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Abstract

We define SanD (Sum and Difference) numbers as ordered pairs (p, q) such that
the digital sum s10(pq) = q−p = ∆ > 0. We consider both the decimal and the binary
cases in detail, and other bases more superficially. If both p and q are prime numbers,
we refer to SanD primes. For SanD primes, we prove that, with one exception, notably
the pair (2, 7), the differences ∆ = q − p = 14 + 18k, k = 0, 1, 2, . . ..
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Based on probabilistic arguments, we conjecture that the number of (base-10) SanD
numbers less than x grows like c1x, where c1 = 2/3, while the number of (base-10)
SanD primes less than x grows like c2x/ log

2 x, where c2 = 3/4.
We calculate the number of SanD primes up to 3 · 1012, and use this data to

investigate the convergence of estimators of the constant c2 to the calculated value.
Due to the quasi-fractal nature of the digital sum function, convergence is both slow
and erratic compared to the corresponding calculation for twin primes, though the
numerical results are consistent with the calculated results.

1 Introduction

In honour of the 95th birthday of one of the authors (FJD), another of the authors (NEF)
coined the SanD prime problem. Sum and Difference primes are defined to be the subset of
primes p, q ∈ PRIMES with the property that pq = r, where the sum of the (decimal) digits
of r, denoted s10(r), is equal to q − p = ∆ > 0.

There is only one pair involving the prime 2, viz. (2, 7), as 2 · 7 = 14, and s10(14) =
7 − 2 = 5. The next example is (5, 19), as 5 · 19 = 95, both 5 and 19 are primes and
s10(95) = 14 = 19− 5. If we relax the requirement of primality, we refer to SanD numbers.

Of course the SanD numbers and SanD primes can be defined in terms of the digital sum
in any base b, though b must be even for there to be a non-empty set of such numbers/primes
(see Section 4). Here we treat the decimal (b = 10) and binary (b = 2) bases in detail, and
the general case more superficially. The effect of the digital sum constraint is more prominent
in the decimal case.

The study of digital sums goes back at least to Legendre [11]. In the late 18th century
he proved that

sb(n) = n− (b− 1)
∑

j≥1

⌊ n

bj

⌋

. (1)

Because of the irregular nature of this function, attention historically turned instead to the
behaviour of the random variable sb(Un), where Un assumes each of the values {0, . . . , n−1}
with equal probability 1/n. Let Xn = Xn(b) denote the random variable sb(Un) just defined.
The first asymptotic result was proved by Bush [2] in 1940, who showed that

E(Xn) ∼
b− 1

2
logb n.

Mirsky [14] in 1949 showed that the error term in this expression is O(1), a result implicit
in Bush’s calculation. A significant improvement was made by Delange [6] who showed that

E(Xn)−
b− 1

2
logb n = F1(logb n),

where F1(x) = F1(x + 1) is a continuous, periodic nowhere differentiable function. An
elegant derivation of this result using the Mellin-Perron technique can be found in [8]. An
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illuminating discussion of the properties of this function is given in [4], as well as an extensive
bibliography and discussion of the literature on digital sums. We will not make use of this
result, except in the most general sense of referring to the properties of digital sums.

One further result worthy of note is that the ordinary generating function of the digital
sum sb(n) is given by Adams-Walter and Ruskejin [1], and is

∑

n≥0

sb(n)z
n =

1

1− z

∑

m≥0

zb
m − bzb

m+1

+ (b− 1)z(b+1)bm

(1− zbm)(1− zbm+1)
.

In the next section we prove that the definition of SanD numbers and primes restricts the
differences q − p to a given subset of the integers. In Section 3 we study the growth in the
number of SanD numbers and primes, and give probabilistic arguments that the number of
decimal SanD numbers less than x grows like 2

3
x as x gets large, while the number of decimal

SanD primes grows like 3
4
x/ log2 x. In Section 4 we consider SanD primes with an arbitrary

base b. The number of such primes less than x is also expected to grow as cbx/ log
2 x, and we

calculate the constant cb. We show that cb = 0 when b is odd. In Section 5 we give numerical
results, notably the number of SanD primes less than 3 · 1012, and show that the numerical
data gives results consistent with the probabilistic arguments of the earlier section. Section 6
treats the case of binary SanD primes, which are also enumerated up to 3·1012, and analysed.
The next section gives an heuristic calculation of the number of SanD numbers less than
x by approximating the sum-of-digits function s10(pq) by an appropriately chosen Gaussian
random variable. This gives rise to results in qualitative, though not quantitative agreement
with the numerical data. We then compare this behaviour to that of the SanD primes.

2 Possible values of ∆ for base-10 SanD numbers and

SanD primes

2.1 SanD numbers

Lemma 1. For base-10 SanD numbers, ∆ ≡ 5 (mod 9) or ∆ ≡ 0 (mod 9).

Proof. Any natural number n can be written, in decimal form, as

n =
∑

k

αk · 10k.

Its digital sum, s10(n) =
∑

k αk. Since αk · 10k ≡ αk (mod 9), working (mod 9) it follows
that every number is congruent to the sum of its digits.

For SanD numbers we require that s10(n(n + ∆)) = ∆. So n(n + ∆) − ∆ ≡ 0 (mod 9)
or (n− 1)(n+∆+ 1) ≡ 8 (mod 9). This excludes the values n+∆ ≡ 2, 5, 8 (mod 9). This
leaves the values n+∆ ≡ 0, 3 , 6 (mod 9) and n+∆ ≡ 1 , 4 , 7 (mod 9). In the first case we
have ∆ ≡ 0 (mod 9) and in the second case ∆ ≡ 5 (mod 9). Thus possible values of ∆ are
9k and 5 + 9k for k = 1, 2, 3, 4, . . ..
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Corollary 2. The condition ∆ ≡ 0 (mod 9) implies that the base-10 SanD numbers (n, n+
∆) ≡ (0, 0) (mod 3).

Proof. We have n(n+∆) = n2 +∆n. If ∆ ≡ 0 (mod 9), then ∆ ≡ 0 (mod 3) and so n2 ≡ 0
(mod 3), hence n ≡ 0 (mod 3).

Corollary 3. The condition ∆ ≡ 5 (mod 9) implies that the base-10 SanD numbers (n, n+
∆) ≡ (2, 1) (mod 3).

Proof. We have n(n + ∆) ≡ 5 (mod 9), so n2 + 5n ≡ 5 (mod 9), which has solution n ≡ 2
(mod 3). Hence n+∆ ≡ 1 (mod 3).

2.2 SanD primes

Lemma 4. For base-10 SanD primes, ∆ ≡ 5 (mod 9). If ∆ is odd, the only prime-pair is

(2, 7). If ∆ is even, then ∆ = 14 + 18k with k = 0, 1, 2, 3, 4, . . ..

Proof. For SanD primes we require that s10(p(p + ∆)) = ∆. So p(p + ∆) − ∆ ≡ 0 (mod
9) or (p − 1)(p + ∆ + 1) ≡ 8 (mod 9). This excludes the values p + ∆ ≡ 2, 5, 8 (mod 9),
and since p+∆ is prime, the values p+∆ ≡ 3, 6 , 9 (mod 9) are also excluded. This leaves
p + ∆ ≡ 1 , 4 , 7 (mod 9) giving p ≡ 5 , 8 , 2 respectively. In each case we have ∆ ≡ 5 (mod
9). If ∆ is odd, the only solution is p = 2, p+∆ = 7 as for other primes p, p+∆ is even. If
∆ is even the only solutions are ∆ = 14 + 18k with k = 0, 1, 2, 3, 4, . . ..

Corollary 5. The condition ∆ ≡ 5 (mod 9) implies that the base-10 SanD prime pair

(p, p+∆) ≡ (2, 1) (mod 3).

Proof. For the prime pair (2, 7) the result is immediate by inspection. Otherwise the proof
is identical to that of the preceding corollary.

3 The conjectured asymptotic behaviour of base-10

SanD numbers and SanD primes

In this section we give heuristic arguments, but not proofs, that the number of SanD numbers
less than x grows like 2

3
x as x gets large, while the corresponding result for SanD primes is

3
4
x log2 x. The absence of proofs is hardly surprising since even without the extra conditions

that define SanD primes, no results for prime pairs (p, q) with fixed gap ∆ = q − p have
been proved, despite the remarkable recent developments described in the papers of Zhang
[18] and Maynard [13].

4



3.1 SanD numbers

Base-10 SanD numbers less than x are defined as the set of ordered pairs (a, b) such that
1 ≤ a < b ≤ x and b− a = s10(ab).

There are x(x − 1)/2 ∼ x2/2 choices for the pair (a, b) such that 1 ≤ a < b ≤ x. The
digital sum constraint implies that s10(ab) ≡ 5 (mod 9) or 0 (mod 9). We conjecture that
this constraint reduces the quadratic growth of number pairs to linear growth. To see this,
first note that b−a = s10(a

2) has exactly one solution for each a, namely b = s10(a
2)+a. So

asymptotically there are precisely x such numbers ≤ x. However it is not true that b− a =
s10(ab) has a solution b for every a, and it is also possible (though it occurs infrequently)
that for some values of a there is more than one solution b. Accordingly, we write c1x for
the number of SanD numbers less than or equal to x solving b− a = s10(ab).

A totally different, but more complicated argument is the following: in 1968 Kátai and
Mogyoródi [10] proved the asymptotic normality of the sum-of-digits function with mean
M = 9

2
log10 x (this was known since 1940; see [2]), and variance V = 33

4
log10(x). Then

s10(ab) = b − a holds with a probability that is, for each potential pair (a, b) given by the
Gaussian

P (a, b) =
1√
2πV

exp

(−(b− a−M)2

2V

)

. (2)

Since both M and V are very small compared to x, all pairs (a, b) ocurring with appreciable
probability have a and b close to the square-root of x. Thus ab ∼ cx for some constant c.

First note that there is only one value of b satisfying b − a = s10(a
2), notably b =

s10(a
2) + a. Then we argue that there is probabilistically only one value of b satisfying

b− a = s10(ab). From corollaries 2 and 3, SanD numbers must satisfy

(a, b) ≡ (0, 0) (mod 3) or (2, 1) (mod 3).

If a ≡ (0)(mod 3), for which the probability is 1/3, then there is, as we have just argued,
one value of b satisfying the SanD condition. So the number of SanD numbers satisfying
(a, b) ≡ (0, 0) (mod 3) (and a < b < x) behaves like x/3. An identical argument applies to
the number of SanD numbers satisfying (a, b) ≡ (2, 1) (mod 3). These are independent, so
the total number of SanD numbers is expected to behave as 2x/3. Numerical experimentation
is consistent with this result.

3.2 SanD primes

The fact that the pair p, p+∆ are both primes suggests the (generalized) twin-prime con-
jecture, albeit constrained by the stringent condition on the digital sum of the product.

As discussed, for example, by Tao [16], the primes are believed (not proved) to behave
pseudo-randomly. This belief goes back at least to Cramér [5], whose model can be easily
refined, since all primes greater than 2 are odd, to one in which primes < x are modelled by
a set of integers such that odd integers are selected with probability 2/x. Further refinement
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of this model [16] leads to the prediction that the number of twin primes < x behaves like
2C2

x
log2 x

, where

C2 =
∏

p≥3 prime

(

1− 1

(p− 1)2

)

,

and is known as the Hardy-Littlewood constant [9]. Subdominant terms are given by the
stronger conjecture that the number of twin primes < x is asymptotically 2C2 Li2(x), where
Li2(x) =

∫ x

2
dt

(log t)2
. Considerably greater detail is to be found in [17].

There are known deficiencies in the refined Cramér model, particularly for local problems.
Maier [12] obtained the (then) surprising result that the model was defective for certain
short intervals between primes, while Pintz [15] showed further problems, of a global nature.
Despite this, the refined Cramér model does seem to predict what is believed to be the
correct asymptotic behaviour of twin primes, including the Hardy-Littlewood constant [9].

At a similar level of assumption then, the number of unconstrained prime SanD pairs
(p, p+∆) < x is expected to behave as cx/ log2 x, where the constant c depends on ∆.1

In the case of SanD primes, we have shown that ∆ = 14 + 18k for k = 0, 1, 2, . . .
(neglecting the isolated case ∆ = 5). However for x = 10k, the number of possible choices
for ∆ increases roughly as log10 k. For example, for x = 108 there are exactly 8 values of ∆
contributing to the total number of SanD primes < 108, as can be seen from Table 5 below.
This would imply an extra factor log x in the asymptotic behaviour of SanD primes.

There is however a second constraint, which is that the digital sum must be equal to ∆.
The summands of the digits of the natural numbers up to 10n vary from 1 to 9 log10 x, that is,
from 1 to 9n. The distribution is symmetrical and unimodal. Since the number of summands
is proportional to log x, the probability of a particular summand is proportional to 1/ log x.
Similarly, restricting ourselves to primes, or even twin primes, the number of summands still
appears to be proportional to log x, so the probability of a particular summand is given by
the reciprocal, 1/ log x.

Thus we see that these two effects, the infinite number of possible values for ∆ and the
constraint that the digital sum of the product s10(p(p+∆)) = ∆ cancel each other out. So
we expect that, asymptotically, the number of SanD primes < x grows like cx/ log2 x for
some constant c.

Despite the superficial similarity to twin primes discussed above, it is more appropriate to
compare the SanD prime pairs with uncorrelated pairs of prime numbers. So we will compare
the number N1 of prime pairs (a, b), assuming the ordering a < b, with b− a = s10(ab), and
b < x, with the total number N2 of prime pairs (a, b) in this range.

We are interested in the ratio
r = N1/N2.

The number N2 of uncorrelated pairs is simply the square of the number of primes in this

1The dependence on ∆ is irregular, depending on the prime divisors of ∆. See for example [3]. Clearly,
c(2) = C2 as defined above.
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range. The prime number theorem tells us that

N2 ∼
1

2
(x/ log x)2,

asymptotically for large x where the factor 1/2 comes from the ordering.
The main statistical assumption is that the ratio r is a product of factors, one for each

prime divisor q, with the divisibility of the candidate primes by different divisors q being
uncorrelated. For each q, the factor is the ratio of probabilities of integer-pairs being both
prime to q, with and without the digit-sum condition.

For every prime q not equal to 3, the digit-sums are distributed randomly over all the
residue classes (mod q).

For each of these primes, the digit-sum condition does not change the probability that
an integer-pair will both be prime to q. Each of these primes contributes a factor unity to
the ratio r. Only for q = 3 does the digit-sum condition change the probabilities.

Since the digit-sum is equal to (ab) (mod 3), the pair (a, b) must always be (2, 1) (mod
3), as proved in corollary 5.

The chance that the elements of an uncorrelated pair (a, b) are both prime to 3 is 4
9
, while

a pair satisfying the digit-sum condition must be (2, 1) (mod 3) or (0, 0) (mod 3), as proved
in corollaries 2 and 3. Only in the first case are both prime to 3, so the probability is 1/2.
The factor contributed by the prime 3 to the ratio r is then

1

2
/
4

9
=

9

8
.

Multiplying all the factors together gives the result

r =
9T1

8T2

,

where T1 and T2 are the total number of integer pairs with and without the digit-sum
condition respectively. We calculated

T1 ∼
2

3
x,

the number of SanD numbers < x, in Subsection 3.1, while

T2 ∼
x2

2
, so r =

3

2x
.

This gives the final result, as x tends to infinity,

N1 ∼
3

2
· 1
2

x

log2 x
=

3

4
x log2 x.
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4 SanD primes with an arbitrary base

Generalising the above result to an arbitrary base, we find that for base-b, the number of
SanD primes less than x as x tends to infinity, grows like cbx/ log

2 x, where

cb =
∏

q

q(q − 2)

(q − 1)2
=
∏

q

(

1− 1

(q − 1)2

)

,

where the product is taken over prime factors q of b− 1. (The similarity of this constant to
the Hardy-Littlewood constant is noteworthy).

This result follows from the generalisation of the statistical argument given above for the
decimal case, calculating the ratio r = N1/N2. This ratio is, as stated, a product of factors,
one for each prime divisor of b− 1, with the divisibility of the candidate primes by different
divisors q being uncorrelated.

It follows from Legendre’s result (1) that the digit-sums are randomly distributed over
all the residue classes (mod q) except for prime factors of b− 1. (This gave q = 3 as the only
case in the decimal case b = 10 we originally considered. Now we have the same result for
base 4, as q = 3 is the only prime factor of b− 1 = 3, while for bases 6 and 8 the only prime
factors we need consider are 5 and 7 respectively. For base 16 we’d need to consider both 3
and 5).

So the probability that the elements of an uncorrelated pair (a, b) are both prime to q is
((q− 1)/q)2. We have already seen that, modulo 3, a pair satisfying the digit sum condition
must be (2,1) or (0,0). Only in the first case are both prime to 3, so the relevant probability
is 1/2. Now generalising this, we see that for mod 5 the relevant pairs are (0,0), (3,1), (4,2),
(2,3), and only in the last three cases are both prime to 5, giving a factor 3/4. And in general
this factor will be (q − 2)/(q − 1). Thus

r = (T1/T2)(q − 2)/(q − 1)/((q − 1)/q)2.

As before T2 = x2/2 and T1 = (q − 1)/q, which follows by generalising the argument in
Section 3 as follows: The probability of a randomly chosen pair satisfying the divisibility
condition is (q − 1)/q2, and the probability of a particular product is 1/q, so this ratio is
(q − 1)/q, given as 2/3 for the decimal case, where q = 3. Putting these factors together
gives the result. It follows that cb = 0 for odd bases b. That is to say, there are no SanD
primes in such cases. For b = 2 one has c2 = 1.

The analogue of Lemma 4 for base 2 SanD primes is: ∆ = 4 + 2k, k = 0, 1, 2, . . ., and
c2 = 1 for base 2.

For base 4 SanD primes it is ∆ = 8 + 6k, k = 0, 1, 2, . . ., and c2 = 3/4 for base 4.
For base 6 SanD primes it is ∆ = 6 + 10k; 8 + 10k, k = 0, 1, 2, . . ., and c2 = 15/16 for

base 6.
For base 8 SanD primes it is ∆ = 10 + 14k; 18 + 14k; 20 + 14k, k = 0, 1, 2, . . ., and

c2 = 35/36 for base 8.
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5 Numerical calculation of SanD numbers and primes

We first wrote a Maple program to enumerate SanD primes. We wanted to provide numerical
support for the conjectured behaviour, notably that the number of SanD primes < x grows
like c2x/ log

2 x with c2 = 3/4.
In a few hours on a 4GHz Intel i7 iMac with 64Gb of memory we found all SanD primes

as large as 3 ·108, but convergence was irregular. Andrew Conway kindly wrote a C program
that, on a larger computer with 32 cores and 256 Gb of memory enabled us to obtain SanD
primes as large as 3 · 1012 in a day of computing time.

In Table 5 below we give the number of SanD primes less than x for various values of
x ≤ 3 · 1012, given with the appropriate value of ∆. We have seen that with ∆ = 5 there is
only one SanD prime. With ∆ = 14 there appears to be only 19. This is misleading. There
is a large gap to the next one, which is 11000000000000003, that is, around 1016, which is
beyond our enumerative ability. Indeed, for any valid value of ∆ there are (probabilistically)
an infinite number of SanD primes. We now sketch a constructive proof for the case ∆ = 14,
which can be repeated mutatis mutandis for any other valid value of ∆.

Proof. Assume that the primes behave like independent random variables. Consider the
number

S = 3 + 10r + 10s,

with r, s > 0. Then

S(S + 14) = 51 + 2.10r+1 + 2.10s+1 + 102r + 102s + 2.10r+s.

The digital sum (5 + 1 + 2 + 2 + 1 + 1 + 2) is 14 for every such product, so the number of
prime-pairs is, probabilistically speaking, infinite.

Similarly, for ∆ = 32, for the same number S we have s10(S(S + 32)) = 32. For ∆ = 50,
the appropriate choice is S = 7 + 3 · 10r + 10s, with r, s > 0. Then s10(S(S + 50)) = 50.
Similar such numbers S can be found for other values of ∆, showing that for every valid ∆
there is an infinite number of SanD numbers, and so, probabilistically speaking, an infinite
number of SanD primes.

Referring again to Table 5, Richard Brent (private communication) pointed out (i) that
the diagonal above which the entries are zero can be immediately predicted from the fact
that s10(n) < 9d for n < 10d, (ii) that the maximal entry in each row occurs approximately
halfway to the boundary, and (iii) that the above probabilistic argument can be extended to
conjecture the growth of N∆(x), the number of SanD primes x with x < X and difference
∆. In particular, that N14(X) ≫ log logX.

Assuming that the number of SanD primes less than x grows like c2x/ log
2 x as argued

above, we have estimated the value of the constant c2 in three different ways. Firstly, as
the number of primes less than x, denoted as usual by π(x), grows like x/ log x, it follows
that xT (x)/π(x)2 should converge to c2. This estimator is given in the third column of
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x ∆ = 14 32 50 68 86 104 122 140 158 176 194
102 7 0 0 0 0 0 0 0 0 0 0

3 · 102 9 4 0 0 0 0 0 0 0 0 0
103 11 10 0 0 0 0 0 0 0 0 0

3 · 103 14 29 1 0 0 0 0 0 0 0 0
104 15 69 21 0 0 0 0 0 0 0 0

3 · 104 16 136 109 2 0 0 0 0 0 0 0
105 16 218 464 14 0 0 0 0 0 0 0

3 · 105 18 329 1310 134 0 0 0 0 0 0 0
106 18 451 3579 954 8 0 0 0 0 0 0

3 · 106 19 582 7740 4099 98 0 0 0 0 0 0
107 19 722 15662 16417 1170 2 0 0 0 0 0

3 · 107 19 826 27871 48714 7831 82 0 0 0 0 0
108 19 944 47206 139196 48831 1985 6 0 0 0 0

3 · 108 19 1014 72994 315414 200810 16247 126 0 0 0 0
109 19 1094 106919 696450 813091 135580 3213 0 0 0 0

3 · 109 19 1134 147652 1347257 2508310 699799 31654 88 0 0 0
1010 19 1178 195617 2499225 7575349 3686127 329134 3302 0 0 0

3 · 1010 19 1201 247383 4213080 18918254 13982418 1995357 43223 158 0 0
1011 19 1222 303418 6850021 46040607 53629221 12799997 651464 965 0 0

3 · 1011 19 1240 359059 10361558 97588868 163082279 56956080 5104309 18913 8 0
1012 19 1247 414440 15154071 201275729 497036770 264337125 44101608 425673 911 0

3 · 1012 19 1262 466029 20993451 373934734 1273600647 938235422 243895420 4365872 21996 3

Table 1: SanD primes data. The contribution from ∆ = 5 adds 1 to each row and is not shown here.
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Table 5. Another estimator is T (x) log2 x/x, while if the asymptotics are similar to that of
twin primes, T (x)/Li2(x) would converge more rapidly. Recall that asymptotically

Li2(x) =
x

log2 x

(

1 +
2

log x
+

6

log3 x
+O

(

1

log4 x

))

,

while [7]
π2(x)

x
=

x

log2 x

(

1 +
2

log x
+

5

log3 x
+O

(

1

log4 x

))

,

so these differ only in the last quoted coefficient, and even then by only 20%. These last
two estimators are given in columns four and five of Table 5. Both seem to fit the SanD
distribution somewhat better than the leading term, x/ log2 x, and the same is true for binary
SanD primes, discussed below. This may not persist for larger values of x than we are able
to compute.

In no case is convergence regular, unlike the corresponding situation for primes or twin
primes. This is not surprising as the SanD primes are likely to have jagged irregularities in
their distribution because the digit-sum function has jagged irregularities whenever the first
or second digit changes from nine to zero.

The data in Table 5 is totally consistent with a value of c2 ≈ 0.75. Taking data for
x ≥ 106, the third column entries average around c2 = 0.725, the fourth column average
is c2 = 0.811, and the fifth column gives c2 = 0.721. This variation is indicative of the
jagged convergence, and an estimate of c2 ≈ 0.75 seems appropriate, in agreement with our
calculation above.

6 Binary SanD primes

We have also investigated the properties of SanD primes in base 2. The number of such SanD
primes B(x) less than x for x = 10n, n = 2, 3, 4, . . . , 12 and x = 3 · 10n for n = 9, . . . , 12, is
given in the second column of Table 6. Note that B(10) = 0.

As with base-10 SanD primes, we write B(x) ∼ b2x/ log
2 x, and estimate the constant

b2 three different ways. The results are shown in Table 6. We see that convergence is
significantly smoother than in the base-10 case, but still not monotonic, due to the jagged
irregularities in the digit-sum function.

Nevertheless, a glance at the table entries would suggest a limit of 1 and this is as
calculated in Section 4. These numbers show clearly the difference between decimal and
binary digit-sums. The decimal sum of x differs from x by a multiple of 9, and this causes
the bunching of SanD primes into the groups ∆ = 14, 32, 50, etc. In the binary case the 9
is replaced by 1, and the divisibility by 1 does not cause any bunching. There is only the
divisibility by 2 imposed by the fact that all primes after 2 are odd. So we see that the
binary coefficients converge to the value 1 rather than 3/4. For the binary case, there is no
special prime that plays the role of 3 in the decimal case, and every SanD integer pair of size
x has an equal chance 1/ log2 x of being a prime-pair.
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x Total=T (x) xT (x)/π(x)2 T (x) log2(x)/x T (x)/Li2(x)
102 8 1.2800 1.697 0.7804

3 · 102 14 1.0926 1.518 0.7965
103 22 0.7795 1.050 0.6343

3 · 103 45 0.7301 0.9615 0.6438
104 106 0.7018 0.8992 0.6533

3 · 104 264 0.7521 0.9352 0.7161
105 713 0.7749 0.9450 0.7539

3 · 105 1792 0.7954 0.9501 0.7789
106 5011 0.8132 0.9564 0.8021

3 · 106 12539 0.8002 0.9297 0.7926
107 33993 0.7697 0.8831 0.7639

3 · 107 85344 0.7418 0.8432 0.7375
108 238188 0.7085 0.8082 0.7141

3 · 108 606625 0.6890 0.7704 0.6862
109 1756367 0.6793 0.7543 0.6770

3 · 109 4735914 0.6809 0.7517 0.6789
1010 14289952 0.6901 0.7576 0.6883

3 · 1010 39400953 0.6994 0.7643 0.6978
1011 120276935 0.7092 0.7716 0.7078

3 · 1011 333472334 0.7162 0.7763 0.7149
1012 1022747594 0.7231 0.7808 0.7219

3 · 1012 2855514856 0.7298 0.7856 0.7287

Table 2: Decimal SanD prime analysis. π(x) is the number of primes < x. The totals include
the contribution of 1 from ∆ = 5.
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x Total=B(x) xB(x)/π(x)2 B(x) log2(x)/x B(x)/Li2(x)
102 6 0.9600 1.2724 0.5853
103 32 1.1338 1.5269 0.9226
104 172 1.1387 1.4591 1.0601
105 922 1.0021 1.2221 0.9749
106 5632 0.9140 1.0750 0.9016
107 41421 0.9378 1.0761 0.9308
108 335551 1.0109 1.1386 1.0061
109 2637661 1.0202 1.1328 1.0167

3 · 109 7017793 1.0090 1.1139 1.0060
1010 20619112 0.9957 1.0932 0.9932

3 · 1010 55563472 0.9863 1.0779 0.9840
1011 167019412 0.9849 1.0715 0.9828

3 · 1011 460924135 0.9900 1.0730 0.9881
1012 1410277428 0.9970 1.0767 0.9954

3 · 1012 3905976118 0.9983 1.0747 0.9968

Table 3: Binary SanD prime analysis. π(x) is the number of primes < x.

7 Irregular convergence

7.1 SanD numbers

In this section we give an heuristic calculation for the irregular behaviour of decimal SanD
numbers, based on the approximation that each sum-of-digits function s10(ab) can be re-
placed by a Gaussian random variable, with mean value M = 9

2
log10(u) and variance

V = 33
4
log10(u), where u = ab. Here 9

2
is the mean value of a decimal digit, and 33

4
is

the mean-square-deviation from the mean, as discussed above in Eqn. (2).
This approximation is good when u is large and the log10(u) digits are statistically in-

dependent variables. Then the equation s10(ab) = b− a holds with a probability that is for
each potential pair (a, b) equal to the Gaussian Eqn. (2).

Since M and V are very small compared with u, all pairs that occur with appreciable
probability have a and b both close to the square root of u. The potential SanD numbers
(a, b) lie in a narrow strip around the line a = b. To accord with the SanD prime calculation,
we restrict the allowed values of b− a to be integers of the form 18j − 4 with j = 1, 2, 3, . . ..
Therefore the population density of SanD numbers is given by the sum

W (u) =
1√
2πV

y
∑

j≥0

exp

(

−162

(

j − 4+M
18

)2

V

)

,

summed over integer j. The sum is strictly over positive j, but we can extend it to all
positive and negative j without significant error, since the terms with negative j are much
smaller than unity.
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The sum W (u) can be transformed to a rapidly converging sum by using the Poisson
Summation formula, giving

W (u) =

j=∞
∑

j=−∞

exp

(

−V π2j2

162
+ π.ij

4 +M

9

)

.

We keep only the three terms of the transformed sum with j = 0, 1 and −1. These give

W (u) = 1 + 2u−a cos

(

π

2

(

log10(u) +
8

9

))

,

with exponent

a =
11π2

216 log(10)
≈ 0.218.

The omitted terms with |j| > 1 are of order u−4a or smaller and are certainly negligible.
The equation for W (u) shows that the SanD numbers occur with approximately constant
population density 1 as a function of the square-root of u, with a deviation which is a low
power of u multiplied by a cosine periodic in log10(x) with period 4.

Since the digit-sums are not in fact independent random variables, this calculation using
Gaussian probabilities is not rigorous.

In our previous calculations, we have been counting SanD numbers and primes (a, b)
such that a < b < x, and calculating the number of such numbers/primes < x. In the above
treatment, we start with the probability P (u) that an integer u is the product ab of a SanD
number pair, so typically x =

√
u.

To test this approximate treatment, we have counted SanD numbers such that ab < u, for
u = 10n/5, where n = 1, 2, . . . , 40. Denote these counts d(n). For n < 13 we have d(n) = 0.
For n ≥ 13 the counts d(n) are

d(n) =1, 3, 5, 7, 10, 12, 17, 23, 27, 35, 43, 52, 62, 73, 91, 114, 141, 165,

217, 267, 334, 430, 549, 715, 902, 1143, 1442, 1782,

for n = 13, 14, 15, . . . 40, respectively.
The probability P (u) above is then predicted to be

P (u) =
1

12
√
u

(

1 + 2u−a cos

(

π

2

(

log10(u) +
8

9

)))

,

(The prefactor 1/(12
√
u) is included to give the predicted asymptotic behaviour x/6 for the

number of SanD numbers less than x. The constant 1/12 arises as we are only counting the
subset of SanD numbers corresponding to b− a = 18j − 4.)

To connect the counts d(n) with this formula we require the discrete derivative of the
counting function. Thus we define

d′(n) ≡ d(n+ 1)− d(n− 1)

10(n+1)/5 − 10(n−1)/5
.
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To study the fluctuations, we need to compare the calculated value based on the Gaussian
approximation

Pfluc(u) = P (u)− 1/(12
√
u)

with the numerical estimate obtained from the data,

Dfluc(u) = d′(n)− 1/(12
√
10n/5).

We multiply both Pfluc(u) and Dfluc(u) by 12
√
10n/5, which makes all the fluctuations

the same relative scale, and show the results in Figure 1.

Figure 1: Dfluc(u) · 12
√
10n/5 (red circles) and Pfluc(u) · 12

√
10n/5 (blue diamonds) for 12 6

n 6 40.

The discrete derivatives are shown as (red) circles, the predicted probabilities as (blue)
diamonds. The agreement quantitatively is disappointing, but qualitatively is instructive,
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showing that the actual data and the predicted data display similar irregularities. Unfortu-
nately they don’t correspond in magnitude and phase, presumably because the assumption,
that the digit-sums are independent Gaussian random variables, is wrong.

7.2 SanD primes

As discussed above, we expect the number of base-10 SanD primes< x to behave as 3
4
x/ log2 x

as x becomes large. To clearly see the irregular nature of convergence of the numerical data
to this behaviour, we compute the deviation as follows. Recall that T (x) denotes the number
of SanD primes < x. So

T (x) =
3

4

x

log2 x
(1 + θ(x)),

where θ(x) is of course unknown. We have calculated θ(x) for x < 3 · 1012 from the data
in Table 5, and show the results in Figure 2. While there is insufficient data to be conclu-
sive, there appears to be similar periodic behaviour to that observed in the SanD number
fluctuations above, suggesting a possible periodic correction term.

8 Conclusion

We have defined SanD numbers as ordered pairs (m, n) such that the digital sum sb(mn) =
n −m = ∆ > 0. We considered in detail both the decimal (b = 10) and the binary (b = 2)
case. If both m and n are prime numbers, we refer to SanD primes. Subject to the unproven
assumption that primes behave as pseudorandom numbers, in a manner described above, we
show that the number of (base-10) SanD numbers less than x grows like c1x, where c1 = 2/3,
while the number of SanD primes less than x grows like c2x/ log

2 x, where c2 = 3/4. The
value of the corresponding constants for arbitrary base-b were also calculated. For binary
SanD primes we show similarly that the number of such primes B(x) < x behaves like
B(x) ∼ b2x/ log

2 x with b2 = 1.
We calculated the number of SanD numbers and primes < 3 · 1012 in order to test the

above calculations. The numerical data was consistent with the conjectured results. How-
ever due to the sawtooth nature of the digital sum function, convergence of the estimators
of the constants c1 and c2 with increasing x was found to be more erratic than the corre-
sponding situation with twin primes, which, apart from the constant, have the same leading
asymptotics.

The twin prime distribution fits well the SanD prime pair numbers in both the decimal
and binary cases (at least for primes less than 3 · 1012), i.e., cLi2(x) where c = 3/4 and 1
respectively, in contrast with the twin prime conjecture [9] with c = 2C2 = 1.32 · · · , where
C2 is the twin prime constant.
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Figure 2: θ(x) versus log10(x).
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10 Appendix

In the table below we show some SanD prime enumerations, giving the first 19 SanD primes
for the first few values of ∆. For each entry p it follows that s10(p(p + ∆)) = ∆. There is
one further entry, not shown, corresponding to the sole SanD prime when ∆ = 5, which is
p = 2.

∆ = 14 ∆ = 32 ∆ = 50 ∆ = 68 ∆ = 86
5 149 2543 19961 412253
17 179 3137 28211 547661
23 239 3407 43541 871163
29 281 4973 44111 937661
53 389 5147 62861 982703
59 431 5693 66821 989381
83 491 7193 69941 992363
113 509 7523 83621 996551
167 569 7649 86561 999917
383 659 7673 88721 999953
443 1019 8243 89261 1296101
1103 1031 8513 92111 1297601
1409 1061 8573 94781 1329863
2003 1259 8627 99191 1336253
3203 1289 9293 120671 1337813
11483 1427 9461 125261 1378253
100043 1439 9497 129461 1410203
200003 1901 9767 129959 1608611
1001003 2081 9833 130211 1642211

Table 4: Low-order SanD primes.
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[11] A. Legendre, Théorie des Nombres. 4th edition, Firmin Didot Frères, 1900.

[12] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), 221–225.

[13] J. Maynard, Small gaps between primes, Ann. Math. 181 (2015), 1–31.

[14] L. Mirsky, A theorem on representations of integers in the scale of r, Scripta Math. 15

(1949) 11–12.

[15] J. Pintz, Cramér vs. Cramér. On Cramér’s probabilistic model for primes, Functiones
et Approx. 37 (2007), 361–376.

[16] T. Tao, Structure and randomness in the prime numbers, in Dierk Schleicher and
Malte Lackmann, eds., An Invitation to Mathematics: From Competitions to Research,
Springer-Verlag, 2011, pp. 1–7.

19

https://www.utm.edu/staff/caldwell/preprints/Heuristics.pdf
https://www.utm.edu/staff/caldwell/preprints/Heuristics.pdf


[17] T. Tao, Probabilistic models and heuristics for the primes, 2015. Available at https://
tinyurl.com/vkncupy.

[18] Y. Zhang, Bounded gaps between primes, Ann. Math. 179 (2014) 1121–1174.

2010 Mathematics Subject Classification: Primary 11A41; Secondary 11A63, 11Y55, 11Y60.
Keywords: SanD number, constrained prime pair, digital sum, asymptotics of primes.

Received April 17 2019; revised version received July 22 2019; January 7 2020. Published in
Journal of Integer Sequences, February 24 2020.

Return to Journal of Integer Sequences home page.

20

https://tinyurl.com/vkncupy
https://tinyurl.com/vkncupy
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Possible values of  for base-10 SanD numbers and SanD primes
	SanD numbers
	SanD primes

	 The conjectured asymptotic behaviour of base-10 SanD numbers and SanD primes
	SanD numbers
	SanD primes

	SanD primes with an arbitrary base
	Numerical calculation of SanD numbers and primes
	Binary SanD primes
	Irregular convergence
	SanD numbers
	SanD primes

	Conclusion
	Acknowledgments
	Appendix

