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Abstract

In this paper, we find all positive integer solutions of the Diophantine equation Lk+
Ll+Lt = 2d in non-negative integers k, l, t, and d, where (Ln)n≥0 is the Lucas sequence.
The tools used to solve our main theorem are linear forms in logarithms, properties
of continued fractions, and a version of the Baker-Davenport reduction method in
Diophantine approximation.
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1 Introduction

The Lucas sequence (Lk)k≥0 is a linear recurrence given by L0 = 2, L1 = 1 and

Lk+2 = Lk+1 + Lk, for k ≥ 0.

It satisfies the same recurrence as the Fibonacci sequence (Fk)k≥0 given by F0 = 0, F1 = 1
and

Fk+2 = Fk+1 + Fk, for k ≥ 2,

whose numbers are found everywhere in nature. The Fibonacci numbers are famous for
possessing many wonderful and amazing properties.

In 2014, Bravo and Luca [3] studied the Diophantine equation

Lk + Ll = 2t

in positive integers k, l and t. Similar equations involving Fibonacci and Padovan sequences
are solved in [5, 7]. E. Bravo and J. Bravo [2] found also all powers of 2 which are sums of
three Fibonacci numbers. Specifically, they proved the following theorems.

Theorem 1. The only solutions (k, l, t) of the Diophantine equation Lk+Ll = 2t in positive
integers k, l, t and with k ≥ l are

(0, 0, 2); (1, 1, 1); (3, 3, 3); (2, 1, 2); (4, 1, 3); (7, 2, 5).

Theorem 2. All solutions (k, l, t, d) of the Diophantine equation

Fk + Fl + Ft = 2d

in non-negative integers k, l, t, with k ≥ l ≥ t and d are

(3, 1, 1, 2); (3, 2, 2, 2); (3, 2, 1, 2); (4, 4, 3, 3); (5, 3, 1, 3); (5, 3, 2, 3); (6, 5, 4, 4);

(7, 3, 1, 4); (7, 3, 2, 4); (8, 6, 4, 5); (10, 6, 1, 6); (10, 6, 2, 6); (11, 9, 5, 7); (13, 8, 3, 8); (16, 9, 4, 10).

In this paper, we prove an extension of Theorem 1 when the two Lucas numbers are
replaced by three Lucas numbers and determine all the solutions of the Diophantine equation

Lk + Ll + Lt = 2d

in non-negative integers k, l, t and d. We prove the following result.

Theorem 3. All solutions (k, l, t, d) of the Diophantine equation

Lk + Ll + Lt = 2d (1)

in non-negative integers k ≥ l ≥ t and d, are

(1, 1, 0, 2), (2, 2, 0, 3), (3, 0, 0, 3), (3, 2, 1, 3), (4, 4, 0, 4), (5, 2, 0, 4), (5, 3, 1, 4), (6, 4, 4, 5),

(6, 5, 2, 5), (7, 1, 0, 5), (10, 2, 0, 7), (10, 3, 1, 7), (17, 13, 3, 12).

Our method of proof is similiar to the method described in [3, 2].
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2 Preliminaries

Before proceeding further, we recall the Binet formula for the Lucas numbers (Lk)k≥0, namely

Lk = αk + βk, for k ≥ 0,

where

α =
1 +

√
5

2
and β =

1−
√
5

2

are the roots of the characteristic equation x2 − x− 1 = 0. In particular, the inequality

αk−1 ≤ Lk ≤ 2αk (2)

holds for all k ≥ 0.
To prove Theorem 3, using a result on linear forms in two logarithms., we require some

notation. Let δ be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(X − δ(i))

where the ai are relatively prime integers with a0 > 0 and the δ(i) denotes the conjugates of
δ. Then

h(δ) =
1

d
(log a0 +

d
∑

i=1

log(max{|δ(i)|, 1}))

is called the logarithmic height of δ. In particular, if δ = p/q is a rational number with
gcd(p, q) = 1 and q > 0, then

h(δ) = logmax{|p|, q}.
The following properties of the logarithmic height, will be used in the next section. Let

δ, ν be algebraic numbers and r ∈ Z. Then

• h(δ ± ν) ≤ h(δ) + h(ν) + log 2,

• h(δν±1) ≤ h(δ) + h(ν),

• h(δr) = |r|h(δ).

Using the above notation, we restate Laurent, Mignotte, and Nesterenko’s result [6, Cor. 1].

Theorem 4. Let δ1, δ2 be two non-zero algebraic numbers, and let log δ1 and log δ2 be any
determinations of their logarithms. Set

D = [Q(δ1, δ2) : Q]/[R(δ1, δ2) : R]
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and
Γ := b2 log δ2 − b1 log δ1,

where b1 and b2 are positive integers. Further, let A1, A2 > 1 be real numbers such that

logAi ≥ max{h(δi),
|h(δi)|
D

,
1

D
}, i = 1, 2.

Then, assuming that δ1 and δ2 are multiplicatively independent, we have

log |Γ| > −30.9 ·D4(max {log b′, 21
D

,
1

2
})2 logA1 logA2,

where

b′ =
b1

D logA2

+
b2

D logA1

.

We also need the following general lower bound for linear forms in logarithms due to
Matveev [8].

Theorem 5. Assume that δ1, . . . , δt are positive real algebraic numbers in a real algebraic
number field K of degree D. Let b1, · · · , bn be rational integers, and

Λ := δb11 · · · δbtt − 1

be not zero. Then

|Λ| > exp (−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At),

where
B ≥ max {|b1|, . . . , |bt|},

and
Ai ≥ max {Dh(δi), | log δi|, 0.16}, for all i = 1, · · · , t.

Finally, we present a version of the reduction method based on the Baker-Davenport
Lemma [1], from Dujella and Pethő [4]. This will be one of the key tools used to reduce the
upper bounds on the variables of the equation (1).

Lemma 6. Let N be a positive integer, let p/q be a convergent of the irrational number γ
such that q > 6N , and let A,B, µ be real numbers with A > 0 and B > 1. Define

ξ := ‖µq‖ −N‖γq‖,

where ‖ · ‖ denotes the distance to the nearest integer. If ξ > 0, then there is no solution to
the inequality

0 < uγ − v + µ < AB−w,

in positive integers u, v, and w, with u ≤ N and w ≥ log (Aq/ξ)
logB

.
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3 The Proof of Theorem 3

First of all, observe that if k = l = t, then equation (1) becomes 3Lk = 2d. Since 3 ∤ 2, then
equation (1) has no solution. Subsequently, we assume that either k > l or l > t.

If k ≤ 250, then a brute force search using Sagemath in the range 0 ≤ t ≤ l ≤ k ≤ 250
produces the solutions

(1, 1, 0, 2), (2, 2, 0, 3), (3, 0, 0, 3), (3, 2, 1, 3), (4, 4, 0, 4), (5, 2, 0, 4), (5, 3, 1, 4), (6, 4, 4, 5), (6, 5, 2, 5),

(7, 1, 0, 5), (10, 2, 0, 7), (10, 3, 1, 7), (17, 13, 3, 12).

Thus, for the remainder of the paper, we assume that k > 250. Let us now establish a
relation between k and d.

Combining (1) with the right inequality of (2), one gets that

2d ≤ 2αk + 2αl + 2αt < 6αk < 6 · 2k < 2k+3,

which leads to d ≤ k + 2.

3.1 Bounding k − l and k − t in terms of k

We rewrite (1) as
αk − 2d = −βk − Ll − Lt.

Now taking absolute values, we obtain

|αk − 2d| ≤ |β|k + Ll + Lt <
1

2
+ 2αl + 2αt.

Dividing both sides of the above expression by αk and taking into account that k ≥ l ≥ t,
we get

|1− 2dα−k| < 1

2
α−k + 2α−k+l + 2α−k+t < 5α−k+l.

Thus

|1− 2dα−k| < 5

αk−l
. (3)

We apply Theorem 4 to
Γ := d logα− k log 2.

Therefore the estimate (3) can be rewritten as

|1− eΓ| < 5

αk−l
. (4)

The algebraic number field containing 2, α is Q(
√
5), so we can take D := 2. By using

(1) and the Binet formula for the Lucas sequence, we have

αk = Lk − βk < Lk + 1 ≤ Lk + Ll + Lt = 2d. (5)
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Consequently, 1 < 2dα−k and so Γ > 0. Using the fact that log(1 + x) ≤ x for all x ∈ R+,
together with (4), gives

0 < Γ <
5

αk−l
, (6)

Hence,
log Γ < log 5− (k − l) logα. (7)

Note further that h(α) = logα/2 and h(2) = log 2. Thus, we can choose

logA1 := logα and logA2 := log 2.

Finally, recall that d ≤ k + 2, and so

b′ =
k

2 log 2
+

d

2 logα
< 4k.

Since α and 2 are multiplicatively independent, we have, by Theorem 4, that

log Γ ≥ −30.9 · 24 · (max{log (4k), 21/2, 1/2})2 · logα · log 2.

Thus
log Γ > −174 · (max{log (4k), 21/2, 1/2})2. (8)

Combining (7) and (8), we obtain

(k − l) logα < 180 · (max{log(4k), 21/2})2. (9)

Let us now establish a second linear form in logarithms. To this end, we rewrite equation
(1) as follows

αk(1 + α(l−k))− 2d = −βk − βl − Lt.

Taking absolute values in the above relation and using the fact that β = (1−
√
5)/2 we get

|αk(1 + α(l−k))− 2d| = | − βk − βl − Lt| < 2 + 2αt

for all k > 250 and l ≥ t ≥ 0. Dividing both sides of the above inequality by the first term
of the left-hand side, we obtain

|1− 2dα−k(1 + α(l−k))−1| < 2

αk(1 + α(l−k))
+

2

αk−t(1 + α(l−k))
<

4

αk−t
. (10)

We are now ready to apply Matveev’s result given in Theorem 5. To do this, we take the
parameters n := 3 and

δ1 := 2, δ2 := α, δ3 := (1 + α(l−k)).
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We take b1 := d, b2 := −k and b3 := −1. As before, K := Q(
√
5) contains δ1, δ2, δ3 and has

D := [K : Q] = 2. To see why the left-hand side of (10) is not zero, note that otherwise, we
would get the relation

αk + αl = 2d. (11)

Conjugating the above relation in Q(
√
5), we get

βk + βl = 2d. (12)

Further, combining (11) and (12), we obtain

αk < αk + αl = |βk + βl| < 2.

This is impossible because k > 250. Thus,

1− 2dα−k(1 + α(l−k))−1

is not zero.
In this application of Theorem 5, we take A1 := 2 log 2 and A2 := logα. Since t ≤ k + 2,

it follows that we can take B := k + 2. Let us now estimate h(δ3). We begin by observing
that

δ3 = (1 + α(l−k)) < 2 and δ−1
3 < 1.

So that
0 < log δ3 < 1.

Next, notice that
h(δ3) ≤ (k − l) logα + log 2.

Hence, we can take

A3 := 2 + (k − l) logα > max{2h(δ3), | log δ3|, 0.16}.

Now Theorem 5 implies that a lower bound on the left-hand side of (10) is

log |Λ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log(k + 2)) · 2 log 2 · 2 logα · (2 + (k − l) logα).

So, inequality (10) yields

k − t < 2.8 · 1012 log(k + 2) · (2 + (k − l) logα), (13)

where we used the inequality 1 + log(k + 2) < 2 log(k + 2), which holds because k > 250.
Now using (9) in the right-most term of inequality (13) and performing the respective

calculations, we obtain

k − t < 5.1 · 1014 log(k + 2)(max{log(4k), 21/2})2. (14)
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3.2 Bounding k

Finally, we consider a third linear form in logarithms. We now rewrite equation (1) as follows

αk(1 + α(l−k) + α(t−k))− 2d = −βk − βl − βt.

Taking absolute values in the above relation and using the fact that β = (1−
√
5)/2, we get

|αk(1 + α(l−k) + α(t−k))− 2d| = | − βk − βl − βt| < 3

for all k > 250 and l ≥ t ≥ 0. Dividing both sides of the above inequality by the first term
of the left-hand side, we obtain

|1− 2dα−k(1 + α(l−k) + α(t−k))−1| < 3

αk(1 + α(l−k) + α(t−k))
<

3

αk
. (15)

We apply Theorem 5 to

Λ = 1− 2dα−k(1 + α(l−k) + α(t−k))−1,

with the parameters n := 3, δ1 := 2, δ2 := α, δ3 := (1 + α(l−k) + α(t−k)), b1 := d, b2 := −k
and b3 := −1, K := Q(

√
5) contains δ1, δ2, δ3, D := [K : Q] = 2. To see why the left-hand

side of (15) is not zero, note that otherwise, we would get the relation

αk + αl + αt = 2d. (16)

Conjugating the above relation in Q(
√
5), we get

βk + βl + βt = 2d. (17)

Furthermore, combining (16) and (17), we obtain

αk < αk + αl + αt = |βk + βl + βt| < 3.

This is impossible because k > 250. Thus,

1− 2dα−k(1 + α(l−k) + α(t−k))−1

is not zero. We now apply Theorem 5 with A1 := 2 log 2, A2 := logα. Since d ≤ k + 2; it
follows that we can take B := k+2. Let us now estimate h(δ3). We begin by observing that

γ3 = (1 + α(l−k) + α(t−k)) < 3

and
0 < log γ3 < log 3.
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Next, notice that

h(δ3) ≤ (k − l) logα + (k − t) logα + 2 log 2 ≤ 2(k − t) logα + 2 log 2.

Hence, we can take

A3 := 4 + 2(k − t) logα > max{2h(δ3), | log δ3|, 0.16}.

Now, from Theorem 5 we have

log |Λ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log(k + 2)) · 2 log 2 · 2 logα · (4 + 2(k − t) logα).

So, inequality (15) gives

k < 1013 log(k + 2) · (2 + (k − t) logα), (18)

where we used the inequality 1 + log(k + 2) < 2 log(k + 2), which holds because k > 250.
Now using (13) in the rightmost term of the above inequality (18) and performing the

respective calculations, we obtain

k < 2.6 · 1027(log(k + 2))2(max{log(4k), 21/2})2. (19)

If max{log(4k), 21/2} = 21/2, it then follows from (19) that

k < 287 · 1027(log(k + 2))2,

giving
k < 15 · 1032.

If on the other hand we have that max{log(4k), 21/2} = log(4k), then inequality (19) gives
that

k < 2.6 · 1027(log(k + 2))2(log(4k))2,

and so
k < 12 · 1034.

In any case, we have that
k < 12 · 1034

always holds. We summarize what we have so far in the following lemma.

Lemma 7. If (k, l, t, d) is a solution in positive integers of equation (1) with k ≥ l ≥ t and
k > 250, then inequalities

d ≤ k + 2 and k < 12 · 1034

hold.
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4 The final computations

In this section, we will reduce the upper bound on k. Firstly, we determine a suitable upper
bound on k − l, k − t, and later we use Lemma 6 to conclude that k must be smaller than
250.

Turning back to inequality (6), we obtain

0 < d log 2− k logα <
5

αk−l
.

Dividing across by logα, we get

0 < dγ − k <
11

αk−l
, (20)

where

γ :=
log 2

logα
.

Let [a0, a1, a2, a3, a4, a5, a6, a7, . . .] = [1, 2, 3, 1, 2, 3, 2, 4 . . .] be the continued fraction ex-
pansion of γ, and let denote pn/qn its nth convergent. Recall also that d < 12 · 1034 by
Lemma 7. A quick inspection using Sagemath reveals that

37527245802242661673724926130723830 = q73 < 12 · 1034 <
q74 = 175184858909722330004986691804684639.

Furthermore, aN := max{ai; i = 0, 1, . . . , 44} = a17 = 134. So, from the known properties of
continued fractions, we obtain that

|dγ − k| > 1

(aN + 2)d
. (21)

Comparing estimates (20) and (21), we get right away that

αk−l < 11 · 136 · d < 18 · 1037,

leading to k − l < 184.
Let us now go back to (10) and determine an improved upper bound on k − t. Put

ω1 := d log 2− k logα− log(1 + α−(k−l)). (22)

Therefore, (10) implies that

|1− eω1 | < 4

αk−t
. (23)

Note that ω1 6= 0, by using (1) and the Binet formula for the Lucas sequence, we have

αk + αl = Lt − βk − βl < Lk + Ll + Lt = 2d.
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Therefore,
1 < 2dα−k(1 + α(l−k))−1

and so ω1 > 0. Thus

0 < ω1 ≤ eω1 − 1 <
4

αk−t
. (24)

Replacing ω1 in the above inequality by its formula (22) and dividing both sides of the
resulting inequality by logα, we get

0 < d

(

log 2

logα

)

− k − log(1 + α−(k−l))

logα
<

9

αk−t
. (25)

We now put

γ :=
log 2

logα
, µ := − log(1 + α−(k−l))

logα
, A := 9 and B := α.

Clearly γ is an irrational number. We also putN := 12·1034 , which is an upper bound on d by
Lemma 7. We therefore apply Lemma 6 to inequality (25) for all choices k− l ∈ {1, . . . , 184}
except when k − l = 1, 3 and get that

k − t <
log(Aq/ξ)

logB
,

where q > 6N is a denominator of a convergent of the continued fraction of γ such that
ξ = ‖µq‖ −N‖γq‖ > 0. Indeed, using Sagemath, we have that

q = q75 = 1439006117080021301713618460568200942.

We find that if (k, l, t, d) is a possible solution of the equation (1) with ω1 > 0 and k − l ∈
{1, . . . , 184} except when k − l = 1, 3, then

k − t < 178.

Let us now treat the cases where k − l = 1 and 3. The discussion of these cases will be
different from the previous ones, because when applying Lemma 6 to the expression (25),
the corresponding parameter µ appearing in Lemma 6 is

log(1 + α−(k−l))

logα
=

{

−1, if k − l = 1;

1− log 2
logα

, if k − l = 3.

In both cases, the parameters γ and µ are linearly dependent, which yields that the corre-
sponding value of ξ from Lemma 6 is always negative and therefore the reduction method is
not useful for reducing the bound on k− t in these instances. One can see that if k− l = 1, 3,
then the resulting inequality from (25) has the shape

0 < |aγ − b| < 9

αk−t
,
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with γ being an irrational number and a, b ∈ Z. So, one can appeal to the known properties
of the convergents of the continued fractions to obtain a nontrivial lower bound for

|aγ − b|.

When k − l = 1, from (25), we get that

0 < dγ − (k + 1) <
9

αk−t
. (26)

Let [a0, a1, a2, a3, a4, a5, a6, a7, ...] = [1, 2, 3, 1, 2, 3, 2, 4 . . .] be the continued fraction ex-
pansion of γ, and let denote pn/qn its nth convergent. Recall also that d < 12 · 1034 by
Lemma 4. Furthermore, aN := max{ai : i = 0, 1, . . . , 44} = a17 = 134. So, from the known
properties of continued fractions, we obtain that

|dγ − (k + 1)| > 1

(aN + 2)d
. (27)

Comparing estimates (26) and (27), we get right away that

αk−t < 9 · 136 · d < 15 · 1037,

leading to k − t < 184.
By the same argument as the one we did before, we get that k − t < 184 in the case

when k − l = 3. This completes the analysis of the cases when k − l = 1, 3. Consequently,
k − t < 184 always holds.

Finally, we shall use (15) to reduce the upper bound on k. Put

ω2 = d log 2− k logα− logϕ(u, v) (28)

where ϕ is the function given by the formula ϕ(u, v) = 1+α−u+α−v, where u = k−l, v = k−t.
Note that ω2 6= 0. Thus, we distinguish the following cases. If ω2 > 0 then, from (15), we
obtain

0 < ω2 ≤ eω2 − 1 <
3

αk
.

Replacing ω2 in the above inequality by its formula (28) and dividing both sides of the
resulting inequality by logα, we get

0 < d

(

log 2

logα

)

− k − log(1 + α−u + α−v)

logα
<

7

αk
. (29)

We now put

γ :=
log 2

logα
, µ := − log(1 + α−u + α−v)

logα
, A := 7 and B := α.

12



Clearly γ is an irrational number. We also put N := 12 · 1034 , which is an upper bound
on d by Lemma 7. We therefore apply Lemma 6 to inequality (29) for all choices of u ∈
{1, . . . , 184}, v ∈ {1, . . . , 184} except when

(u, v) ∈ ̟1 = {(4, 2), (13, 1), (17, 4), (17, 5), (18, 7), (19, 4), (19, 5), (22, 2), (23, 1), (23, 2), (24, 1),
(24, 5), (25, 1), (28, 2), (30, 4), (31, 1), (32, 7), (33, 1), (33, 4), (33, 5), (36, 1), (36, 2),

(37, 2), (38, 2), (39, 1), (43, 4), (44, 1), (45, 4), (48, 1), (48, 5), (50, 1), (51, 9), (52, 1),

(52, 2), (53, 4), (54, 2), (55, 2), (56, 2), (57, 2), (59, 2), (61, 1), (62, 4), (64, 1), (66, 1),

(67, 1), (69, 2), (70, 5), (75, 1), (75, 2), (83, 5), (87, 1), (87, 7), (89, 2), (90, 2), (95, 1),

(95, 7), (97, 1), (98, 1), (99, 5), (100, 1), (102, 2), (107, 2), (110, 4), (111, 2), (112, 1),

(112, 2), (113, 1), (113, 5), (113, 6), (114, 1), (118, 1), (122, 1), (122, 4), (122, 6),

(128, 2), (129, 1), (129, 2), (130, 1), (130, 4), (130, 5), (132, 2), (133, 2), (136, 4),

(138, 2), (139, 1), (139, 2), (141, 1), (141, 2), (142, 4), (147, 1), (148, 1), (158, 7)}

and get that

k <
log(Aq/ξ)

logB
,

where q > 6N is a denominator of a convergent of the continued fraction of γ such that
ξ = ‖µq‖ −N‖γq‖ > 0. Indeed, using Sagemath, we have that

q = q82 = 12054118444825786260212254516320106583249.

We find that if (k, l, t, d) is a possible solution of the equation (1) with ω2 > 0 and (u, v) /∈ ̟1,
then k < 196. This is false because our assumption is that k > 250.

Let us now work with the cases when (u, v) ∈ ̟1. We cannot study these cases as before
because when applying Lemma 6 to the expression (29), the corresponding quantity ‖µq‖
appearing in Lemma 6 is zero. In these cases, the parameters γ and µ are linearly dependent,
which yields that the corresponding value of ξ from Lemma 6 is always negative and therefore
the reduction method is not useful for reducing the bound on k in these instances. However,
one can see that if (u, v) = (2, 4), then the resulting inequality from (29) has the shape

0 < |xγ − y| < 7

αk
,

with γ being an irrational number and x, y ∈ Z. So, one can use to the known properties of
the convergents of the continued fractions to obtain a nontrivial lower bound for

|xγ − y|.
This clearly gives us an upper bound for k. For example, when (u, v) = (2, 4),

− log(1 + α−u + α−v)

logα
= 2− 2

log 2

logα
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and from (29), we get that

0 < (d− 2)γ − (k − 2) <
7

αk
. (30)

Let [a0, a1, a2, a3, a4, a5, a6, a7, . . .] = [1, 2, 3, 1, 2, 3, 2, 4 . . .] be the continued fraction expan-
sion of γ, and let denote pn/qn its nth convergent. Recall also that d < 12 · 1034 by Lemma
7.

Furthermore, aN := max{ai; i = 0, 1, . . . , 44} = a17 = 134. So, from the known properties
of continued fractions, we obtain that

|(d− 2)γ − (k − 2)| > 1

(aN + 2)d
. (31)

Comparing estimates (30) and (31), we get that

αk < 7 · 136 · d < 12 · 1037, (32)

leading to k < 184. Using the above argument, we obtain k < 184 in the case when
(u, v) ∈ ̟1 except (2, 4). We omit the details in order to avoid unnecessary repetitions.
This completes the analysis of the cases when (u, v) ∈ ̟1. Consequently, k < 196 always
holds.

Suppose now that ω2 < 0. First, note that 7
αk < 1

2
since k > 250. Then, from (15), we

have that

|1− eω2 | < 1

2
,

thus
1

2
< eω2 <

3

2
.

Therefore
e|ω2| < 2.

Since ω2 < 0, we have

0 < |ω2| ≤ e|ω2| − 1 = e|ω2||e−|ω2| − 1| = e|ω2||eω2 − 1| < 6

αk
.

Then we obtain

0 < −d log 2 + k logα + log(1 + α−u + α−v) <
6

αk
.

By the same arguments used for proving (15), we obtain

0 < k

(

logα

log 2

)

− d+
log(1 + α−u + α−v)

log 2
<

9

αk
. (33)

We now put

γ :=
logα

log 2
, µ :=

log(1 + α−u + α−v)

log 2
, A := 9 and B := α.
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Clearly γ is an irrational number. We also put N := 12 · 1034 , which is an upper bound
on d by Lemma 7. We therefore apply Lemma 7 to inequality (33) for all choices of u ∈
{1, . . . , 184}, v ∈ {1, . . . , 184} except when

(u, v) ∈ ̟2 = {(2, 1), (3, 3), (4, 2), (5, 2), (7, 7), (8, 2), (9, 5), (9, 6), (10, 2), (11, 4), (12, 1), (13, 1),
(14, 2), (17, 4), (19, 5), (19, 6), (20, 9), (22, 1), (23, 1), (24, 1), (24, 5), (25, 1), (25, 2),

(28, 2), (30, 1), (31, 4), (32, 7), (33, 1), (36, 3), (37, 2), (38, 1), (40, 2), (44, 1), (47, 2),

(48, 1), (48, 6), (50, 1), (50, 2), (51, 9), (53, 1), (54, 2), (56, 2), (57, 2), (58, 5), (58, 6),

(58, 8), (62, 1), (62, 4), (64, 1), (66, 1), (69, 2), (70, 6), (75, 1), (75, 2), (76, 1),

(76, 4), (77, 2), (77, 3), (78, 2), (79, 2), (83, 6), (87, 1), (87, 7), (89, 1), (89, 2), (91, 1),

(91, 2), (92, 1), (94, 1), (95, 1), (95, 7), (96, 2), (97, 1), (98, 1), (99, 5), (99, 6), (102, 2),

(102, 3), (112, 2), (113, 1), (113, 5), (113, 6), (120, 1), (122, 1), (122, 5), (122, 6),

(123, 2), (129, 2), (129, 3), (130, 4), (130, 5), (134, 7), (135, 2), (138, 1), (139, 1),

(141, 1), (141, 2), (142, 4), (143, 1), (147, 1), (148, 1), (149, 2)},

and get that

k <
log(Aq/ξ)

logB
,

where q > 6N is a denominator of a convergent of the continued fraction of γ such that
ξ = ‖µq‖ −N‖γq‖ > 0. Indeed, using Sagemath, we have hat

q = q82 = 1234165504911193651820557190855668171489.

We find that if (k, l, t, d) is a possible solution of the equation (1) with ω2 < 0 and (u, v) /∈ ̟2,
then k < 192. This is false because our assumption is that k > 250. With the same arguments
as in the case ω2 > 0, when (u, v) ∈ ̟2, we obtain that k < 192. Thus, Theorem 3 is proven.
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