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Abstract

This paper is devoted to studying the numbers

Lc,m,n := lcm
(

m2 + c, (m+ 1)2 + c, . . . , n2 + c
)

,

where c,m, n are positive integers such that m ≤ n. More precisely, we determine a
nontrivial rational divisor of Lc,m,n and then we derive (as consequences) some non-
trivial lower bounds for Lc,m,n. Our approach (focusing on commutative algebra) is
new and different from those using previously by Farhi, Oon, and Hong.

1 Introduction and Notation

Throughout this paper, we let N∗ denote the set N \ {0} of positive integers. For t ∈ R,
we let ⌊t⌋ and ⌈t⌉ respectively denote the floor and the ceiling functions. We say that an
integer a is a multiple of a non-zero rational number r (or equivalently, r is a divisor of a)
if the quotient a/r is an integer. If m,n, c are positive integers such that m ≤ n, we set
Lc,m,n := lcm {m2 + c, (m+ 1)2 + c, . . . , n2 + c}. For a given polynomial P ∈ C[X], we let
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P denote the polynomial conjugate of P in C[X], that is the polynomial we get by replacing
each coefficient of P with its complex conjugate. It is well-known that the conjugation
of polynomials in C[X] is compatible with addition and multiplication, in the sense that
for every P,Q ∈ C[X], we have P +Q = P + Q and P ·Q = P · Q. Further, we let I,
Eh (h ∈ R), and ∆ denote the linear operators on C[X] which respectively represent the
identity, the shift operator with step h (EhP (X) = P (X + h), ∀P ∈ C[X]), and the forward
difference (∆P (X) = P (X + 1) − P (X), ∀P ∈ C[X]). For n ∈ N, the expression of ∆n in
terms of the Eh’s is easily obtained from the binomial formula, as follows

∆n = (E1 − I)n =
n
∑

m=0

(−1)n−m

(

n

m

)

Em
1 =

n
∑

m=0

(−1)n−m

(

n

m

)

Em. (1)

For falling factorial powers, we use Knuth’s notation:

Xn := X (X − 1) (X − 2) · · · (X − n+ 1) (∀n ∈ N).

The study of the least common multiple of the first n consecutive positive integers (n ∈
N∗) began with Chebyshev’s work [2] in his attempts to prove the prime number the-
orem. The latter showed that the prime number theorem is equivalent to stating that
log lcm (1, 2, . . . , n) ∼+∞ n. More recently, many authors are interested in the effective es-
timates of the least common multiple of consecutive terms of some integer sequences. In
1972, Hanson [6] showed (by using the expansion of the number 1 in Sylvester series) that

lcm (1, 2, . . . , n) ≤ 3n (∀n ∈ N∗). In 1982, investigating the integral
∫ 1

0
xn(1 − x)ndx, Nair

[11] gave a simple proof that lcm (1, 2, . . . , n) ≥ 2n (∀n ≥ 7). Later, the second author
[5] obtained nontrivial lower bounds for the least common multiple of consecutive terms in
an arithmetic progression. In particular, he proved that for any u0, r, n ∈ N∗ such that
gcd (u0, r) = 1, we have

lcm (u0, u0 + r, . . . , u0 + nr) ≥ u0 (r + 1)n−1 , (2)

and conjectured that the exponent (n − 1) appearing in the right-hand side of (2) can be
replaced by n, which is the optimal exponent that can be obtained. That conjecture was
confirmed by Hong and Feng [7]. Furthermore, several authors obtained improvements of
(2) for n sufficiently large in terms of u0 and r (see, e.g., [7, 8, 10]). The second author
[5] also obtained nontrivial lower bounds for the least common multiple of some quadratic
sequences. In particular, he proved that for any positive integer n, we have

lcm
(

12 + 1, 22 + 1, . . . , n2 + 1
)

≥ 0.32(1.442)n. (3)

In 2013, Oon [12] managed to improve (3) by proving that for any positive integers c and n,
we have

lcm
(

12 + c, 22 + c, . . . , n2 + c
)

≥ 2n. (4)

Actually, we have something a little stronger:
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Theorem 1 (Oon [12]). Let c, n,m be positive integers such that m ≤
⌈

n
2

⌉

. Then we have

Lc,m,n ≥ 2n.

Later, Hong et al. [9] managed to generalize Theorem 1 for polynomial sequences (f(n))n≥1,
with f ∈ Z[X] and the coefficients of f are all nonnegative. In another direction, various
asymptotic estimates have been obtained by several authors. For example, Bateman et al.
[1] proved that for any h, k ∈ Z with k > 0, h+ k > 0, and gcd(h, k) = 1, we have

log lcm{h+ k, h+ 2k, . . . , h+ nk} ∼+∞









k

ϕ(k)

∑

1≤m≤k
gcd(m,k)=1

1

m









n, (5)

where ϕ denotes the Euler totient function. Another asymptotic estimate a little harder
to prove is due to Cilleruelo [3] and states that for every irreducible quadratic polynomial
f ∈ Z[X], we have

log lcm{f(1), . . . , f(n)} = n log n+Bn+ o(n), (6)

where B is a constant depending on f .
In this paper, we use arguments of commutative algebra and complex analysis to find

a nontrivial rational divisor of Lc,m,n (c,m, n ∈ N∗). As a consequence, we derive some
new nontrivial lower bounds for Lc,m,n. The rest of the paper is organized in five parts
(subsections). In the first part, we give an algebraic lemma which allows us, on the one hand
to re-demonstrate Theorem 1 of Oon by an easy and purely algebraic method, and on the
other hand to reformulate the problem of bounding the number Lc,m,n from below. In this
reformulation, we are led to introduce a vital arithmetic function, noted hc, whose multiple
provides a divisor for Lc,m,n. In the next two parts, we study the arithmetic function hc and
we find for hc a simple multiple. In the fourth part, we use the obtained multiple of hc to
deduce a nontrivial divisor for Lc,m,n. Our new nontrivial lower bounds for Lc,m,n then follow
from this divisor. We conclude the paper with a short last part which presents comparisons
between our results and those of Oon (cf. Theorem 1).

2 The results and the proofs

2.1 An algebraic method

Although the method used by Oon [12] to obtain his result (i.e., Theorem 1) is analytic, the
ingredients for its success are algebraic in depth, as we will show it below by applying the
following fundamental algebraic lemma:

Lemma 2. Let A be an integral domain and n be a positive integer. Let also u0, u1, . . . , un,
a, b be elements of A. Suppose that a and b satisfy the following conditions:
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1. Each of the elements u0, u1, . . . , un of A divides a.

2. Each of the elements
∏

0≤j≤n
j 6=i

(ui − uj) (i = 0, 1, . . . , n) of A divides b.

Then the product ab is a multiple of the product u0u1 · · · un.

Proof. If the elements u0, u1, . . . , un of A are not pairwise distinct, the result of the lemma
is trivial, since by its second condition we have b = 0A. Suppose in what follows that the
ui’s (i = 0, 1, . . . , n) are pairwise distinct. We use the well-known result that if a polynomial
in one indeterminate, with coefficients in an integral domain, has a number of zeros (in that
domain) greater than its degree then it is zero. Since a is a multiple of each of the elements
u0, u1, . . . , un of A, there exist k0, k1, . . . , kn ∈ A such that:

a = k0u0 = k1u1 = · · · = knun. (7)

Similarly, since b is a multiple of each of the elements
∏

0≤j≤n
j 6=i

(ui − uj) (i = 0, 1, . . . , n), then

there exist ℓ0, ℓ1, . . . , ℓn ∈ A such that:

b = ℓi
∏

0≤j≤n
j 6=i

(ui − uj) (∀i ∈ {0, 1, . . . , n}) . (8)

Now, consider the following polynomial of A[X]:

P (X) :=
n
∑

i=0









ℓi
∏

0≤j≤n
j 6=i

(X − uj)









− b.

We have degP ≤ n. On the other hand, we have (according to (8))

P (ui) = 0 (∀i ∈ {0, 1, . . . , n}) ,

showing that the number of zeros of P in A is greater than its degree. So, according to the
elementary result of commutative algebra announced above, the polynomial P is zero. In
particular, we have P (0) = 0; that is

b = (−1)n
n
∑

i=0

ℓi









∏

0≤j≤n
j 6=i

uj









.
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By multiplying the two sides of this last equality by a, we get (according to (7))

ab = (−1)n
n
∑

i=0

ℓia









∏

0≤j≤n
j 6=i

uj









= (−1)n
n
∑

i=0

ℓikiui









∏

0≤j≤n
j 6=i

uj









= (−1)n

(

n
∑

i=0

ℓiki

)

u0u1 · · · un,

showing that ab is a multiple of u0u1 · · · un, as required. This completes the proof.

Remark 3. Lemma 2 is inspired by Farhi’s result [5, Theorem 2] which becomes a special
case for A = Z, a = lcm(u0, u1, . . . , un), and b = lcm(

∏

0≤j≤n
j 6=i

(ui − uj); i = 0, 1, . . . , n). It

was precisely this special case which led the second author [5] to establish the first nontrivial
lower bounds for the least common multiples of arithmetic progressions.

Now, we use Lemma 2 to establish a new proof of Theorem 1, which is purely algebraic.

A new proof of Theorem 1. Since Lc,m,n is non-increasing relative to m, then it suffices to
prove the result of the theorem for m =

⌈

n
2

⌉

, that is Lc,⌈n
2 ⌉,n ≥ 2n. For simplicity, put

m0 =
⌈

n
2

⌉

. So, we have to show that Lc,m0,n ≥ 2n. For n ∈ {1, 2, . . . , 6}, this can be easily
checked by hand (as was done by Oon). Suppose in what follows that n ≥ 7. It is well-known
and easily proved that for any integer r ≥ 7, we have

⌈

r
2

⌉ (

r

⌈ r
2⌉
)

≥ 2r. According to this

inequality for r = n, it suffices to show that Lc,m0,n ≥ m0

(

n
m0

)

. More generally, we shall show
that:

Lc,m′,n ≥ m′
(

n

m′

)

(∀m′ ∈ N∗, m′ ≤ n). (9)

Let m′ ∈ N∗ such that m′ ≤ n. To prove (9), we apply Lemma 2 for A = Z[
√−c] by taking

for the ui’s the elements m′ +
√−c,m′ + 1 +

√−c, . . . , n +
√−c of A and for a and b the

integers a = Lc,m′,n and b = (n − m′)!. For any k ∈ {m′,m′ + 1, . . . , n}, Since Lc,m′,n is a
multiple (in Z, so also in A = Z[

√−c]) of (k2 + c) and k2 + c =
(

k +
√−c

) (

k −√−c
)

is a
multiple (in Z[

√−c]) of k +
√−c, then Lc,m′,n is a multiple (in Z[

√−c]) of k +
√−c. This

shows that the first condition of Lemma 2 is satisfied. On the other hand, we have for all
k ∈ {m′,m′ + 1, . . . , n}:

∏

m′≤ℓ≤n
ℓ6=k

((

k +
√
−c
)

−
(

ℓ+
√
−c
))

=
∏

m′≤ℓ≤n
ℓ6=k

(k − ℓ) = (−1)n−k(k −m′)!(n− k)!,
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which divides (in Z, so also in Z[
√−c]) the integer (n−m′)! (since (n−m′)!

(k−m′)!(n−k)!
=
(

n−m′

k−m′

)

∈ Z).

This shows that the second condition of Lemma 2 is also satisfied. We thus deduce (by
applying Lemma 2) that Lc,m′,n(n−m′)! is a multiple (in Z[

√−c]) of
∏n

k=m′

(

k +
√−c

)

. So,
there exist x, y ∈ Z such that:

Lc,m′,n(n−m′)! =
(

x+ y
√
−c
)

n
∏

k=m′

(

k +
√
−c
)

. (10)

Therefore, by taking the absolute value in C on both sides, we get

Lc,m′,n(n−m′)! =
√

x2 + cy2
n
∏

k=m′

√
k2 + c.

Next, since x2 + cy2 ∈ N and x2 + cy2 6= 0 (because x2 + cy2 = 0 =⇒ Lc,m′,n = 0, which is
false) then x2 + cy2 ≥ 1. Hence

Lc,m′,n =

√

x2 + cy2
∏n

k=m′

√
k2 + c

(n−m′)!
≥
∏n

k=m′

√
k2 + c

(n−m′)!
≥
∏n

k=m′ k

(n−m′)!
= m′

(

n

m′

)

,

as required. This completes the proof of the theorem.

Naturally, we have the following question:

How could we improve the lower bound Lc,m,n ≥
∏n

k=m

√
k2+c

(n−m)!
, obtained during the

proof of Theorem 1 and initially established by Oon [12]?

To simplify, suppose that c = 1 and let m,n ∈ N∗ such that m ≤ n. According to For-
mula (10), the positive integer L1,m,n(n − m)! is a multiple (in Z[i]) of the Gauss integer
∏n

k=m(k + i). Next, by taking the conjugates (in C) of both sides of (10), we obtain that
L1,m,n(n−m)! is also a multiple (in Z[i]) of the Gauss integer

∏n
k=m(k − i). It follows from

those two facts that L1,m,n(n−m)! is a multiple (in Z[i]) of1

lcmZ[i]

(

n
∏

k=m

(k + i),
n
∏

k=m

(k − i)

)

=

∏n
k=m(k + i) ·∏n

k=m(k − i)

gcdZ[i] (
∏n

k=m(k + i),
∏n

k=m(k − i))

=

∏n
k=m(k

2 + 1)

gcdZ[i] (
∏n

k=m(k + i),
∏n

k=m(k − i))
.

1Let A be an integral domain and let a, b ∈ A. Then an element d of A is called a greatest common
divisor of a and b (and denoted by gcdA(a, b)) if d divides both a and b and if any other d′ ∈ A, which
divides both a and b, also divides d. Similarly, an element m of A is called a least common multiple of a
and b (and denoted by lcmA(a, b)) if m is a multiple of both a and b and if any other m′ ∈ A, which is a
multiple of both a and b, is also a multiple of m. Note that gcdA(a, b) and lcmA(a, b) exist at least when A
is a unique factorization domain (which is the case of Z[i]) and they are unique up to a multiplication by a
unit.
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Consequently

L1,m,n ≥
∏n

k=m(k
2 + 1)

(n−m)!
∣

∣gcdZ[i] (
∏n

k=m(k + i),
∏n

k=m(k − i))
∣

∣

. (11)

Remarkably, the trivial upper bound

∣

∣

∣

∣

∣

gcdZ[i]

(

n
∏

k=m

(k + i),
n
∏

k=m

(k − i)

)∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n
∏

k=m

(k + i)

∣

∣

∣

∣

∣

≤
n
∏

k=m

√
k2 + 1

suffices to establish the Oon lower bound L1,m,n ≥
∏n

k=m

√
k2+1

(n−m)!
. So, a nontrivial upper bound

for the number
∣

∣gcdZ[i] (
∏n

k=m(k + i),
∏n

k=m(k − i))
∣

∣ certainly gives an improvement of the
Oon theorem. On the other hand, for a, b ∈ Z such that (a, b) 6= (0, 0), we can easily check
that gcdZ[i] (a+ bi, a− bi) is not far from gcdZ(a, b). Precisely, we have

gcdZ[i] (a+ bi, a− bi) = (σ + iτ) gcdZ(a, b),

where σ, τ ∈ {−1, 0, 1} and (σ, τ) 6= (0, 0). So, for the case c = 1, we are led to study the
arithmetic function:

h : Z[i] \ {0} −→ N∗

a+ bi 7−→ gcd(a, b)
,

and precisely to find nontrivial upper bounds for the quantities h (
∏n

k=m(k + i)) (m,n ∈
N∗, m ≤ n). For the general case (c ∈ N∗), the arithmetic function we need to study is given
by:

hc : Z[
√−c] \ {0} −→ N∗

a+ b
√−c 7−→ gcd(a, b)

and the quantities we need to bound from above are hc

(
∏n

k=m(k +
√−c)

)

(m,n ∈ N∗,
m ≤ n).

The following proposition has as objective to replace a specific arithmetic language of
the ring Z[

√−c] by its simpler analog in Z.

Proposition 4. Let c ∈ N∗ and N, a, b ∈ Z, with (a, b) 6= (0, 0). Then N is a multiple (in
Z[
√−c]) of

(

a+ b
√−c

)

if and only if N is a multiple (in Z) of a2+cb2

gcd(a,b)
.

Proof. The result of the proposition is trivial for b = 0. Suppose in what follows that b 6= 0.
Suppose that N is a multiple (in Z[

√−c]) of
(

a+ b
√−c

)

; that is there exist x, y ∈ Z

such that:
N =

(

x+ y
√
−c
) (

a+ b
√
−c
)

.

By identifying the real and imaginary parts of the two hand-sides of this equality, we get

N = ax− byc, (12)

0 = bx+ ay. (13)
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Next, putting d := gcd(a, b), there exist a′, b′ ∈ Z, with b′ 6= 0 and gcd(a′, b′) = 1, such that
a = da′ and b = db′. By substituting these in (13), we obtain (after simplifying)

b′x = −a′y. (14)

This last equality shows that b′ divides a′y. But since gcd(a′, b′) = 1, then (according to the
Gauss lemma) b′ divides y. So there exists k ∈ Z such that y = kb′. By reporting this in
(14), we get x = −ka′. Then by substituting x = −ka′ = −k a

d
and y = kb′ = k b

d
in (12), we

finally obtain

N = −k
a2 + cb2

d
= −k

a2 + cb2

gcd(a, b)
,

showing that N is a multiple (in Z) of a2+cb2

gcd(a,b)
, as required.

Conversely, suppose that N is a multiple (in Z) of a2+cb2

gcd(a,b)
. Then there exists k ∈ Z such

that:

N = k
a2 + cb2

gcd(a, b)
= k

a− b
√−c

gcd(a, b)

(

a+ b
√
−c
)

=

(

k
a

gcd(a, b)
− k

b

gcd(a, b)

√
−c

)

(

a+ b
√
−c
)

.

Since
(

k a
gcd(a,b)

− k b
gcd(a,b)

√−c
)

∈ Z[
√−c], the last equality shows that N is a multiple (in

Z[
√−c]) of

(

a+ b
√−c

)

, as required. This completes the proof of the proposition.

From Proposition 4, we derive the following corollary, which is the first key step to
obtaining the results of this paper.

Corollary 5. Let c,m, n ∈ N∗ such that m ≤ n. Then the positive integer Lc,m,n(n−m)! is
a multiple (in Z) of the positive integer:

∏n
k=m (k2 + c)

hc

(
∏n

k=m

(

k +
√−c

)) .

Proof. Formula (10) (obtained during our new proof of Theorem 1) shows that Lc,m,n(n−m)!
is a multiple (in Z[

√−c]) of
∏n

k=m

(

k +
√−c

)

. But, according to Proposition 4, this last
property is equivalent to the statement of the corollary.

In view of Corollary 5, to bound from below Lc,m,n (c,m, n ∈ N∗, m ≤ n), it suffices to
bound from above hc

(
∏n

k=m(k +
√−c)

)

. Likewise, to find a nontrivial (rational) divisor of
Lc,m,n, it suffices to find a nontrivial multiple of hc

(
∏n

k=m(k +
√−c)

)

. This is what we will
do in what follows.

8



2.2 An explicit Bézout identity

In the following, let c ∈ N∗ and k ∈ N be fixed and define

Pk (X) :=
(

X +
√
−c
) (

X − 1 +
√
−c
)

· · ·
(

X − k +
√
−c
)

:= Ak (X) +Bk (X)
√
−c,

Pk (X) :=
(

X −
√
−c
) (

X − 1−
√
−c
)

· · ·
(

X − k −
√
−c
)

:= Ak (X)− Bk (X)
√
−c,

where we understand that Ak, Bk ∈ Z[X]. In what follows, we find nontrivial multi-
ples for the positive integers hc (Pk(n)) = gcd (Ak(n), Bk(n)) (n ≥ 1). To do so, we
look for two polynomial sequences (ak(n))n and (bk(n))n so that the polynomial sequence
(ak(n)Ak(n) + bk(n)Bk(n))n be independent on n. This leads to looking for two polynomials
Uk, Vk ∈ Q[X] which satisfy the Bézout identity:

Uk (X)Ak (X) + Vk (X)Bk (X) = 1.

Next, since Ak = Pk+Pk

2
and Bk = Pk−Pk

2
√
−c

, the problem is equivalent to looking for σk, τk ∈
Q
(√−c

)

[X] such that:

σk (X)Pk (X) + τk (X)Pk (X) = 1.

Let us first justify the existence of such σk and τk. Denoting by Z (P ) the set of all the
complex zeros of a polynomial P ∈ C[X], we have

Z (Pk) =
{

−
√
−c, 1−

√
−c, . . . , k −

√
−c
}

and Z
(

Pk

)

=
{√

−c, 1 +
√
−c, . . . , k +

√
−c
}

,

showing that Z (Pk) ∩ Z
(

Pk

)

= ∅; that is Pk and Pk do not have a common zero in C.

This implies that Pk and Pk are coprime in C[X]; so coprime also in Q
(√−c

)

[X] (since

Pk, Pk ∈ Q
(√−c

)

[X]). It follows (according to Bézout’s theorem) that there exist σk, τk ∈
Q
(√−c

)

[X] such that: σkPk + τkPk = 1, as required.
Now, to find explicitly such σk and τk, we need the following more precise version of

Bézout’s theorem:

Theorem 6. Let K be a field and P and Q be two non-constant polynomials of K[X] such
that gcdK[X] (P,Q) = 1. Then there exists a unique pair (U, V ) of polynomials of K[X], with
degU < degQ and deg V < degP , such that:

PU +QV = 1.

Proof. Since gcdK[X] (P,Q) = 1, then (according to Bézout’s theorem) there exist U0, V0 ∈
K[X] such that:

PU0 +QV0 = 1.

Next, consider in K[X] the euclidean division of U0 by Q and the euclidean division of V0 by
(−P ):

U0 = U1Q+ U,

V0 = V1 (−P ) + V,

9



where U1, V1, U, V ∈ K[X], degU < degQ, and deg V < deg (−P ) = degP . So, we have

PU+QV = P (U0 − U1Q)+Q (V0 + V1P ) = PQ (V1 − U1)+PU0+QV0 = PQ (V1 − U1)+1.

If V1 − U1 6= 0, then the last equality implies that deg (PU +QV ) ≥ deg (PQ), which
is impossible, since degU < degQ and deg V < degP . Thus V1 − U1 = 0, which gives
PU + QV = 1. The existence of the pair (U, V ) as required by the theorem is proved.
It remains to prove the uniqueness of (U, V ). Let (U∗, V∗) another pair of polynomials of
K[X], with degU∗ < degQ, deg V∗ < degP , and PU∗ + QV∗ = 1, and let us prove that
(U∗, V∗) = (U, V ). We have

P (UV∗ − U∗V ) = (PU)V∗ − (PU∗)V = (1−QV )V∗ − (1−QV∗)V = V∗ − V,

showing that the polynomial (V∗ − V ) is a multiple of P in K[X]. But since deg (V∗ − V ) <
degP (because deg V < degP and deg V∗ < degP ), we have inevitably V∗ − V = 0; hence
V∗ = V . Using this, we get PU∗ = 1−QV∗ = 1−QV = PU . Thus U∗ = U . Consequently,
we have (U∗, V∗) = (U, V ), as required. This completes the proof of the theorem.

In our context, the application of Theorem 6 gives the following corollary:

Corollary 7. There exists a unique polynomial σk ∈ C[X], with degree ≤ k, such that:

σkPk + σkPk = 1.

Proof. According to Theorem 6 (applied for K = C and (P,Q) =
(

Pk, Pk

)

), there exists a

unique pair (σk, τk) of polynomials of C[X], with deg σk < degPk = k + 1 and deg τk <
degPk = k + 1, such that σkPk + τkPk = 1. By taking the conjugates in C[X] of both
sides of the last equality, we derive that σkPk + τkPk = 1, that is τkPk + σkPk = 1. Since
deg τk = deg τk < k + 1 and deg σk = deg σk < k + 1, this shows that the pair (τk, σk)
satisfies the property that characterizes (σk, τk). Thus (τk, σk) = (σk, τk), that is τk = σk.
Consequently, we have σkPk + σkPk = 1. This completes the proof of the corollary.

Now, we are going to determine the explicit expression of the polynomial σk announced
by Corollary 7. By replacing, in the identity σk (X)Pk (X) + σk (X)Pk (X) = 1, the inde-
terminate X by the numbers s+

√−c (s = 0, 1, . . . , k), we get

σk

(

s+
√
−c
)

=
1

Pk

(

s+
√−c

) (∀s ∈ {0, 1, . . . , k}). (15)

(since Pk

(

s+
√−c

)

= 0 for s = 0, 1, . . . , k). So the values of σk are known for (k + 1)
equidistant points with distance 1. Since deg σk ≤ k, this is sufficient to determine the
expression of σk (X) by using for example the Newton forward interpolation formula. Doing
so, we obtain that:

σk (X) =
k
∑

ℓ=0

(

∆ℓσk

) (√−c
)

ℓ!

(

X −
√
−c
)ℓ
.

10



Then by using (1), we derive that:

σk (X) =
k
∑

ℓ=0

ℓ
∑

j=0

(−1)ℓ−j

ℓ!

(

ℓ

j

)

σk

(

j +
√
−c
) (

X −
√
−c
)ℓ

=
k
∑

ℓ=0

(

1

ℓ!

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

σk

(

j +
√
−c
)

)

(

X −
√
−c
)ℓ

=
k
∑

ℓ=0

(

1

ℓ!

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

1

Pk

(

j +
√−c

)

)

(

X −
√
−c
)ℓ

(according to (15)). So, by setting for all ℓ ∈ {0, 1, . . . , k}:

Θk,ℓ :=
1

ℓ!

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

1

Pk(j +
√−c)

, (16)

we get

σk (X) =
k
∑

ℓ=0

Θk,ℓ

(

X −
√
−c
)ℓ
. (17)

It remains to simplify the expressions of the numbers Θk,ℓ (0 ≤ ℓ ≤ k). To do so, we
introduce the functions Rk,ℓ (0 ≤ ℓ ≤ k), defined by:

Rk,ℓ(z) :=
1

ℓ!

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

1

Pk(z + j +
√−c)

, (18)

so that we have
Θk,ℓ = Rk,ℓ(0) (∀ℓ ∈ {0, 1, . . . , k}). (19)

Since the Rk,ℓ’s (0 ≤ ℓ ≤ k) are all rational functions, each of them is holomorphic on its
domain of definition, that is each Rk,ℓ (0 ≤ ℓ ≤ k) is holomorphic on

Dℓ := C \
{

j − 2
√
−c ; j ∈ Z and− ℓ ≤ j ≤ k

}

.

Consequently, the common domain of holomorphy of the functions Rk,ℓ (0 ≤ ℓ ≤ k) is the
open connected region D of C, given by:

D :=
⋂

0≤ℓ≤k

Dℓ = C \ {j − 2
√
−c ; j ∈ Z and− k ≤ j ≤ k}.

Using the principle of analytical continuation together with the theory of the gamma and
beta functions, we can find another expression of Rk,ℓ (0 ≤ ℓ ≤ k), which is simpler than the
above. We have the following proposition:

11



Proposition 8. For all ℓ ∈ N, with ℓ ≤ k, and all z ∈ D, we have

Rk,ℓ(z) =
(−1)k+ℓ

z + 2
√−c

(

k + ℓ

ℓ

)

1
(

k − 2
√−c− z

)k (
ℓ+ 2

√−c+ z
)ℓ
. (20)

Proof. Let ℓ ∈ N such that ℓ ≤ k. According to the principle of analytical continuation, it
suffices to prove Formula (20) for z ∈ C, such that ℜ(z) > k. For a such z, we have

Rk,ℓ(z) :=
1

ℓ!

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

1

Pk(z + j +
√−c)

=
1

ℓ!

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

1
(

z + j + 2
√−c

) (

z + j − 1 + 2
√−c

)

· · ·
(

z + j − k + 2
√−c

)

=
1

ℓ!

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

Γ
(

z + j − k + 2
√−c

)

Γ
(

z + j + 1 + 2
√−c

)

=
1

ℓ!

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

1

k!
β
(

z + j − k + 2
√
−c, k + 1

)

=
1

k!ℓ!

ℓ
∑

j=0

(

(−1)ℓ−j

(

ℓ

j

)∫ 1

0

tz+j−k−1+2
√
−c(1− t)kdt

)

=
1

k!ℓ!

∫ 1

0

tz−k−1+2
√
−c(1− t)k

(

ℓ
∑

j=0

(−1)ℓ−j

(

ℓ

j

)

tj

)

dt

=
1

k!ℓ!

∫ 1

0

tz−k−1+2
√
−c(1− t)k (t− 1)ℓ dt

=
(−1)ℓ

k!ℓ!

∫ 1

0

tz−k−1+2
√
−c(1− t)k+ℓdt

=
(−1)ℓ

k!ℓ!
β
(

z − k + 2
√
−c, k + ℓ+ 1

)

=
(−1)ℓ

k!ℓ!

Γ
(

z − k + 2
√−c

)

Γ (k + ℓ+ 1)

Γ
(

z + ℓ+ 1 + 2
√−c

)

= (−1)ℓ
(

k + ℓ

ℓ

)

1
(

z + ℓ+ 2
√−c

) (

z + ℓ− 1 + 2
√−c

)

· · ·
(

z − k + 2
√−c

)

=
(−1)k+ℓ

z + 2
√−c

(

k + ℓ

ℓ

)

1
(

k − 2
√−c− z

)k (
ℓ+ 2

√−c+ z
)ℓ
,

as required. This completes the proof.

From Proposition 8, we immediately derive a simpler explicit expression of σk (X). We
have the following corollary:
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Corollary 9. We have

σk (X) =
1

2
√−c

(

k − 2
√−c

)k

k
∑

ℓ=0

(−1)k+ℓ
(

k+ℓ
ℓ

)

(

ℓ+ 2
√−c

)ℓ

(

X −
√
−c
)ℓ
.

Proof. This immediately follows from Formulas (17), (19), and (20).

2.3 Nontrivial multiples of some values of hc

In this subsection, we preserve the notation of Subsection 2.2. From Corollary 9, we derive
the following theorem:

Theorem 10. For all c, n,m ∈ N∗, with m ≤ n, we have

hc

(

n
∏

ℓ=m

(

ℓ+
√
−c
)

)

divides c

n−m
∏

ℓ=1

(ℓ2 + 4c).

Proof. Let c, n,m ∈ N∗, withm ≤ n. Putting k := n−m ∈ N and d := c
∏n−m

ℓ=1 (ℓ2+4c) ∈ N∗,
we have

∏n
ℓ=m

(

ℓ+
√−c

)

= Pk(n); so, we have to show that hc (Pk(n)) divides d. By

noting that 2d =
√−c · 2√−c

(

k − 2
√−c

)k (
k + 2

√−c
)k
, we derive from Corollary 9 that

2dσk ∈ Z[
√−c][X]. So, there exist rk, sk ∈ Z[X] such that:

2dσk (X) = rk (X) + sk (X)
√
−c.

Next, the identity of polynomials σkPk + σkPk = 1 (given by Corollary 7) implies that
2dσk · Pk + 2dσk · Pk = 2d. By substituting in this last equality Pk by

(

Ak +Bk

√−c
)

and
2dσk by

(

rk + sk
√−c

)

, we obtain (in particular) that:

rkAk − cskBk = d,

implying that gcdZ[X] (Ak, Bk) divides d. We then conclude that gcdZ (Ak(n), Bk(n)) =
hc (Pk(n)) divides d, as required.

2.4 New estimates for the number Lc,m,n

We have the following theorem:

Theorem 11. Let c,m, n ∈ N∗ such that m ≤ n. Then:

1. The positive integer Lc,m,n is a multiple of the rational number

n
∏

k=m

(

k2 + c
)

c · (n−m)!
n−m
∏

k=1

(

k2 + 4c
)

.

13



2. We have

Lc,m,n ≥ λ1(c) ·m2 n!2

m!2(n−m)!3
,

where λ1(c) := e−
2π2

3
c/c.

Proof. The first point of the theorem is an immediate consequence of Corollary 5 and The-
orem 10. Next, using the well-known inequality 1 + x ≤ ex (∀x ∈ R), we have

n−m
∏

k=1

(

k2 + 4c
)

=
n−m
∏

k=1

k2

(

1 +
4c

k2

)

= (n−m)!2
n−m
∏

k=1

(

1 +
4c

k2

)

≤ (n−m)!2
n−m
∏

k=1

e
4c
k2

≤ (n−m)!2
+∞
∏

k=1

e
4c
k2

= (n−m)!2e4c
∑+∞

k=1
1
k2

= (n−m)!2e4c(
π2

6
)

= (n−m)!2e
2π2

3
c.

Hence
∏n

k=m (k2 + c)

c · (n−m)!
∏n−m

k=1 (k2 + 4c)
≥

∏n
k=m k2

c · (n−m)! · (n−m)!2e
2π2

3
c

=
m2
(

n!
m!

)2

c · (n−m)!3e
2π2

3
c

=
e−

2π2

3
c

c
·m2 n!2

m!2(n−m)!3
.

The second point of the theorem then follows from the first one. This completes the
proof.

We shall now impose conditions on m (in terms of n) in order to optimize (resp., simplify)
the estimate of the second point of Theorem 11. To do so, we first need to get rid of the
factorials in that estimate. We have the following:
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Corollary 12. Let c, n,m ∈ N∗ such that m < n. Then we have

Lc,m,n ≥ λ2(c) ·
nm

(n−m)3/2

(

m2

(n−m)3

)n−m

e3(n−m), (21)

where λ2(c) :=
e−

2π2

3 c− 5
12

(2π)3/2c
.

Proof. Starting from the lower bound established by Theorem 11 for Lc,m,n and estimating
each of its factorial terms by using the well-known double inequality:

kke−k
√
2πk ≤ k! ≤ kke−k

√
2πke

1
12k (∀k ∈ N∗)

(see, e.g., [4, Problem 1.15]), we get

Lc,m,n ≥ λ1(c)(2π)
−3/2 · nm

(n−m)3/2
·
( n

m

)2n

·
(

m2

(n−m)3

)n−m

en−m · e− 1
6m

− 1
4(n−m) .

Next, since e−
1

6m
− 1

4(n−m) ≥ e−
1
6
− 1

4 = e−
5
12 and

(

n
m

)2n
= e−2n log(m

n
) ≥ e−2n(m

n
−1) = e2(n−m),

then we deduce that:

Lc,m,n ≥ λ1(c)(2π)
−3/2e−5/12 · nm

(n−m)3/2

(

m2

(n−m)3

)n−m

e3(n−m),

as required.

In the context of Corollary 12, by supposing that n−m is of order of magnitude nα for
large n (where 0 < α < 1), then the dominant part of the lower bound (21) for Lc,m,n is
(

m2

(n−m)3

)n−m

and has order of magnitude n(2−3α)nα
. So, to have an optimal estimate, we

must take α less than but not too far from 2
3
(a study of the function α 7−→ (2 − 3α)nα

shows that the best value of α is α = 2
3
− 1

logn
). A concrete result specifying this heuristic

reasoning is given by the following theorem:

Theorem 13. Let c,m, n ∈ N∗ such that m ≤ n− 1
2
n2/3. Then we have

Lc,m,n ≥ λ3(c) ·
(

n− 1

2
n2/3

)

·
(

2e3
)⌊ 1

2
n2/3⌋

,

where λ3(c) :=
e−

2π2

3 c− 5
12

π3/2c
.

Proof. A simple calculation shows that the result of the theorem is true for n < 3. Suppose
in what follows that n ≥ 3 and let mn := n−

⌊

1
2
n2/3

⌋

< n; so m ≤ mn. From Corollary 12,
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we have

Lc,mn,n ≥ λ2(c)
n
(

n−
⌊

1
2
n2/3

⌋)

⌊

1
2
n2/3

⌋3/2

(

(

n−
⌊

1
2
n2/3

⌋)2

⌊

1
2
n2/3

⌋3

)⌊ 1
2
n2/3⌋

e3⌊ 1
2
n2/3⌋

≥ λ2(c)
n
(

n− 1
2
n2/3

)

(

1
2
n2/3

)3/2

(

(

n− 1
2
n2/3

)2

(

1
2
n2/3

)3

)⌊ 1
2
n2/3⌋

e3⌊ 1
2
n2/3⌋

= 23/2λ2(c)

(

n− 1

2
n2/3

)

(

8

(

1− 1

2n1/3

)2
)⌊ 1

2
n2/3⌋

e3⌊ 1
2
n2/3⌋.

But since 1− 1
2n1/3 ≥ 1

2
(because n ≥ 1), we deduce that:

Lc,mn,n ≥ 23/2λ2(c)

(

n− 1

2
n2/3

)

(

2e3
)⌊ 1

2
n2/3⌋

.

The required result follows from the trivial fact that Lc,m,n ≥ Lc,mn,n (since m ≤ mn).

In another direction, we derive from Corollary 12 the following theorem, which completes
(in a way) Theorem 13 above.

Theorem 14. Let c,m, n ∈ N∗ such that n− 1
2
n2/3 ≤ m ≤ n. Then we have

Lc,m,n ≥ λ2(c) · ne3(n−m),

where λ2(c) is defined in Corollary 12.

Proof. The result of the theorem is trivial for m = n. Suppose in what follows that m < n;
so we have n ≥ 2. Now, let f : [0, n] −→ R be the function defined by f(x) = x2 − (n− x)3

(∀x ∈ [0, n]). Since f ′(x) = 2x + 3(n− x)2 > 0 (∀x ∈ [0, n]), then f is increasing. Next, we
have

f

(

n− 1

2
n2/3

)

=

(

n− 1

2
n2/3

)2

−
(

1

2
n2/3

)3

= n2 − n5/3 +
1

4
n4/3 − 1

8
n2

=
7

8
n2 − n5/3 +

1

4
n4/3.

But since n2 ≥ 8
7
n5/3 (because n ≥ 2), it follows that f

(

n− 1
2
n2/3

)

≥ 1
4
n4/3 > 0. So, the

increase of f ensures that f(m) > 0 (since m ≥ n− 1
2
n2/3 by hypothesis). Thus m2

(n−m)3
> 1

and m
(n−m)3/2

> 1. By reporting these into (21), we then conclude that:

Lc,m,n ≥ λ2(c) · ne3(n−m),

as required. This completes the proof.
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2.5 Comparison with Oon’s lower bound

In the application of Oon’s lower bound (i.e., Theorem 1), the number of the terms included
in the least common multiple lcm(m2 + c, . . . , n2 + c) = Lc,m,n must be ≥ n− ⌈n

2
⌉+ 1 > n

2
;

whereas when we put our theorems 13 and 14 together, this constraint is deleted. However,
if the condition of application of Oon’s theorem holds then we obtain a lower bound for
Lc,m,n stronger than those of our theorems. Further, our key result is rather the point 1 of
Theorem 11 which provides a nontrivial rational divisor of Lc,m,n. Here, we have exploited
this key result in a naive way. It is likely that “a smarter way” will provide better results.
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