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Abstract

We study the binary polynomials A such that the sum of all their divisors D 6= A

is a perfect polynomial, and A is a power of an irreducible polynomial.

1 Introduction

We will work with binary polynomials, i.e., polynomials in one variable over the finite field F2.
In order to describe our work, we require some terminology. Let A ∈ F2[x] be a polynomial.
We say that A is even if A has a linear factor; otherwise A is odd. We let N denote the set
of positive integers. A polynomial A ∈ F2[x] is Mersenne if A = 1 + xa(x + 1)b for some
a, b ∈ N. If A is irreducible, then we say that A is Mersenne prime.

We let ω(A) denote the number of distinct irreducible (or prime) factors of A over F2,
we let σ(A) denote the sum of all divisors of A, including 1 and A, (e.g., σ(0) = 0, σ(1) = 1,
σ(x) = x+1, σ(x2) = x2+x+1, σ(x2+x) = x2+x, σ(x2+x+1) = 1+(x2+x+1) = x2+x). We
explain in more detail why σ(x2) = x2+x+1 and σ(x2+x+1) = x2+x. Indeed, since the list
of all divisors of x2 is [1, x, x2], their sum 1+x+x2 gives σ(x2) and σ(x2+x+1) = 1+(x2+x+1)
because P = x2 + x+ 1 is irreducible so that σ(P ) = 1 + P .

Observe that σ is a multiplicative function (i.e., σ(XY ) = σ(X)σ(Y ), provided that
gcd(X, Y ) = 1 in F2[x]). If σ(A) = A, then we say that A is perfect. The first examples
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(besides 0 and 1) of perfect polynomials are those of the form x2n−1(x+1)2
n−1 = (x2+x)2

n−1,
where n ∈ N. We call them trivial perfect. Canaday [2, Theorem 17] proved that these are
the only perfect polynomials A with ω(A) = 2. Gallardo and Rahavandrainy [5, 7] obtained
some results about odd perfect polynomials, but we do not know (as in the integer case)
whether or not there exist odd perfect polynomials. Mersenne primes play an important
role for (the known) nontrivial perfect polynomials over F2, that we call sporadic perfect.
Proposition 1 contains the list of all known sporadic perfect polynomials. Indeed, up to
two exceptions, they all have factorizations with only Mersenne primes as odd divisors. We
are unable to describe a general form of sporadic perfect polynomials, in contrary to what
happens in the integer case, where any even perfect number n = 2p−1(2p−1), in which both p
and 2p− 1 are prime numbers, has exactly two distinct prime factors f1 = 2 and f2 = 2p− 1.
The set of Mersenne prime numbers, as well as the set of Mersenne prime polynomials are
examples of sets for which we do not know whether they are finite. Testing irreducibility
for polynomials (in particular for trinomials) over a finite field, remains difficult, even if the
problem has been addressed several times. Brent et al., Fredricksen and Wisniewski, Swan,
and Zierler [1, 4, 12, 13] obtained several results for trinomials. A difficulty in working over
F2[x] is that, in contrast to the set Z of integers, we have no order relation in F2[x], an
important tool in many proofs of results for perfect numbers. In the Online Encyclopedia
of Integer Sequences (OEIS) [10], one finds several sequences related to binary polynomials,
e.g., A001037, that count for every degree n, the number of irreducible binary polynomials
of degree n.

Gallardo and Rahavandrainy [8] proved (under a mild condition) that all even perfect
polynomials over F2 which are products of Mersenne primes are equal to nine of the eleven
known sporadic perfect polynomials, all of which are even. More precisely, M11a and M11b

(see below) are the unique (known) sporadic perfect polynomials that are not a product of
Mersenne primes (since P4c is not a Mersenne prime polynomial).

Cengiz et al. [3] proved the following proposition, part (b) of which is due to Canaday
[2].

Proposition 1. (a) A possible new even perfect polynomial must have a degree exceeding
200.

(b) Let P2 = x2+x+1, P3a = x3+x+1, P3b = P3a(x+1), P4a = x4+x3+1, P4b = P4a(x+1),
and P4c = x4 + x + 1. The list of all known sporadic perfect polynomials M∗ ∈ F2[x],
in non-decreasing order of their degrees, and factored in terms of prime polynomials
P∗, is M5a = x(x + 1)2P2, M5b = (x + 1)x2P2, M11a = x(x + 1)2P2

2P4c, M11b =
x2(x+1)P2

2P4c, M11c = x3(x+1)4P4a, M11d = x4(x+1)3P4b, M15a = x3(x+1)6P3aP3b,
M15b = x6(x+1)3P3aP3b, M16 = x4(x+1)4P4aP4b, M20a = x4(x+1)6P3aP3bP4b, M20b =
x6(x+ 1)4P3aP3bP4a.

Canaday [2, Theorem 1, Theorem 2] also proved the following.

Lemma 2. Every odd perfect polynomial over F2 is a square.
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This result is the analogue of the well known fact that any odd perfect number n > 1
(i.e., n equals the sum of all its proper positive divisors), can be written as n = p4k+1m2,
where k is a non-negative integer, p is an odd prime number congruent to 1 modulo 4, and
m is a positive integer.

A special perfect polynomial is an odd perfect polynomial that equals the square of a
square-free polynomial. Gallardo and Rahavandrainy [5, Theorem 5.3, Theorem 5.5] proved
the following.

Lemma 3. Let A ∈ F2[x] be a special perfect polynomial and P a prime divisor of A. Then
ω(A) ≥ 10, deg(P ) ≥ 30, deg(P ) is even, and P ≡ 1 (mod x2 + x+ 1).

Gallardo and Rahavandrainy [6, Lemma 2.6]) also proved the following.

Lemma 4. Let P be a Mersenne prime and m a positive integer. Then σ(P 2m) is square-free.

We now have two more results.

Lemma 5. Let P be a Mersenne polynomial (prime or not) and n ∈ N such that S =
1 + P + · · ·+ P 2n−1 is perfect. Then P = 1 + (x2 + x)a with a = 2m−1

2n−1
for some multiple m

of n.

Proof. Put P = 1 + xa(x + 1)b. The polynomial S = 1 + P + · · · + P 2n−1 = (1 + P )2
n−1 =

(xa(x + 1)b)2
n−1 is trivial perfect. So, (2n − 1)a = (2n − 1)b = 2m − 1 for some integer m.

Thus, a = b and 2n−1 divides 2m−1. Therefore, 2n−1 = gcd(2n−1, 2m−1) = 2gcd(n,m)−1,
i.e., n divides m.

Lemma 6. Let P be a prime in F2[x] and let h be a positive integer. Then σ(P 2h) is not a
square.

Proof. Assume, contrary to what we want to prove, that A = σ(P 2h) is a square in F2[x].
Thus A′ = 0, where A′ is the formal derivative of A relative to x. Observe that P ′ 6= 0.
Since A = (1 + P )(1 + P + · · ·+ P h−1)2 + P 2h, one has

A′ = P ′(1 + P + · · ·+ P h−1)2 6= 0, a contradiction.

This proves the lemma.

Remember that a positive integer n ∈ N is perfect if σ(n) = 2n (a property which is
equivalent to the definition used in the paragraph after Lemma 2).

Lescot [9] recently proved the following:

Theorem 7. Consider the following equation in which σ(n) is the sum of all positive divisors
of n.

σ(n) = (σ(n)− 2n)2. (1)

One has
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(a) If n satisfies (1) and if n is a prime power, then n ∈ {1, 3}.

(b) If m is a perfect number for which 2m − 1 is a prime number, then n = m(2m − 1)
satisfying (1).

(c) If n satisfies (1) and if n is even, then there is an even perfect number m such that
n/m = 2m− 1.

We cannot generalize condition (1) to F2[x]. Indeed, by considering degrees, the equation
σ(A) = (σ(A)−2A)2 in F2[x] implies that σ(A) ∈ {0, 1}. So, it has only the trivial solutions
A = 0 or A = 1. However, a generalization of (1) to the equation σ(A) = C2 in F2[x],
is possible. There are many solutions, e.g., A = x4 + x and C = x2 + x, in which C
divides A, or A = x6 + x4 + x3 + x and C = x3 + x2, in with C does not divide A. Even
adding more constraints, such as C | A or ω(A) = ω(C), one has (for example) a solution
A = x(x2 + x + 1)(x + 1)5 and C = x(x + 1)(x2 + x + 1). The full solution of the equation
might be very difficult to obtain, since a possible solution is A = C2, with C2 being an
odd perfect polynomial. Since in characteristic 2, the analogue of squares are indeed the
expressions of the form C2+C, a possible appropriate generalization would be the following
equation in the unknown A,

σ(A) = C2 + C. (2)

Remark 8. There are many solutions of (2); for example, A = x4 + x3 + x2 and C = x2 + x
or A = x4 + x and C = x2. One non-trivial possibility is to ask for solutions of (2) with
A = P , a prime polynomial, so that a complete solution of (2) amounts to finding all prime
polynomials P ∈ F2[x] of the form P = C2+C+1. We found some of them by computation,
e.g., {(P = x2+x+1, C = x), (P = x4+x+1, C = x2+x), (P = x8+x6+x4+x3+x2+x+1, C =
x4+x3+x}, but a complete theoretical description of all solutions appears to be out of reach.

As an analogue to (1) over the ring F2[x], we propose, instead, the following condition
(in which the polynomial A is the unknown).

Condition 9. A in F2[x] satisfies

σ(A) + A is perfect. (3)

It might be impossible to find all polynomials A for which Condition 9 holds.
Observe that any prime polynomial P satisfies (3), since 1 is perfect. Moreover, any

perfect polynomial A also satisfies (3), since 0 is a perfect polynomial, but (warning!) it is
currently impossible (to our knowledge) to give examples of perfect polynomials besides those
already described. Moreover, for a given perfect polynomialM ∈ F2[x]\F2, possible solutions
A of the equation σ(A)+A = M have a degree that exceeds the degree ofM , since both A and
σ(A) are monic with same degree. Hence, there are potentially infinitely many candidates
A to check, so that we cannot find all solutions of the equation by means of a computer. We
checked the special case where M = M5a = x(x+1)2(x2+x+1) = x5+x4+x2+x for all A up
to degree 8. Indeed, it suffices to check the A’s with 6 ≤ deg(A) ≤ 8, finding two solutions,
A = x7+x4+x2+x = x(x+1)3(x3+x2+1), and A = x7+x6+x4+x3 = x3(x2+x+1)(x+1)2.

More generally, we obtain the following result:
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Theorem 10. (i) Let A ∈ F2[x] be such that (3) holds.

(a) If A = P k, with P prime and k > 1, then k is even.

(b) If A = P 2n, with P a Mersenne prime and n ≥ 2, then P = 1 + x + x2, so that
A = (1 + x+ x2)2

n

.

(c) If A = P 2nu, with P a Mersenne prime, n ≥ 1 and u ≥ 3 odd, then P = 1+x+x2,
and (1 + P + · · ·+ P u−1)2

n

is odd perfect.

(d) Assume that n = 1 in (c). Put R = 1 + P + · · · + P u−1 (with P = 1 + x + x2).
Then R is square-free, S = R2 is odd perfect, ω(S) ≥ 10, u ≥ 4391, so that
deg(S) ≥ 17560, the degree of every prime divisor Q of R is even, and Q ≡ 1
(mod P ). Moreover, if Q is a prime divisor of R that has the minimal possible
degree, then deg(Q) ≥ 30.

(e) If A = B ·K, with B = σ(A) + A and gcd(B,K) = 1, then σ(K) = K + 1.

(ii) If B ∈ F2[x] is a nonzero perfect polynomial, K ∈ F2[x] is prime not dividing B, then
A = B ·K satisfies (3).

Remark 11. Inspired by Theorem 10(c), let P = x2 + x + 1 ∈ F2[x], n be a non-negative
integer, and v ∈ N. If A = (1 + P + · · · + P 2v−1)2

n

is perfect, then n = 0 and A is trivial
perfect. Indeed,

A =

(

1 + P 2v

1 + P

)2n

= (1 + P 2n)2
v−1 = (1 + P )2

n·(2v−1) = (x(x+ 1))2
n·(2v−1). (4)

The result now follows from (4) and [2, Lemma 1]. However, for completeness and clarity,
we give the details. Let a = 2n(2v − 1). Since A is perfect, we get from (4) that xa(x+1)a =
σ(xa)σ((x+ 1)a). Thus (x+ 1)a divides σ(xa). Comparing degrees we get

σ(xa) = (x+ 1)a. (5)

We claim that n = 0. Assume, contrary to what we want to prove, that n ≥ 1. Then (5) is
impossible since (x+ 1)a is a square in F2[x]. But 1 + x+ · · ·+ xa is not a square in F2[x],
hence a = 2v − 1. This proves the result.

2 Some computational results

1. We set R2n

u = (1 + P + · · · + P u−1)2
n

(with P = 1 + x + x2) in part (c) of Theorem
10. Then, by using a straightforward gp-PARI program, we checked that for every odd
number u with 1 < u < 4391, one has R2

u 6= σ(R2
u). The computation took about 30

hours. As a consequence, we obtained in (d) that R2
u is not perfect for all odd numbers

u between 3 and 4389. We also considered the cases when n = 2 and n = 3, with a
reduced upper bound for u. More precisely, we obtained that R4

u is not perfect when u
is odd and 1 < u < 4001, and that R8

u is not perfect when u is odd, and 1 < u < 2001.
The whole computation, including the case n = 1, took about 50 hours.
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2. Let u > 1 be an odd integer, n a positive integer, and P any odd polynomial in F2[x],
and Ru = 1+ P + · · ·+ P u−1. Inspired by part (c) of Theorem 10, in which a possible
new odd perfect polynomial appears, one might ask the more general (and possibly
unanswerable) question:

Is R2n

u perfect ?

In the special case when Ru is prime, the answer is clearly no. However, consider, for
instance, the case when ω(Ru) > 1 and Ru is square-free (cf. Lemma 4, when P is a
Mersenne prime and ω(Ru) > 1). In this case, we are unable to give an answer. In the
special case when P = x2 + x+ 1, it follows by computation, that one may conjecture
that Ru is prime if and only if u is a prime number such that 2 is a primitive root
modulo u (i.e., u belongs to the OEIS sequence A001122). Surely, by [11, Theorem
2.47], 1 + x+ · · ·+ xu−1 is prime if and only if u belongs to the sequence A001122 and
u− 1 belongs to the sequence A071642.

3. An odd integer 2m−1 appears when considering perfect numbers, since an even perfect
number has the form n = m(2m − 1), with m = 2p−1 and a prime number 2m − 1 =
2p − 1, as observed in the Introduction. But in F2[x] we do not know the form of
a general perfect polynomial. There is no “natural” candidate to replace 2m − 1.
Moreover, it is easy to check that a positive integer p is prime if and only if σ(p) =
p + 1, whereas for an A ∈ F2[x], only the implication: A prime =⇒ σ(A) = A + 1
is correct. For example, when the degree of A is at most 10, the polynomials A ∈
{x4 + x2, x10 + x9 + x8 + x6 + x5 + x4 + 1} are composite, since x4 + x2 = x2(x + 1)2

and x10 + x9 + x8 + x6 + x5 + x4 + 1 = (x3 + x+ 1)(x3 + x2 + 1)(x4 + x+ 1). However,
one has σ(A) = A+ 1.

Furthermore, we do not know what happens when k > 2 in Theorem 10(a). Indeed,
we do not know what happens, even in the case when k = 2, provided that A is not
Mersenne.

In fact, when k = 2, all known primes P for which σ(P 2) + P 2 = P + 1 is perfect,
belong to {x2+x+1, x5+x2+1, x5+x4+x2+x+1}. This is proved by a computation
when P = M +1, and M is sporadic perfect. The proof when M is trivial perfect, i.e.,
when M = (x(x + 1))2

n−1 for some positive integer n, is as follows. One can see that
P = M + 1 = (x(x+ 1))2

n−1 + 1 is divisible by x2 + x+ 1, provided that n ≥ 2. Thus,
P is prime only in the special case when n = 1, for which we obtain P = x2 + x+ 1.

Thus, for k = 2, the non-trivial case remains unknown: P is a prime such that, with
A = P 2, one has that M = σ(A) + A = 1 + P is an even perfect polynomial of degree
d ≥ 201 (see Proposition 1).
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3 Proof of Theorem 10

(i) (a) Assume, contrary to what we want to prove, that S = σ(P k) + P k = σ(P k−1) is
perfect, but k > 1 is odd. By Lemma 6 we obtain that S is not a square. Thus,
S is not a square and S is odd. This contradicts Lemma 2.

(b) In this case, A = P k with k = 2n, and P is Mersenne prime. Put P = xa(x+1)b+1
for some positive integers a, b. One has that S = σ(P k) + P k = σ(P 2n−1) =
(1 + P )2

n−1 = (xa(x + 1)b)2
n−1. Hence, S is trivial perfect and a = b by Lemma

5. But P prime implies that a = b = 1. So, A = (x2 + x+ 1)2
n

.

(c) Put P = 1+xa(x+1)b and Q(u) = σ(P u−1). Observe that σ(A)+A = σ(P k−1) =
K · L where K = (1 + P )2

n−1 and L = Q(u)2
n

. Observe also that u odd implies
that K,L are coprime. Since K · L is perfect and K,L are coprime, one has

K · L = σ(K) · σ(L). (6)

We claim that K and σ(L) are coprime. In order to prove the claim, it suffices
to prove that D = gcd(1 + P, σ(L)) equals 1. Since 1 + P = xa(x + 1)b, in
order to prove that D = 1, it suffices to prove that σ(L) is odd. By Lemma 4,
Q(u) =

∏r

j=1 Qj for some positive integer r and for some pairwise distinct, odd
prime polynomials Qj. Then one has

σ(L) =
r
∏

j=1

σ(Q2n

j ). (7)

Since n ≥ 1, 2n is even. Thus, by substituting x = 0 and x = 1 in any σ(Q2n

j )
we obtain 1. In other words, σ(Q2n

j ) is odd for any j. It follows then from (7)
that σ(L) is odd, thereby proving the claim. Since gcd(K, σ(L)) = 1, it follows
from (6) that K divides σ(K), and even that K = σ(K) since K and σ(K) have
the same degree. Again, (6) implies that L = σ(L). It follows that L is odd and
perfect. Finally, by part (b), K = σ(K) implies that P = 1+ x+ x2. This proves
the result.

(d) By Lemma 4, R is square-free, since P is Mersenne prime. Putting n = 1 in
part (c), we obtain that S is odd perfect and that P = 1 + x + x2. Since S is a
special perfect polynomial, all the other statements, besides the numerical lower
bound of u, follow from Lemma 3. A simple computation in gp-PARI proves that
for any odd number 1 < u ≤ 4389 one has S 6= σ(S), so that u ≥ 4391 and
deg(S) = 2 deg(R) = 4(u− 1) ≥ 17560, thereby proving the result.

(e) One has σ(A) = σ(B)σ(K) = Bσ(K) because B is perfect. On the other side,
σ(A) = A + B = BK + B = B(K + 1). Therefore, σ(K) = K + 1, since B is
nonzero.

Let us now compute S = A+σ(A). One has S = BK+σ(B)σ(K) = BK+B(K+1) =
B, since σ(B) = B and σ(K) = K + 1. Thus S = B is perfect.
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