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Abstract

Let as(n) and ag(n) be 3- and 9-regular cubic partitions of n. In this paper, we
establish several infinite families of congruences modulo powers of 3. For example, for
all non-negative integers n and « we find that

32 —1

as (32%@ + > =0 (mod 3%)

and
ag (3°t'n+3*T1 —1) =0 (mod 3*T).
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. Let p(n) denote the number of partitions of n and the generating function is

> p(n)

n>0

where, here and throughout the paper, we set

fo=(d"d" = [0 ="
m=1

Chan [1] studied the cubic partition function denoted by a(n), whose generating function is

He found the generating function

Z a(3n +2)q" f3 f6

= f1

which readily implies that
a(3n+2)=0 (mod 3).

Chan [2] established infinite family of congruence modulo powers of 3 for a(n). For each
n,k > 1, he proved that
a(3*n+¢) =0 (mod 3F%)), (1)

where ¢, is the reciprocal modulo 3% of 8 and

5(k) = 1, 1f.k is even;
0, kisodd.

Zhao and Zhong [9] studied cubic partition pairs denoted by b(n), the generating function

satisfied by b(n) is
I )

n>0

For each n > 0, they found Ramanujan’s type congruences for b(n), namely
b(bn+4) =0 (mod 5),
0

b(Tn+1i) =0 (mod 7),
bOn+7)=0 (mod9),



where i € {2,3,4,6}.
Lin [6] studied the cubic partition pairs and established the following congruences modulo
27:

b(27n+16) =0 (mod 27), (3)
b(27Tn +25) =0 (mod 27), (4)
b(81In+61) =0 (mod 27). (5)

Also, he proposed the following conjectures:

Conjecture 1. For each n > 0,

b(81n+61) =0 (mod 81). (6)
Conjecture 2.
n_ of2f3
n%%b(sm +7)"=9 - (mod 81), (7)
> b(81n +34)q" = 36f}§62 (mod 81). (8)

n>0

The above conjectures were proved by Gireesh and Naika [4], Chern [3], and Lin et al.
[7].
Motivated by the above results, in this paper, we study 3- and 9-regular cubic partitions,
which are defined as follow:

e Let az(n) denote the number of 3-regular cubic partitions of n, whose generating func-

tion is ol
;ag(n)q” = ﬁ. (9)

e Let ag(n) denote the number of 9-regular cubic partitions of n, whose generating func-

tion is Iy
n __ J9J18
n;ag(n)q =7 (10)

We shall show that

33
> as(3n+2)q" = 3?;;; (11)
n>0 1
and
1515

Z ag(3n+2)¢" =3 (12)

- 4 r4°
- fif}



These are analogous to Ramanujan’s most beautiful identities [8, pp. 239, 243]

5
> p(Bn+4)q" = 5f—% (13)
= fi
and . .
n __ f? f7
Zp(?n +5)¢" =777 +49¢75. (14)
o Y

We also obtain infinite families of congruences modulo powers of 3 for az(n) and ag(n), which
are stated in the following theorems:

Theorem 3. For each n,a > 0,

200 1

as (320‘71 + 1 ) =0 (mod 3%), (15)
20+1 ot 1 — a+1

as (3 + 1 =0 (mod 3%, (16)

7 32a+1 -1
as (32“+2n + . 1 ) =0 (mod 3*?), (17)

11 x 32041 1
as (32a+2 . I ) =0 (mod 3*™?) (18)

Theorem 4. For each n,a > 0,

ag (3°T'n 4+ 3*" = 1) =0 (mod 3**1). (19)

The results (15)—(19) are analogous to Ramanujan’s congruences modulo powers of 5 [5],
for n,a > 0,

19 52a+1 1
p(52a+1n+ . o i )zo (mod 5%+1) (20)
and 23 x 52at2 4 q
P (52a+2n 2 51 i ) =0 (mod 5%2). (21)
2 Preliminaries
Define
¢ = fife
qfofis
and i
_ I3 /s
q3f§1ffg

4



Let H be the “huffing” operator defined by

H (Z anq”) = Z agng>"

From Chan [2, (11)—(19)], for each i > 1, we have

1 L
H{— — Z’.j
€)-T7

Jj=1

where m; ;’s are defined in the following matrix.

The m; ; form a matrix M, the first nine rows of which are

30 0 0 0

9 3 0 0 0

13 35 0 0

0 2.32 92.34 37 0

0 5 2.3.5 3.5 39
M=y 1 9.32.7 3.5 2.3  3u

0 0 2.3.7 922.3t.7 38.7 3.7

0 0 2 9.33.19 24.37 92

0 0 1 92.31 39 3

and for ¢ > 4, m; ; = 0, and for j > 2,

mi; = 9m;_1 -1+ 3mi_oj_1+Mi_3,-1.

In fact my;—3; = 0 for j <i—1, so we can write

Ti . Titj—1

j=i J=1

C4i73

where
Q5 = M4i—3i+5—1-

Similarly, ma4;—1; = 0if 7 <4 —1, so we can write

4i—1
1 - Mgi— 13 Mys— Mai—1,45-1
H (C‘M—l) - Z - Z Ti+j—1

j=i

where
bi,j = M4i—1,i45-1-

0
0
0
0
0

.39

.52

4i-3 3i-2
( 1 ) B Myi-3j Magi—3i4j—1

-7

3i—2

J=1

31

->

Jj=1

23
22

Tit+ij—1’

Ti+ji—1’

C'Q;OCDCJOCDO

X 312
. 313

bi

(22)

(23)

(24)



And my; ; = 0if 7 <4, so we can write
4i 3

37
Iy Myij Maiitj Cij
()= 2 e ey 29)
j=1

j=14i j=1

where
Cij = M4 itj- (30)

We can write (25) as

Fofie) 73 - 3i—2 . < 3@)7}‘,—]'—1
" ((q ) ) =2 o (0gE) 3

J=1

which can be rearranged to

i—3 M>4i3 - 3i—2 s (f9f18)4j1
" (“’ (77 ) PR by I (32

The equation (27) can be written as

fofis\ ) | & _,(Jéff%)”j‘l
H(<q f1f2> )‘Zb” i) (33)

Jj=1

o (oo 4i-1 - 34 s (f9f18>4j_3
H(q <f1f2> >_jzlb”q] Lhs) (34

Similarly (29) is
Ffofig )\ - 3i . 3@)i+j
" ((q ) ) e (i h) )

Jj=1

which implies that

and this can be rearranged to
- f3f6>‘“ - 3-(f9f18>4j
H{d <— => ¢;¢7 | =—] . 36
( fifs 20 g, %0)

3 Generating functions

In this section, we deduce generating functions that are useful in proving our main results.



Theorem 5. For each o > 0,

32a -1 )
Zag (320‘71 + 4 ) qn = Z.’L'Qo{’iqz*l <—f3f6
= = fife
and
) L 32a+2 -1 -
(e )
n>0 i>1
where the coefficient vectors X, = (Ta1, Taz2, ... ) are given by
Xp = ($0,1,$0,2,Io,3, ) = (1,070, . ),
and

Xoi1 = XA if a is even,

Xot1 = Xo B if a is odd,
where A = (ai’j)i,jzl and B = (bi,j>i,j21'

Proof. The identity (9) is the a = 0 case of (37).
Suppose (37) holds for some « > 0. Then

20 ]
Zag <32an + 3 4 1) qn — ZIZQ,iql_

n>0 i>1

which is equivalent to

Z as (32°‘n + 3

n>0

> " _Zx2azq

i>1

Applying the operator H to (43), we find that

n>0 i>1

-2

- E anzE a; ;4

1>1 =

Jj=>1

= g $2a+1gq

7>1

1>1

i

:E (E T2a,i Qi 5

(

32a -1 )
> as (32a(3n +2)+ — ) ¢ = w30, H (q7’3 <

*(

%)42'—3
fife

)

fsfﬁ)
fif2

")

7

q3j—3 < f9f18
fsfs

f9f18
fsJe

fofs
fife

f9f18

i)

45—1
)

)4j—1

(42)

(43)



which implies equation (38).
Now suppose (38) holds for some a > 0. Then

2042
Zas (32a+1n + 3 ) g = Z@a“ q' <§j;§> ) (44)

n>0

Applying the operator H to (44), we find that

2042 A 4i—1
2 L e Gl (O

n>0 i>1
f9f18
_;x2a+11261] (fng)
_ 2| 3i-3 f9f18)4j3
- ; (; $20+1,’lbl7j> q ( f3f6
f9f18 e
= ;xQOH-Z]q ( Fafo ) :

After simplification, we obtain (37) with a4+ 1 in place of a. This completes the proof of
(37) and (38) by induction. O

Theorem 6. For each o > 0,

S0 (3t 4370 1) 0 = S () (45)

n>0 i>1
where the coefficient vectors Yo = (Ya1, Ya2, --. ) are given by
Yo = (Yo,1,%.2: %03, ---)=1(3,0,0, ... ), (46)
and
Yoi1=Y.C, (47)

where C' = (¢ij)ij>1-

Proof. We prove this by induction on «. The identity (12) is the v = 0 case of (45).
Suppose (45) holds for some « > 0. Then

41
Zag (3a+1n + 3a+1 . 1) qn _ Zya,iqi_l (%) 7 (48)

n>0 i>1



which is equivalent to

Pt -t ()

n>0 i>1

Applying the operator H to (49), we find that

3o 042+ 07 - = T (o (35

n>0 i>1
_ foS1s
;yazzcm <f3f6)
. ) s fgfls)‘“‘
; <Zz; ya,chJ) q ( T,
f9f18
_;ya—kqu (f3f6) )

which implies that

« « n j— f f Y
Zag (3 T2 4 30t 1) q = Zya+1,jq] ! (ﬁ) )

n>0 j>1

which is (45) with a+ 1 for a .

4 Congruences
Let v(N) be the largest power of 3 that divides N. Note that v(0) = 4o0.
Proof of Theorem 3. It follows from (23) and (24) that
v(mi;) > 3j —i—1,
and from (26), (28) and (51),
viai;) >3(+j—1)—(4i—-3)—1=3j—i—1

and
v(bij)>3(i+j—1)—(4—-1)—1=3j—1i—3.

It is not hard to show that
V(xZa,j) > o+ 3] —4

(53)

(54)



and
V(Zoat1;) > a+1+3(5 —1). (55)

The identity (54) is true for a = 0, by (39).
Suppose (54) is true for some a > 0. Then

V(Toa415) > Izﬂ>1{1 (V(20i) + v(aij))
= V(xzcm) + V(al,j)
>a+3)—2
>a+143(G—1),

which is (55).
Now suppose (55) is true for all @ > 0. Then
V(T2at2,5) > I}1>i{1 (v(w2a+1,4) + V(i)
= v(22a41,1) + v(b1)

>a+1435 —4,

which is (54) with a+1 in place of . This completes the proof of (54) and (55) by induction.
The congruence (15) follows from (37) together with (54), and the congruence (16) follows
from (38) together with (55).
From (38) and (55), we have

32a+2 -1 3 £3
Zag (32O‘+1n - —) "= 3a+1% (mod 3%™). (56)
2 1 fif3
By the binomial theorem, it is easy to see that
f2=fs (mod 3). (57)

In view of (57), the congruence (56) can be expressed as

20042 1
> a (32a+1n p =l > =3 o0 0 garz), (58)
- 1 fsJs

Equating the coefficients of ¢*"*! and ¢*"*% in (58), we obtain (17) and (18), respectively. [J
Proof of Theorem 4. 1t follows from (30) and (51) that
v(ciy) > 3(i+j) —4i—1=3j—i— 1. (59)

It is not hard to show that
V(Yayj) = a+1+3(—1). (60)

10



The identity (60) is true for o = 0, by (46).
Suppose (60) is true for some o > 0. Then

V(ya—i-l,j) Z rzn>1{1 (V(ya,i) + V(Ci,j))

= V(Ya,1) +v(c1j)
>a 414352
>a+2+3( 1),

which is (60) with o + 1 for av.
The congruence (19) follows from (45) together with (60). O
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