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Abstract

We prove a new expression for binomial sums with harmonic numbers. Our deriva-

tion is based on an alternative argument for the Euler transform of these sums. The

findings complement a result of Boyadzhiev. To demonstrate the usefulness of our

alternative approach, several examples are discussed. We rediscover some known iden-

tities for harmonic numbers and present some new ones. In particular, we derive some

new identities involving harmonic numbers, and Fibonacci and Lucas numbers.

1 Motivation

Harmonic numbers (Hn)n≥0 are defined by

H0 = 0 and for n ≥ 1 : Hn =
n

∑

k=1

1

k
= Hn−1 +

1

n
.

They have the following integral form

Hn =

∫ 1

0

1− xn

1− x
dx.

1Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do

not necessarily reflect the views of LBBW.
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Harmonic numbers and generalized harmonic numbers have been studied recently by many
mathematicians and a considerable amount of research results has been produced (see [2] -
[13], to name a few articles). In 2009, Boyadzhiev [2] studied binomial sums with harmonic
numbers using the Euler transform. His main result is the following identity valid for n ≥ 1

n
∑

k=1

(

n

k

)

akbn−kHk = (a+ b)nHn −
(

b(a+ b)n−1 +
b2

2
(a+ b)n−2 + · · ·+

bn

n

)

, (1)

where a and b are arbitrary complex numbers. His proof is based on the Euler transform for
power series and the existence of a power series near zero of the form

ln(1− cz)

1− dz
= −

∞
∑

n=1

(

cdn−1 +
1

2
c2dn−2 + · · ·+

1

n
cn
)

zn.

In this article, we show how Boyadzhiev’s arguments may be modified to derive an al-
ternative expression for the binomial sums on the left-hand side of (1). To demonstrate the
usefulness of our alternative approach, several examples will be discussed. We will redis-
cover some known identities and present some new. In particular, we will derive some new
identities involving harmonic numbers, and Fibonacci and Lucas numbers.

2 Results

Let A(z) be the ordinary generating function for the harmonic numbers, i.e.,

A(z) =
∞
∑

n=0

Hnz
n = −

ln(1− z)

1− z
.

For a, b ∈ C, let further Sn(a, b) be defined as

Sn(a, b) =
n

∑

k=0

(

n

k

)

akbn−kHk. (2)

Then we have the following theorem.

Theorem 1. For all n ≥ 1, we have the identity

Sn(a, b) =
(

(a+ b)n − bn
)

Hn − a

n−1
∑

k=0

(a+ b)kbn−1−kHn−1−k. (3)

Proof. Let S(z) be the ordinary generating function for the sum Sn(a, b). Then, by Euler’s
transform

S(z) =
∞
∑

n=0

Sn(a, b)z
n =

1

1− bz
A
( az

1− bz

)

= −
ln(1− (a+ b)z)

1− (a+ b)z
+

ln(1− bz)

1− (a+ b)z
.
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Now, instead of searching for a power series for the second summand, we observe that

ln(1− bz)

1− (a+ b)z
=

az

1− (a+ b)z

ln(1− bz)

1− bz
+

ln(1− bz)

1− bz
.

Hence,

S(z) = −
ln(1− (a+ b)z)

1− (a+ b)z
−

(

−
ln(1− bz)

1− bz

)

−
az

1− (a+ b)z

(

−
ln(1− bz)

1− bz

)

=
∞
∑

n=0

(

(a+ b)n − bn
)

Hnz
n − a

(

∞
∑

n=0

(a+ b)nzn+1
)(

∞
∑

n=0

bnHnz
n
)

.

Using Cauchy’s product rule for power series and comparing the coefficients of zn gives the
result.

For (a; b) = (−1; 1) we get as a special case

Sn(−1, 1) =
n

∑

k=0

(

n

k

)

(−1)kHk = −Hn +Hn−1 = −
1

n
, (4)

which is an old result and has reappeared as Identity 20 in Spivey’s paper [12]. In addition,
using the integral form for Hn it is not difficult to show that

n
∑

k=1

(

n

k

)

(−1)k−1 1

k
= Hn. (5)

This shows that the sequences (Hn)n≥1 and (1/n)n≥1 are connected by the binomial trans-
form. More information about the binomial transform can be found in the book [1].

Corollary 2. For n ≥ 1, the harmonic numbers allow the representation

Hn =
n

∑

k=1

(1

k
2n−k − 2k−1Hn−k

)

. (6)

Proof. Setting (a; b) = (a; a) in (3) yields

n
∑

k=0

(

n

k

)

Hk = (2n − 1)Hn −
n−1
∑

k=0

2kHn−1−k.

Now, compare with the well-known identity ([2, Equation (20)], or [12, Identity 14])

n
∑

k=0

(

n

k

)

Hk = 2n
(

Hn −
n

∑

k=1

1

k2k

)

.
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Corollary 3. For n ≥ 1, it is true that

n
∑

k=0

(

n

k

)

2kHk = (3n − 1)Hn − 2
n−1
∑

k=0

3kHn−1−k. (7)

Proof. Set (a; b) = (2; 1) in (3).

Corollary 4. For n ≥ 1, we have the identity

n
∑

k=0

(

n

k

)

(−1)n−k2k−1Hk =

{

∑n−1
k=0(−1)kHn−1−k, if n is even;

Hn −
∑n−1

k=0(−1)kHn−1−k, if n is odd.
(8)

Proof. Setting (a; b) = (2;−1) in (3) yields

n
∑

k=0

(

n

k

)

(−1)n−k2kHk = (1− (−1)n)Hn − 2
n−1
∑

k=0

(−1)n−1−kHn−1−k,

from which the result is deduced easily.

Theorem 1 also allows to establish some identities involving harmonic numbers and
Fibonacci (Lucas) numbers. Recall, that Fibonacci numbers (Fn)n≥0 and Lucas numbers
(Ln)n≥ are defined by F0 = 0, F1 = 1, L0 = 2, L1 = 1, and for n ≥ 2 we have the recurrences
Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2.

Corollary 5. Let Fn and Ln be the Fibonacci and Lucas numbers, respectively. Then, we

have the relations
n

∑

k=0

(

n

k

)

FkHk = F2nHn −
n−1
∑

k=0

F2k+1Hn−1−k, (9)

and
n

∑

k=0

(

n

k

)

LkHk = (L2n − 2)Hn −
n−1
∑

k=0

L2k+1Hn−1−k. (10)

Proof. Evaluate (3) at (a; b) = (α; 1) and (a; b) = (β; 1), respectively, where α = (1 +
√
5)/2

and β = −1/α. This gives

Sn(α, 1) = (α2n − 1)Hn −
n−1
∑

k=0

α2k+1Hn−1−k

and

Sn(β, 1) = (β2n − 1)Hn −
n−1
∑

k=0

β2k+1Hn−1−k,

where we have used the relations α2 = α+1 and β2 = β+1. Now, calculate Sn(α, 1)±Sn(β, 1)
and use the Binet forms for Fn and Ln, respectively.
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Corollary 6. Let Fn and Ln be the Fibonacci and Lucas numbers, respectively. Then, the

following identities hold

n
∑

k=0

(

n

k

)

(−1)n−kF2kHk = FnHn −
n−1
∑

k=0

(−1)n−1−kFk+2Hn−1−k, (11)

and
n

∑

k=0

(

n

k

)

(−1)n−kL2kHk = (Ln − 2(−1)n)Hn −
n−1
∑

k=0

(−1)n−1−kLk+2Hn−1−k. (12)

Proof. Evaluate (3) at (a; b) = (α2;−1) and (a; b) = (β2;−1), respectively. Combine the
results as in the previous proof.

Corollary 7. Let Fn and Ln be the Fibonacci and Lucas numbers, respectively. Then

n
∑

k=0

(

n

k

)

2k(−1)n−kFn−kHk = −(F2n + (−1)nFn)Hn +
n−1
∑

k=0

F3k+1−nHn−1−k, (13)

and
n

∑

k=0

(

n

k

)

2k(−1)n−kLn−kHk = (L2n − (−1)nLn)Hn −
n−1
∑

k=0

L3k+1−nHn−1−k. (14)

Proof. Evaluate (3) at (a; b) = (2;−α) and (a; b) = (2;−β), respectively. Simplify using
2−α = α−2 and 2−β = α2. Finally, calculate Sn(2,−α)±Sn(2,−β) and keep in mind that
F−n = (−1)n+1Fn and L−n = (−1)nLn, respectively.

3 Harmonic sums with integer powers

Boyadzhiev [2, Proposition 10] obtained a representation for the combinatorial sum

Sn(a, 1,m) = Sn(a,m) =
n

∑

k=0

(

n

k

)

kmakHk, m ≥ 1, (15)

in terms of Stirling numbers of the second kind S(m, k). The theorem below contains an
alternative expression for the sum.

Theorem 8. For all n ≥ 1 we have

Sn(a,m) =
(

n
∑

k=0

(

n

k

)

kmak
)

Hn −
n−1
∑

j=0

n−1
∑

k=j

(

k

j

)

(j + 1)maj+1Hn−1−k. (16)
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Proof. Apply the differential operator (a d
da
)m to both sides of (3) with Sn(a, b) = Sn(a, 1).

Note that
(

a
d

da

)m

(a+ 1)n =
n

∑

k=0

(

n

k

)

kmak.

Remark 9. The Stirling numbers of the second kind S(n, k) are defined by

xn =
n

∑

k=0

S(n, k)(x)k,

with x0 = 1 and (x)n = x(x− 1) · · · (x− n+ 1), n ≥ 1, being the falling factorial. From the
equation

(x+ 1)n = (x)n + n(x)n−1,

it becomes clear, that we can restate the above result using Stirling numbers.

Corollary 10. For n ≥ 1, we have the following expression

n
∑

k=0

(

n

k

)

kHk = n2n−1Hn −
n−1
∑

k=0

(k + 2)2k−1Hn−1−k. (17)

Proof. Use (a;m) = (1; 1) in (16) as well as the obvious identities

n
∑

k=0

(

n

k

)

= 2n and
n

∑

k=0

(

n

k

)

k = n2n−1.

Corollary 11. For n ≥ 1, we have the identity

n
∑

k=0

(

n

k

)

(−1)kkHk =

{

−1, if n = 1;
1

n−1
, if n ≥ 2.

(18)

Proof. Evaluate (16) at (a;m) = (−1; 1) and simplify.

Corollary 12. For n ≥ 1, we have the identity

n−1
∑

k=j

(

k

j

)

Hn−1−k =

(

n

j + 1

)

(Hn −Hj+1). (19)
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Proof. We have

Sn(a,m) =
(

n
∑

k=0

(

n

k

)

kmak
)

Hn −
n

∑

j=0

(

n

j

)

jmaj(Hn −Hj)

=
(

n
∑

k=0

(

n

k

)

kmak
)

Hn −
n

∑

j=1

(

n

j

)

jmaj(Hn −Hj)

=
(

n
∑

k=0

(

n

k

)

kmak
)

Hn −
n−1
∑

j=0

(

n

j + 1

)

(j + 1)maj+1(Hn −Hj+1).

Comparing with (16) gives the result.

Corollary 13. Let Fn and Ln be the Fibonacci and Lucas numbers, respectively. Then

n
∑

k=0

(

n

k

)

kFkHk = nF2n−1Hn −
n−1
∑

k=0

(kF2k + F2k+1)Hn−1−k, (20)

and
n

∑

k=0

(

n

k

)

kLkHk = nL2n−1Hn −
n−1
∑

k=0

(kL2k + L2k+1)Hn−1−k. (21)

Proof. Evaluate (16) at (a;m) = (α; 1) and (a;m) = (β; 1), respectively, using

n
∑

k=1

(

n

k

)

kxk = nx(1 + x)n−1,

in combination with
n

∑

k=0

(

n

k

)

αk = α2n, and
n

∑

k=0

(

n

k

)

βk = β2n.

Combine the sums as in the previous proofs.

Using similar elementary arguments we can prove the following identities for m = 2:

Corollary 14. For n ≥ 1, it is true that

n
∑

k=0

(

n

k

)

k2Hk = n(n+ 1)2n−2Hn −
n−1
∑

k=0

(k + 1)(k + 4)2k−2Hn−1−k. (22)

Corollary 15. For n ≥ 1, we have the identity

n
∑

k=0

(

n

k

)

(−1)kk2Hk =











−1, if n = 1;

4, if n = 2;

− n
(n−2)(n−1)

, if n ≥ 3.

(23)
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Corollary 16. For n ≥ 1, the following relations hold:

n
∑

k=0

(

n

k

)

k2FkHk = (nF2n−3 + n2F2n−2)Hn

−
n−1
∑

k=0

(

kF2k−2 + k2F2k−1 + 2kF2k + F2k+1

)

Hn−1−k, (24)

and

n
∑

k=0

(

n

k

)

k2LkHk = (nL2n−3 + n2L2n−2)Hn

−
n−1
∑

k=0

(

kL2k−2 + k2L2k−1 + 2kL2k + L2k+1

)

Hn−1−k. (25)

4 Concluding comments

Using the main results of this paper, it is possible to derive more identities involving harmonic
numbers and Fibonacci (Lucas) numbers. In addition, we mention that from Theorems 1
and 8 relations between harmonic numbers and other important number sequences, such as
Mersenne numbers or Pell numbers, are deducible.
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