that

a3

(

32αn+
32α − 1

4

)

≡ 0 (mod 3α)

and
a9

(

3α+1
n+ 3α+1 − 1

)

≡ 0 (mod 3α+1).
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. Let p(n) denote the number of partitions of n and the generating function is

∑

n≥0

p(n)qn =
1

f1
,

where, here and throughout the paper, we set

fk = (qk; qk)∞ =
∞
∏

m=1

(1− qkm).

Chan [1] studied the cubic partition function denoted by a(n), whose generating function is

∑

n≥0

a(n)qn =
1

f1f2
.

He found the generating function

∑

n≥0

a(3n+ 2)qn = 3
f 3
3 f

3
6

f 4
1 f

4
2

,

which readily implies that
a(3n+ 2) ≡ 0 (mod 3).

Chan [2] established infinite family of congruence modulo powers of 3 for a(n). For each
n, k ≥ 1, he proved that

a(3kn+ ck) ≡ 0 (mod 3k+δ(k)), (1)

where ck is the reciprocal modulo 3k of 8 and

δ(k) :=

{

1, if k is even;

0, k is odd.

Zhao and Zhong [9] studied cubic partition pairs denoted by b(n), the generating function
satisfied by b(n) is

∑

n≥0

b(n)qn =
1

f 2
1 f

2
2

. (2)

For each n ≥ 0, they found Ramanujan’s type congruences for b(n), namely

b(5n+ 4) ≡ 0 (mod 5),

b(7n+ i) ≡ 0 (mod 7),

b(9n+ 7) ≡ 0 (mod 9),
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where i ∈ {2, 3, 4, 6}.
Lin [6] studied the cubic partition pairs and established the following congruences modulo

27:

b(27n+ 16) ≡ 0 (mod 27), (3)

b(27n+ 25) ≡ 0 (mod 27), (4)

b(81n+ 61) ≡ 0 (mod 27). (5)

Also, he proposed the following conjectures:

Conjecture 1. For each n ≥ 0,

b(81n+ 61) ≡ 0 (mod 81). (6)

Conjecture 2.

∑

n≥0

b(81n+ 7)qn ≡ 9
f2f

2
3

f6
(mod 81), (7)

∑

n≥0

b(81n+ 34)qn ≡ 36
f1f

2
6

f3
(mod 81). (8)

The above conjectures were proved by Gireesh and Naika [4], Chern [3], and Lin et al.
[7].

Motivated by the above results, in this paper, we study 3- and 9-regular cubic partitions,
which are defined as follow:

• Let a3(n) denote the number of 3-regular cubic partitions of n, whose generating func-
tion is

∑

n≥0

a3(n)q
n =

f3f6

f1f2
. (9)

• Let a9(n) denote the number of 9-regular cubic partitions of n, whose generating func-
tion is

∑

n≥0

a9(n)q
n =

f9f18

f1f2
. (10)

We shall show that
∑

n≥0

a3(3n+ 2)qn = 3
f 3
3 f

3
6

f 3
1 f

3
2

(11)

and
∑

n≥0

a9(3n+ 2)qn = 3
f 4
3 f

4
6

f 4
1 f

4
2

. (12)
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These are analogous to Ramanujan’s most beautiful identities [8, pp. 239, 243]

∑

n≥0

p(5n+ 4)qn = 5
f 5
5

f 6
1

(13)

and
∑

n≥0

p(7n+ 5)qn = 7
f 3
7

f 4
1

+ 49q
f 7
7

f 8
1

. (14)

We also obtain infinite families of congruences modulo powers of 3 for a3(n) and a9(n), which
are stated in the following theorems:

Theorem 3. For each n, α ≥ 0,

a3

(

32αn+
32α − 1

4

)

≡ 0 (mod 3α), (15)

a3

(

32α+1n+
32α+2 − 1

4

)

≡ 0 (mod 3α+1), (16)

a3

(

32α+2n+
7× 32α+1 − 1

4

)

≡ 0 (mod 3α+2), (17)

a3

(

32α+2n+
11× 32α+1 − 1

4

)

≡ 0 (mod 3α+2). (18)

Theorem 4. For each n, α ≥ 0,

a9
(

3α+1n+ 3α+1 − 1
)

≡ 0 (mod 3α+1). (19)

The results (15)–(19) are analogous to Ramanujan’s congruences modulo powers of 5 [5],
for n, α ≥ 0,

p

(

52α+1n+
19× 52α+1 + 1

24

)

≡ 0 (mod 52α+1) (20)

and

p

(

52α+2n+
23× 52α+2 + 1

24

)

≡ 0 (mod 52α+2). (21)

2 Preliminaries

Define

ζ =
f1f2

qf9f18

and

T =
f 4
3 f

4
6

q3f 4
9 f

4
18

.
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Let H be the “huffing” operator defined by

H
(

∑

anq
n
)

=
∑

a3nq
3n.

From Chan [2, (11)–(19)], for each i ≥ 1, we have

H

(

1

ζ i

)

=
i
∑

j=1

mi,j

T j
, (22)

where mi,j’s are defined in the following matrix.
The mi,j form a matrix M , the first nine rows of which are

M =



































3 0 0 0 0 0 0 · · ·
2 33 0 0 0 0 0 · · ·
1 33 35 0 0 0 0 · · ·
0 2 · 32 22 · 34 37 0 0 0 · · ·
0 5 2 · 33 · 5 36 · 5 39 0 0 · · ·
0 1 2 · 32 · 7 36 · 5 2 · 39 311 0 · · ·
0 0 2 · 3 · 7 22 · 34 · 7 38 · 7 310 · 7 313 · · ·
0 0 23 2 · 33 · 19 24 · 37 22 · 39 · 7 23 · 312 · · ·
0 0 1 22 · 34 39 39 · 52 22 · 313 · · ·
...

...
...

...
...

...
...

. . .



































(23)

and for i ≥ 4, mi,1 = 0, and for j ≥ 2,

mi,j = 9mi−1,j−1 + 3mi−2,j−1 +mi−3,j−1. (24)

In fact m4i−3,j = 0 for j ≤ i− 1, so we can write

H

(

1

ζ4i−3

)

=
4i−3
∑

j=i

m4i−3,j

T j
=

3i−2
∑

j=1

m4i−3,i+j−1

T i+j−1
=

3i−2
∑

j=1

ai,j

T i+j−1
, (25)

where
ai,j = m4i−3,i+j−1. (26)

Similarly, m4i−1,j = 0 if j ≤ i− 1, so we can write

H

(

1

ζ4i−1

)

=
4i−1
∑

j=i

m4i−1,j

T j
=

3i
∑

j=1

m4i−1,i+j−1

T i+j−1
=

3i
∑

j=1

bi,j

T i+j−1
, (27)

where
bi,j = m4i−1,i+j−1. (28)
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And m4i,j = 0 if j ≤ i, so we can write

H

(

1

ζ4i

)

=
4i
∑

j=1+i

m4i,j

T j
=

3i
∑

j=1

m4i,i+j

T i+j
=

3i
∑

j=1

ci,j

T i+j
, (29)

where
ci,j = m4i,i+j . (30)

We can write (25) as

H

(

(

q
f9f18

f1f2

)4i−3
)

=
3i−2
∑

j=1

ai,j

(

q3
f 4
9 f

4
18

f 4
3 f

4
6

)i+j−1

, (31)

which can be rearranged to

H

(

qi−3

(

f3f6

f1f2

)4i−3
)

=
3i−2
∑

j=1

ai,jq
3j−3

(

f9f18

f3f6

)4j−1

. (32)

The equation (27) can be written as

H

(

(

q
f9f18

f1f2

)4i−1
)

=
3i
∑

j=1

bi,j

(

q3
f 4
9 f

4
18

f 4
3 f

4
6

)i+j−1

, (33)

which implies that

H

(

qi−1

(

f3f6

f1f2

)4i−1
)

=
3i
∑

j=1

bi,jq
3j−3

(

f9f18

f3f6

)4j−3

. (34)

Similarly (29) is

H

(

(

q
f9f18

f1f2

)4i
)

=
3i
∑

j=1

ci,j

(

q3
f 4
9 f

4
18

f 4
3 f

4
6

)i+j

, (35)

and this can be rearranged to

H

(

qi
(

f3f6

f1f2

)4i
)

=
3i
∑

j=1

ci,jq
3j

(

f9f18

f3f6

)4j

. (36)

3 Generating functions

In this section, we deduce generating functions that are useful in proving our main results.
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Theorem 5. For each α ≥ 0,

∑

n≥0

a3

(

32αn+
32α − 1

4

)

qn =
∑

i≥1

x2α,iq
i−1

(

f3f6

f1f2

)4i−3

(37)

and
∑

n≥0

a3

(

32α+1n+
32α+2 − 1

4

)

qn =
∑

i≥1

x2α+1,iq
i−1

(

f3f6

f1f2

)4i−1

, (38)

where the coefficient vectors xα = (xα,1, xα,2, . . . ) are given by

x0 = (x0,1, x0,2, x0,3, . . . ) = (1, 0, 0, . . . ), (39)

and

xα+1 = xαA if α is even, (40)

xα+1 = xαB if α is odd, (41)

where A = (ai,j)i,j≥1 and B = (bi,j)i,j≥1.

Proof. The identity (9) is the α = 0 case of (37).
Suppose (37) holds for some α ≥ 0. Then

∑

n≥0

a3

(

32αn+
32α − 1

4

)

qn =
∑

i≥1

x2α,iq
i−1

(

f3f6

f1f2

)4i−3

, (42)

which is equivalent to

∑

n≥0

a3

(

32αn+
32α − 1

4

)

qn−2 =
∑

i≥1

x2α,iq
i−3

(

f3f6

f1f2

)4i−3

. (43)

Applying the operator H to (43), we find that

∑

n≥0

a3

(

32α(3n+ 2) +
32α − 1

4

)

q3n =
∑

i≥1

x2α,iH

(

qi−3

(

f3f6

f1f2

)4i−3
)

=
∑

i≥1

x2α,i

3i−2
∑

j=1

ai,jq
3j−3

(

f9f18

f3f6

)4j−1

=
∑

j≥1

(

∑

i≥1

x2α,iai,j

)

q3j−3

(

f9f18

f3f6

)4j−1

=
∑

j≥1

x2α+1,jq
3j−3

(

f9f18

f3f6

)4j−1

,
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which implies equation (38).
Now suppose (38) holds for some α ≥ 0. Then

∑

n≥0

a3

(

32α+1n+
32α+2 − 1

4

)

qn =
∑

i≥1

x2α+1,iq
i−1

(

f3f6

f1f2

)4i−1

. (44)

Applying the operator H to (44), we find that

∑

n≥0

a3

(

32α+1(3n) +
32α+2 − 1

4

)

q3n =
∑

i≥1

x2α+1,iH

(

qi−1

(

f3f6

f1f2

)4i−1
)

=
∑

i≥1

x2α+1,i

3i
∑

j=1

bi,jq
3j−3

(

f9f18

f3f6

)4j−3

=
∑

j≥1

(

∑

i≥1

x2α+1,ibi,j

)

q3j−3

(

f9f18

f3f6

)4j−3

=
∑

j≥1

x2α+2,jq
3j−3

(

f9f18

f3f6

)4j−3

.

After simplification, we obtain (37) with α + 1 in place of α. This completes the proof of
(37) and (38) by induction.

Theorem 6. For each α ≥ 0,

∑

n≥0

a9
(

3α+1n+ 3α+1 − 1
)

qn =
∑

i≥1

yα,iq
i−1

(

f3f6

f1f2

)4i

(45)

where the coefficient vectors Yα = (yα,1, yα,2, . . . ) are given by

Y0 = (y0,1, y0,2, y0,3, . . . ) = (3, 0, 0, . . . ), (46)

and

Yα+1 = YαC, (47)

where C = (ci,j)i,j≥1.

Proof. We prove this by induction on α. The identity (12) is the α = 0 case of (45).
Suppose (45) holds for some α ≥ 0. Then

∑

n≥0

a9
(

3α+1n+ 3α+1 − 1
)

qn =
∑

i≥1

yα,iq
i−1

(

f3f6

f1f2

)4i

, (48)
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which is equivalent to

∑

n≥0

a9
(

3α+1n+ 3α+1 − 1
)

qn−2 = q−3
∑

i≥1

yα,iq
i

(

f3f6

f1f2

)4i

. (49)

Applying the operator H to (49), we find that

∑

n≥0

a9
(

3α+1(3n+ 2) + 3α+1 − 1
)

q3n = q−3
∑

i≥1

yα,iH

(

qi
(

f3f6

f1f2

)4i
)

=
∑

i≥1

yα,i

3i
∑

j=1

ci,jq
3j−3

(

f9f18

f3f6

)4j

=
∑

j≥1

(

∑

i≥1

yα,ici,j

)

q3j−3

(

f9f18

f3f6

)4j

=
∑

j≥1

yα+1,jq
3j−3

(

f9f18

f3f6

)4j

,

which implies that

∑

n≥0

a9
(

3α+2n+ 3α+2 − 1
)

qn =
∑

j≥1

yα+1,jq
j−1

(

f3f6

f1f2

)4j

, (50)

which is (45) with α + 1 for α .

4 Congruences

Let ν(N) be the largest power of 3 that divides N . Note that ν(0) = +∞.

Proof of Theorem 3. It follows from (23) and (24) that

ν(mi.j) ≥ 3j − i− 1, (51)

and from (26), (28) and (51),

ν(ai.j) ≥ 3(i+ j − 1)− (4i− 3)− 1 = 3j − i− 1 (52)

and
ν(bi.j) ≥ 3(i+ j − 1)− (4i− 1)− 1 = 3j − i− 3. (53)

It is not hard to show that
ν(x2α,j) ≥ α + 3j − 4 (54)
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and
ν(x2α+1,j) ≥ α + 1 + 3(j − 1). (55)

The identity (54) is true for α = 0, by (39).
Suppose (54) is true for some α ≥ 0. Then

ν(x2α+1,j) ≥ min
i≥1

(ν(x2α,i) + ν(ai,j))

= ν(x2α,1) + ν(a1,j)

≥ α + 3j − 2

≥ α + 1 + 3(j − 1),

which is (55).
Now suppose (55) is true for all α ≥ 0. Then

ν(x2α+2,j) ≥ min
i≥1

(ν(x2α+1,i) + ν(bi,j))

= ν(x2α+1,1) + ν(b1,j)

≥ α + 1 + 3j − 4,

which is (54) with α+1 in place of α. This completes the proof of (54) and (55) by induction.
The congruence (15) follows from (37) together with (54), and the congruence (16) follows

from (38) together with (55).
From (38) and (55), we have

∑

n≥0

a3

(

32α+1n+
32α+2 − 1

4

)

qn ≡ 3α+1f
3
3 f

3
6

f 3
1 f

3
2

(mod 3α+4). (56)

By the binomial theorem, it is easy to see that

f 3
1 ≡ f3 (mod 3). (57)

In view of (57), the congruence (56) can be expressed as

∑

n≥0

a3

(

32α+1n+
32α+2 − 1

4

)

qn ≡ 3α+1f9f18

f3f6
(mod 3α+2). (58)

Equating the coefficients of q3n+1 and q3n+2 in (58), we obtain (17) and (18), respectively.

Proof of Theorem 4. It follows from (30) and (51) that

ν(ci.j) ≥ 3(i+ j)− 4i− 1 = 3j − i− 1. (59)

It is not hard to show that
ν(yα,j) ≥ α + 1 + 3(j − 1). (60)
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The identity (60) is true for α = 0, by (46).
Suppose (60) is true for some α ≥ 0. Then

ν(yα+1,j) ≥ min
i≥1

(ν(yα,i) + ν(ci,j))

= ν(yα,1) + ν(c1,j)

≥ α + 1 + 3j − 2

≥ α + 2 + 3(j − 1),

which is (60) with α + 1 for α.
The congruence (19) follows from (45) together with (60).

5 Acknowledgments

The authors would like to thank the anonymous referee for his/her helpful suggestions and
comments.

References

[1] H.-C. Chan, Ramanujan’s cubic continued fraction and a generalization of his ‘most
beautiful identity’, Int. J. Number Theory 6 (2010), 673–680.

[2] H.-C. Chan, Ramanujan’s cubic continued fraction and Ramanujan type congruences for
a ceratin partition function, Int. J. Number Theory 6 (2010), 819–834.

[3] S. Chern, Arithmetic Properties for Cubic Partition Pairs Modulo Powers of 3, Acta.

Math. Sin.-English Ser. 33 (2017), 1504–1512.

[4] D. S. Gireesh and M. S. Mahadeva Naika, General family of congruences modulo large
powers of 3 for cubic partition pairs, New Zealand J. Math. 47 (2017), 43–56.

[5] M. D. Hirschhorn and D. C. Hunt, A simple proof of the Ramanujan conjecture for
powers of 5, J. Reine Angew. Math. 326 (1981), 1–17.

[6] B. L. S. Lin, Congruences modulo 27 for cubic partition pairs, J. Number Theory 171

(2017), 31–42.

[7] B. L. S. Lin, L. Wang, and E. X. W. Xia, Congruences for cubic partition pairs modulo
powers of 3, Ramanujan J. 46 (2018), 563–578.

[8] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi,
1998.

11



[9] H. Zhao and Z. Zhong, Ramanujan type congruences for a partition function, Electron.
J. Combin. 18 (2011), #P58.

2010 Mathematics Subject Classification: Primary 05A17; Secondary 11P83.
Keywords: partition, 3-regular cubic partition, 9-regular cubic partition, congruence.

(Concerned with sequences A335602, A335604.)

Received November 27 2019. Revised versions received June 4 2020; June 17 2020; June 18
2020. Published in Journal of Integer Sequences, June 24 2020.

Return to Journal of Integer Sequences home page.

12

https://oeis.org/A335602
https://oeis.org/A335604
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminaries
	Generating functions
	Congruences
	Acknowledgments

