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Abstract

We give an in-depth analysis of an algorithm, introduced by Kimberling in the On-

Line Encyclopedia of Integer Sequences, that generates permutations of the natural

numbers. It turns out that each example of such a permutation in the Encyclopedia is

completely determined by some 3-automatic sequence.

1 Introduction

Let L : N → N and R : N → N be two functions. A left-right filling procedure is an algorithm
that may produce an permutation Π of N as follows:

First set Π(1) := 1. Then for each n ≥ 2, set

{

Π(n− L(n)) := n, if Π(n− L(n)) is not yet defined;

Π(n+R(n)) := n, otherwise.

Here we say “may produce” because Π(n) might not be defined for all n.
The simplest example of a pair (L,R) generating a permutation is given by

L(n) = 1, R(n) = 1 for all n.
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We find consecutively that

n = 2 ⇒ Π(2 +R(2)) = Π(3) = 2,

n = 3 ⇒ Π(3− L(2)) = Π(2) = 3,

n = 4 ⇒ Π(4 +R(4)) = Π(5) = 4,

and in general Π(2n) = 2n + 1, Π(2n + 1) = 2n. So this pair (L,R) generates the self-
inverse permutation of N given by sequence A065190 in the On-Line Encyclopedia of Integer
Sequences (OEIS) [5].

An example of a pair (L,R) that does not generate a permutation is given by

L(n) = n− 1, R(n) = n− 1 for all n.

Here only the odd arguments of Π become defined: Π(2n+ 1) = n+ 1 for all n ≥ 0.
In this paper, we will be mainly occupied with the pair of functions given by

L(n) =
⌊n

2

⌋

, R(n) =
⌊n

2

⌋

for all n.

This pair was introduced by Kimberling in the On-Line Encyclopedia of Integer Sequences
[5] in entry A026136. The permutation it generates is

Π = 1, 3, 2, 7, 9, 4, 5, 15, 6, 19, 21, 8, 25, 27, 10, 11, 33, 12, 13, 39, 14, 43, 45, 16, 17, 51, 18, . . .

We will establish a one-to-one connection of this permutation with a 3-automatic sequence
that permits one to prove a number of properties of this Π. We shall next analyze other
left-right filling algorithms in a similar way, establishing many relations between the corre-
sponding permutations.

2 Left and right functions

2.1 The pair L(n) = ⌊n/2⌋, R(n) = ⌊n/2⌋.

When L(n) = ⌊n/2⌋, R(n) = ⌊n/2⌋, there are four possibilities for the value of Π(n).
Splitting into the cases L(n) = R(n) = n/2 for n even, and L(n) = R(n) = (n− 1)/2 for n
odd, one arrives at the following four cases

(I) Π(n) odd, Π(n) > n, Π(n) = 2n− 1;

(II) Π(n) even, Π(n) > n, Π(n) = 2n;

(III) Π(n) odd, Π(n) < n, Π(n) = (2n+ 1)/3;

(IV) Π(n) even, Π(n) < n, Π(n) = 2n/3.

We say Π(n) is of type (I), etc., when we are in case (I), etc.
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Lemma 1. If the left-right filling procedure is at step 2n, then the natural numbers 1, 2, . . . , n
have already been assigned a Π-value.

Proof. By induction. This is trivially true for n = 1. If we are at step 2(n+1), then 1, 2, . . . , n
have been assigned a Π-value by the induction hypothesis. The number n + 1 be assigned
a Π-value in steps 1, 2, . . . , 2n. If not, then it was assigned the value Π(n + 1) = 2n + 1 at
step 2n+ 1, since

2n+ 1−
⌊2n+ 1

2

⌋

= 2n+ 1− n = n+ 1.

We use the following terminology. If Π(n − L(n)) = n at step n in the algorithm, then
we say we ‘go to the left’, whereas if Π(n+R(n)) = n, then we say we ‘go to the right’.

Lemma 1 excludes the possibility of going to the left at step 2n, so it implies the following
proposition.

Proposition 2. For all n ≥ 1, Π(3n) = 2n.

The next task is to determine the type of all entries of Π.

Theorem 3. Let n, k be natural numbers. Then

(a) Π(n) never has type (II).

(b) If n = 3k then Π(n) has type (IV).

(c) If n = 3k + 2 then Π(n) has type (I).

(d) If n = 3k+1 then Π(n) has type (I) if Π(k+1) has type (I) and Π(n) has type (III) if
Π(k + 1) has type (III) or type (IV).

Proof.

(a) Π(n) is never equal to 2n, since either n has been assigned the value 2n − 1 at step
2n− 1: 2n− 1−⌊(2n− 1)/2⌋ = n, or n has been assigned a smaller value at an earlier
step.

(b) is a rephrasing of Proposition 2.

(c) follows from part (a) and the observation that both 2n + 1 = 2(3k + 2) + 1 = 6k + 5
and 2n = 6k + 4 are not divisible by 3.

(d) Type (II) is excluded by part (a), and type (IV) is excluded because 2n = 6k + 2 is
not divisible by 3. So Π(n) is either 2n − 1 (type (I)), or (2n + 1)/3 (type III). Here
(2n + 1)/3 = (6k + 3)/3 = 2k + 1. But 2k + 1 = 2(k + 1) − 1 was already assigned
to k + 1 if Π(k + 1) has type(I), so then Π(n) = 2n − 1 has type (I). Conversely, if
Π(k + 1) has not type (I), i.e., type (III) or type (IV), then Π(n) has type (III).
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Theorem 3 can easily be transformed into the following statement.

Theorem 4. Let σ on the monoid {1, 3, 4}∗ be the monoid morphism given by

σ(1) = 114, σ(3) = 314, σ(4) = 314.

Let s = 1141143141141143143141143141141143141141 . . . be the fixed point of σ with prefix
equal to 1. Then sn = 1 iff Π(n) has type (I), sn = 3 iff Π(n) has type (III), and sn = 4
iff Π(n) has type (IV).

This result has several corollaries. A first corollary is a partial self-similarity property of
the permutation Π.

Theorem 5. Let E be the sequence of natural numbers defined by

E(3n+ 1) = 9n+ 1, E(3n+ 2) = 9n+ 4, E(3n+ 3) = 9n+ 6 for n ≥ 0.

Then Π(E(n)) = 3Π(n)− 2 for n ≥ 0.

Proof. We split the proof in the three cases for the argument modulo 3 of E. Note that

σ2(1) = 114114314, σ2(3) = 314114314, σ2(4) = 314114314.

From this expression we can read off the type of Π(9n+ 1), Π(9n+ 4) and Π(9n+ 6), using
Theorem 3.

• The case Π(9n+ 1):

– Subcase Π(9n+ 1) has type (I): From Theorem 3 we then obtain that Π(3n+ 1)
also has type (I). We find Π(9n+1) = 2(9n+1)− 1 = 18n+1, which is equal to
3Π(3n+ 1)− 2 = 3(2(3n+ 1)− 1)− 2 = 18n+ 1.

– Subcase Π(9n+1) has type (III): From Theorem 3 we then obtain that Π(3n+1)
has type (III), or type (IV). However, type (IV) does not occur, since 3n + 1 is
not divisible by 3. We then find Π(9n + 1) = (2(9n + 1) + 1)/3 = 6n + 1, which
is equal to 3Π(3n+ 1)− 2 = 3((2(3n+ 1) + 1)/3)− 2 = 6n+ 1.

• The case Π(9n + 4): In this case both Π(9n + 4) and Π(3n + 2) have type (I). We
then find Π(9n + 4) = 2(9n + 4) − 1 = 18n + 7, which is equal to 3Π(3n + 2) − 2 =
3(2(3n+ 2)− 1)− 2 = 18n+ 7.

• The case Π(9n + 6): In this case both Π(9n + 6) and Π(3n + 3) have type (IV). We
then find Π(9n + 6) = 2(9n + 6)/3 = 6n + 4, which is equal to 3Π(3n + 3) − 2 =
3(2(3n+ 3)/3)− 2 = 6n+ 4.
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Application 6. Consider the OEIS sequence A026186, with name “a(n) = (1/3)*(s(n) + 2),
where s(n) is the n-th number congruent to 1 mod 3 in A026136”, and with data

“1, 3, 2, 7, 9, 4, 5, 15, 6, 19, 21, 8, 25, 27, 10, 11, . . . ” .

In the comments we find: “Is this a duplicate of A026136? - R. J. Mathar, Aug 26 2019”,
and “A026186(n) = A026136(n) for n <= 10∧7. - Sean A. Irvine, Sep 19 2019”.

Translated to our setting, we have to show that

(a) Π(n) ≡ 1 (mod 3) ⇔ n ∈ {E(k) : k ≥ 0}; and

(b) 1
3
(Π(E(n) + 2) = Π(n) for n ≥ 0.

One side of (a) follows from Theorem 4, and the formula for σ2 above:

Π(9n+ 2) has type (I) ⇒ Π(9n+ 2) = 2(9n+ 2)− 1 = 18n+ 3 ≡ 0 (mod 3);

Π(9n+ 3) has type (IV) ⇒ Π(9n+ 3) = 2(9n+ 3)/3 = 6n+ 2 ≡ 2 (mod 3);

Π(9n+ 5) has type (I) ⇒ Π(9n+ 5) = 2(9n+ 5)− 1 = 18n+ 9 ≡ 0 (mod 3);

Π(9n+ 7) has type (III) ⇒ Π(9n+ 7) = (2(9n+ 7) + 1)/3 = 6n+ 5 ≡ 2 (mod 3);

Π(9n+ 8) has type (I) ⇒ Π(9n+ 8) = 2(9n+ 2)− 1 = 18n+ 15 ≡ 0 (mod 3);

Π(9n+ 9) has type (IV) ⇒ Π(9n+ 9) = 2(9n+ 9)/3 = 6n+ 6 ≡ 0 (mod 3).

Since all six are not equal to 1 modulo 3, but they are equal for the remaining three cases
modulo 9 by Theorem 5, this proves part (a).

Part (b) follows directly from Theorem 5.

We call an element Π(n) of the permutation Π a record if Π(n) > Π(k), for all k < n.
Let Rpos = A026138 be the sequence of positions of records in Π:

Rpos = 1, 2, 4, 5, 8, 10, 11, 13, 14, 17, 20, 22, 23, 26, 28, 29, 31, 32, 35, 37, 38, 40, 41, . . .

The sequence Rrec = A026139 of records in Π defined by Rrec(n) = Π(Rpos(n)) is given by

Rrec = 1, 3, 7, 9, 15, 19, 21, 25, 27, 33, 39, 43, 45, 51, 55, 57, 61, 63, 69, 73, 75, 79, 81, . . .

In the sequel we write ∆x for the sequence of first differences
(

x(n + 1) − x(n)
)

of a
sequence x.

Proposition 7. Let τ be the morphism given by τ(1) = 12, τ(2) = 132, τ(3) = 1332.
Let t = 12132121332132 · · · be the unique fixed point of τ . Then ∆Rpos = t, and ∆Rrec = 2t.
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Proof. The records in Π are exactly given by the Π(n) of type (I). So the positions of these
records are given by the positions of 1 in s. To obtain these, one considers the return words
of the word 1 in s. These are 1, 14 and 143. Since

σ(1) = 1 14, σ(14) = 1 143 14, σ(143) = 1 143 143 14,

the induced derived morphism is equal to τ , where we code the return words by their lengths.
Since we code the return words by their lengths, this gives that Rpos(n+1)−Rpos(n) = t(n),
where t is the unique fixed point of τ . The second equation follows from the fact that all
records are of type (I), and so

Rrec(n+1)−Rrec(n) = Π(Rpos(n+1))−Π(Rpos(n)) = 2Rpos(n+1)−1−(2Rpos(n)−1) = 2t(n).

Remark 8. The proposition states that A026141 = 1
2
∆Rrec = t. Also, let A026140(n) :=

1
2
(Rrec(n) − 1) = 0, 1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, . . .. It is easy to see that Proposition

7 gives ∆A026140 = t, again.

2.2 Changing the rules: Πeven

In sequence A026172 in the OEIS, Kimberling varies the left-right filling procedure by adding
the condition that one always goes to the right if n is even. The resulting permutation of N
is denoted by Πeven. We still have L(n) = ⌊n/2⌋ = R(n), but the procedure is changed to
a(n+R(n)) = n if n even or a(n− L(n)) already defined, else a(n− L(n)) = n.

Surprisingly, changing the procedure in this way does not change the permutation.

Proposition 9. Πeven = Π.

Proof. This follows immediately from Lemma 1.

Proposition 9 implies the equality of many pairs of sequences in the OEIS, such as

A026136 = A026172,

A026137 = A026173,

A026138 = A026174,

A026139 = A026175,

A026141 = A026176,

A026184 = A026208,

A026188 = A026212,

A026182 = A026206, and

A026186 = A026210.

These equalities have been implemented in the OEIS at the beginning of 2020 (based on a
preprint of the present paper), declaring one of the two sequences in each pair as ‘dead’.
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2.3 Changing the rules: Πodd

Still L(n) = ⌊n/2⌋ = R(n), but now one always goes to the right if n is odd; see A026177:
a(n + R(n)) = n if n odd or a(n − L(n)) already defined, otherwise a(n − L(n)) = n. The
resulting permutation of N is denoted by Πodd. Thus

Πodd = 1, 4, 2, 3, 10, 12, 5, 16, 6, 7, 22, 8, 9, 28, 30, 11, 34, 36, 13, 40, 14, 15, 46, 48, 17, 52, 18, . . .

One verifies that the Πodd(n) have the same four types as in Section 2.1, but this time it
is Type (I) that does not occur, and the records occur at Type (II).

Theorem 10. Let n, k be natural numbers. Then

(a) Πodd(n) never has type (I).

(b) If n = 3k + 1 then Πodd(n) has type (III).

(c) If n = 3k + 2 then Πodd(n) has type (II).

(d) If n = 3k then Πodd(n) has type (II) if Πodd(k) has type (II) and Πodd(n) has type (IV)
if Πodd(k) has type (III) or type (IV).

Proof.

(a) Πodd(n) is never equal to 2n − 1, since the algorithm always chooses the right side at
the odd numbers.

(b) i.e., Πodd(3k+1) = 2k+1 is also forced by the ‘always to the right at the odd numbers’
rule: 2k + 1 + ⌊(2k + 1)/2⌋ = 3k + 1.

(c) follows from part (a) and the observation that both 2n + 1 = 2(3k + 2) + 1 = 6k + 5
and 2n = 6k + 4 are not divisible by 3.

(d) Type (I) is excluded by part (a), and type (III) is excluded because 2n + 1 = 6k + 1
is not divisible by 3. So Πodd(n) is either 2n (type (II)), or 2n/3 (type IV). Here
2n/3 = 6k/3 = 2k. But 2k would have been assigned to k if Πodd(k) has type(II), so if
Πodd(n) has type (IV) then Πodd(k) has type (III) or (IV). Conversely, if Πodd(k) has
type (III) or (IV), then Πodd(n) must have type (III): in 2k you do not go the left,
since 2k − ⌊2k/2⌋ = k, and Πodd(k) has already been assigned a value. Going to the
right in 2k yields Πodd(2k + k) = 2k.

Let Πodd(1) = 1 have Type (III) by definition. Then Theorem 10 can easily be trans-
formed into the following result.
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Theorem 11. Let σ on the monoid {2, 3, 4}∗ be the monoid morphism given by

σ(2) = 322, σ(3) = 324, σ(4) = 324.

Let sodd = 32432232432432232232432232432 · · · be the unique fixed point of σ.
Then sodd(n) = 2 iff Πodd(n) has type (II), sodd(n) = 3 iff Πodd(n) has type (III), and
sodd(n) = 4 iff Πodd(n) has type (IV).

Let Ropos = A026179 be the sequence of positions of records in Πodd:

Ropos = 1, 2, 5, 6, 8, 11, 14, 15, 17, 18, 20, 23, 24, 26, 29, 32, 33, 35, 38, 41, 42, 44, . . .

The sequence Rorec = A026180 of records in Π defined by Rorec(n) = Πodd(Ropos(n)) is given
by

Rorec = 1, 4, 10, 12, 16, 22, 28, 30, 34, 36, 40, 46, 48, 52, 58, 64, 66, 70, 76, 82, 84, . . .

Proposition 12. Let τ be the morphism given by τ(1) = 12, τ(2) = 312, τ(3) = 3312.
Let t = 12312331212312331233121231212312 · · · be the fixed point of τ starting with 1. Let
T denote the shift operator. Then T (∆Ropos) = T 2(t), and T (∆Rorec) = 2T 2(t).

Proof. The records in Πodd are exactly given by the Π(n) of type (II). So the positions of
these records are given by the positions of 2 in sodd. To obtain these, one considers the
return words of the word 2 in sodd. These are 2, 23 and 243. We have

σ(2) = 32 2, σ(23) = 32 23 24 σ(243) = 32 23 243 24.

If we code the return words by their lengths, then the induced descendant morphism σdesc,
obtained by conjugating σ with the word 3, (see the paper [4]) is equal to

σdesc(1) = 12, σdesc(2) = 123, σdesc(3) = 1233.

The ‘right’ morphism however, is τ , given by

τ(1) = 12, τ(2) = 312, τ(3) = 3312.

To prove this, avoiding confusions of symbols, we write τ on the alphabet {a, b, c}:

τ(a) = ab, τ(b) = cab, τ(c) = ccab.

Let xτ = abcabcc · · · be the fixed point of τ starting with a, and let δ be the morphism given
by

δ(a) = 2, δ(b) = 23, δ(c) = 243.

Note that the images of δ are the return words of 2, with lengths 1,2, and 3, so the proposition
will be proved if we show that

T 2(δ(xτ )) = T (sodd) = 2432232432 · · · .
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As in the paper [3], we call δ(xτ ) a decoration of xτ . It is well-known that such a decoration
is again a morphic sequence, see, e.g., the monograph by Allouche and Shallit [1, Corollary
7.7.5]. We perform what is called the ‘natural algorithm’ in the paper [3], to find the
morphism and the letter-to-letter map which yield δ(xτ ) as a morphic sequence. Consider
the alphabet {a, b, b′, c, c′, c′′}, and define a block-substitution by

a → abb′, bb′ → cc′c′′abb′, cc′c′′ → cc′c′′cc′c′′abb′.

We obtain from this a morphism on {a, b, b′, c, c′, c′′} by splitting the images of bb′ and cc′c′′

in the block-substitution (in the most efficient way):

a → abb′, b → cc′c′′, b′ → abb′, c → cc′c′′, c′ → cc′c′′, c′′ → abb′.

Here efficient means that as many as possible symbols can be merged, respecting the letter
to letter map a → 2, b → 2, b′ → 3, c → 2, c′ → 4, c′′ → 3, obtained by identifying a, bb′

and cc′c′′ with the return words 2, 23 and 243. We merge b and c, renaming this as 2, and
we merge b′ and c′′, renaming the resulting symbol as 3. Also renaming a as 2, and c′ as 4,
we obtain a morphism θ on the alphabet {2, 2, 3, 4}, and a letter to letter map which is the
identity, except that 2 is mapped to 2. Thus θ is given by

θ(2) = 223, θ(2) = 243, θ(3) = 223, θ(4) = 243.

To obtain the claim above we have to shift the fixed point of θ by 2. The way to generate
that sequence is to pass to the words of length 3 of the language of θ, and to project these
on the third symbol. There are 8 words of length 3:

1 := 223, 2 := 232, 3 := 232, 4 := 243, 5 := 322, 6 := 324, 7 := 432, 8 := 432.

The induced 3-block morphism (cf. the paper [2]) is given by

1 → 136, 2 → 475, 3 → 475, 4 → 486, 5 → 125, 6 → 136, 7 → 475, 8 → 475.

The projection on the third symbol is given by

1 → 3, 2 → 2, 3 → 2, 4 → 3, 5 → 2, 6 → 4, 7 → 2, 8 → 2.

We see that we can consistently merge 7 and 2, and also 8 and 3. The 3-block morphism
with these symbols merged is then given by

1 → 136, 2 → 425, 3 → 425, 4 → 436, 5 → 125, 6 → 136.

We now see that we can merge 1 and 4 (both map to 3), and then also 3 and 5 (both map
to 2), which leads to the morphism

1 → 136, 2 → 123, 3 → 123, 6 → 136.
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Equivalently, on the ‘third symbol’ alphabet {2, 2, 3, 4}:

3 → 324, 2 → 322, 2 → 322, 4 → 324.

We can then merge 2 and 2 to 2, obtaining the morphism

3 → 324, 2 → 322, 4 → 324,

which is nothing else than the morphism σ generating sodd. Since the first 2 in sodd occurs
at the second index, we thus proved that T 2(δ(xτ )) = T (sodd) = 2432232432 · · · .

The second equation follows from the fact that all records are of type (II), and so

Rorec(n+1)−Rorec(n) = Πodd(Ropos(n+1))−Πodd(Ropos(n)) = 2Ropos(n+1)−2Ropos(n) = 2t(n).

2.4 Changing the rules: rule 42

Here L(n) = [(n + 1)/2] = R(n), and a(n − L(n)) = n if a(L) not yet defined, else a(n +
R(n)) = n.

The resulting permutation of N is denoted by Π42, which is sequence A026142 in the
encyclopedia [5], given by

Π42 = 1, 4, 2, 8, 3, 12, 14, 5, 6, 20, 7, 24, 26, 9, 10, 32, 11, 36, 38, 13, 42, 44, 15, 16, . . . .

One verifies that the Π42(n) have four types slightly different from those in Section 2.1:

(I) Π42(n) odd, Π42(n) > n, Π42(n) = 2n+ 1

(II) Π42(n) even, Π42(n) > n, Π42(n) = 2n

(III) Π42(n) odd, Π42(n) < n, Π42(n) = (2n− 1)/3

(IV) Π42(n) even, Π42(n) < n, Π42(n) = 2n/3.

The next task is to determine the type of all entries of Π.

Theorem 13. Let n, k be natural numbers. Then

(a) Π42(n) never has type (I).

(b) If n = 3k + 1 then Π42(n) has type (II).

(c) If n = 3k + 2 then Π42(n) has type (III).

(d) If n = 3k + 3 then Π42(n) has type (II) if Π42(k + 1) has type (II) and Π42(n) has type
(IV) if Π42(k + 1) has type (III) or type (IV).

Proof.
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(a) Π42(n) is never equal to 2n, since either n has been assigned the value 2n + 1 at step
2n+1: 2n+1−⌊(2n+2)/2⌋ = n, or n has been assigned a smaller value at an earlier
step.

(b) follows from part (a) and the observation that both 2n − 1 = 2(3k + 1) − 1 = 6k + 1
and 2n = 6k + 2 are not divisible by 3.

(c) is a rephrasing of the version of Proposition 2 for rule 42: Π(3n+2) = 2n+1, which is
a consequence of the version of Lemma 1 for rule 42 (‘if the procedure is at step 2n+1,
then the numbers 1, . . . , n have already been assigned a Π-value.’)

(d) Type (I) is excluded by part (a), and type (III) is excluded because 2n − 1 = 6k + 5
is not divisible by 3. So Π42(n) is either 2n (type (II)), or 2n/3 (type IV). Here
2n/3 = (6k + 6)/3 = 2k + 2. But 2k + 2 = 2(k + 1) was already assigned to k + 1 if
Π(k + 1) has type (II), so Π42(n) = 2n/3 has type (II) when k + 1 has Π(k + 1) has
type(II). Conversely, if Π(k + 1) has not type (II), i.e., type (III) or type (IV), then
Π42(n) has type (IV).

For the next result we need a fifth type. We say Π42(n) has type (V) if Π42(n) = n.
Actually the only Π42(n) of type (V) is Π42(1). This way one arrives at the following result.

Theorem 14. Let σ on the monoid {2, 3, 4, 5}∗ be the monoid morphism given by

σ(2) = 232, σ(3) = 234, σ(4) = 234, σ(5) = 524.

Let s = 5, 2, 4, 2, 3, 2, 2, 3, 4, 2, 3, 2, 2, 3, 4, 2, 3, 2, 2, 3, 2, 2, 3, 4, 2, 3, 4, 2, 3, 2, 2, 3, 4 . . . be the
fixed point of σ starting with 5. Then for all n > 1: sn = 2 iff Π42(n) has type (II),
sn = 3 iff Π42(n) has type (III), and sn = 4 iff Π43(n) has type (IV).

Let Rpos = A026144 be the sequence of positions of records in Π42:

Rpos = 1, 2, 4, 6, 7, 10, 12, 13, 16, 18, 19, 21, 22, 25, 28, 30, 31, 34, 36, 37, 39 . . .

The sequence Rrec = A026145 of records in Π defined by Rrec(n) = Π42(Rpos(n)) is given by

Rrec = 1, 4, 8, 12, 14, 20, 24, 26, 32, 36, 38, 42, 44, 50, 56, 60, 62, 68, 72, 74, 78, 80, . . .

Except for the first one, the records are always even, because they are generated by type (II)
elements of the permutation.

Proposition 15. Let τ be the morphism on {1, 2, 3, 4}∗ given by

τ(1) = 21, τ(2) = 213, τ(3) = 2133, τ(4) = 4213.

Let t = 421321321213321321213321321213212 . . . be the fixed point of τ starting with 4.
Then ∆Rpos(n+ 1) = t(n), for n ≥ 2 and ∆Rrec(n+ 1) = 2t(n), for n ≥ 2.
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Proof. The records in Π are exactly given by the Π(n) of type (II). So the positions of these
records are given by the positions of 2 in s. To obtain these, one considers the return words
of the word 2 in s. These are 2, 23, 24 (only at the beginning) and 234. Since

σ(2) = 23 2, σ(23) = 23 2 234, σ(24) = 23 2 234, σ(234) = 23 2 234 234,

the induced derived morphism is equal to τ , where we code the return words by their lengths,
and we added a ‘starting’ letter 4 at the beginning. Since we coded the return words by
their lengths, this gives that Rpos(n + 1) − Rpos(n) = t(n), for n ≥ 2 where t is the fixed
point of τ starting with 4. The second equation follows from the fact that all records are of
type (II), and so

Rrec(n+ 1)−Rrec(n) = Π(Rpos(n+ 1))− Π(Rpos(n)) = 2Rpos(n+ 1)− 2Rpos(n) = 2t(n).

2.5 Comparing two permutations

The permutation Π36 := Π from Section 2.1 and Π42 from Section 2.4 have many entries in
common, as observed in the OEIS sequence

A026222 = 1, 3, 9, 15, 24, 27, 33, 42, 45, 51, 60, 69, 72, . . . ,

which gives the first 66 numbers n satisfying Π36(n) = Π42(n). Here we prove that there are
infinitely many of such entries. More precisely, let this ‘coincidence’ sequence be C given by:
n is in {C(k) : k ∈ N} if and only if Π36(n) = Π42(n). We show that the difference sequence
∆C is 3-automatic.

Theorem 16. Let C be the ‘coincidence’ sequence of Π36 and Π42. Then C = I4, where I4
is the sequence of natural numbers with type (IV) in Π42.

Proof. To generate the ‘coincidence’ sequence C, we have to consider the product of the
two morphisms generating the types of the two permutations Π36 and Π42. This product
is defined on the set of product symbols {1, 2, 3, 4} × {1, 2, 3, 4}. Not all product symbols
occur. By writing out the images of the product symbols under the product substitutions
one produces a list of the relevant ones:

(

1
5

)

,

(

1
2

)

,

(

4
4

)

,

(

1
3

)

,

(

4
2

)

,

(

3
2

)

.

One has, for example,
(

1
5

)

→

(

1
5

)(

1
2

)(

4
4

)

,

(

1
2

)

→

(

1
2

)(

1
3

)(

4
2

)

,

(

4
4

)

→

(

3
2

)(

1
3

)(

4
4

)

.

From the observation that a coincidence ( 4
4 ) occurs if and only if a 4 occurs in the ‘lower’

sequence Π42, the theorem now follows.
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The next result identifies the sequence I4 in terms of its first differences. We do need
again an extra symbol 4 to deal with the beginning of I4.

Proposition 17. Let κ be the morphism on {1, 2, 3, 4}∗ given by

κ(1) = 12, κ(2) = 123, κ(3) = 1233, κ(4) = 423.

Let k = 4231231233 . . . be the fixed point of κ starting with 4. Then ∆I4(n + 1) = λ(k(n))
for n ≥ 1, where λ is the letter-to-letter map 1 → 3, 2 → 6, 3 → 9, 4 → 6.

Proof. Let s42 = 5, 2, 4, 2, 3, 2, 2, 3, 4, 2, 3, 2, 2, 3, 4, 2, 3, 2, 2, 3, be the sequence of types of Π42

given by Theorem 14, which gives s42 as fixed point of the morphism σ defined by

σ(2) = 232, σ(3) = 234, σ(4) = 234, σ(5) = 524.

The three return words of the word 4 in s are a := 423, b := 423223 and c := 423223223.
We cannot apply the descendant algorithm of the paper [4], since the sequence s is not a
minimal sequence, not only because of the unique appearance of s42(1) = 5 at the beginning,
but also because of the unique appearance of s42(2)s42(3) = 24, s42(3) . . . s42(14) = bb, etc.

We compute the images of the return words under σ.

σ(a) = 23 b 4, σ(b) = 23 bc 4, σ(c) = 23 bcc 4.

We see from this that if we write

s42 = σ(s42) = 52 b′bcabcabcc . . . ,

where b′ = 423223, then the sequence s42(3)s42(4)s42(5) . . . is a fixed point of the morphism
given by

a → ab, b → abc, b′ → b′bc, c → abcc.

The proposition now follows by changing the alphabet {a, b, c, b′} to {1, 2, 3, 4}, and noting
that |a| = 3, |b| = |b′| = 6, |c| = 9.

We remark that the main, primitive part of κ is given by A106036.

2.6 Changing the rules: Π(1)

One might get rid of the requirement Π(1) := 1 by defining a new permutation Π⊕ by

Π⊕(n) := Π(n+ 1)− 1 for n = 1, 2, . . . .

For the rule of Section 2.1 given by L(n) = ⌊n/2⌋, R(n) = ⌊n/2⌋, this transforms

Π = 1, 3, 2, 7, 9, 4, 5, 15, 6, 19, 21, 8, 25, 27, 10, 11, 33, 12, 13, 39, 14, 43, 45, 16, 17, 51, . . .

into

Π⊕ = 2, 1, 6, 8, 3, 4, 14, 5, 18, 20, 7, 24, 26, 9, 10, 32, 11, 12, 38, 13, 42, 44, 15, 16, 50 . . . .

There is a remarkable connection with the permutation Πodd. In the following proposition
the sequence s appears as A026215 in the OEIS.
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Proposition 18. Let Π = Π36 be the permutation of Section 2.1, and let Πodd be the permu-
tation of Section 2.3, then Π⊕(n) is the position of n in the sequence (s(n)/2), where s(n)
is the nth even number in Πodd.

Proof. The positions of the even numbers in Πodd are given by the entries 2 and 4 of the
fixed point sodd = 32432232432432232232432232432 . . . of the morphism σodd given by

σodd(2) = 322, σodd(3) = 324, σodd(4) = 324.

See Theorem 11. We see from the form of σodd that the positions of the even numbers in
Πodd are then exactly given by the union of the two arithmetic sequences (3n + 2 : n ≥ 0)
and (3n+ 3 : n ≥ 0). This implies that

s(2n+ 1) = Πodd(3n+ 2) and s(2n+ 2) = Πodd(3n+ 3) for n = 0, 1, 2, . . . .

So we have to prove for j = 1, 2 that

Π−1
⊕
(2n+ j) = 1

2
Πodd(3n+ j + 1) ⇔ Π⊕

(

1
2
Πodd(3n+ j + 1)

)

= 2n+ j.

Here the case j = 1 is the simplest: we see from the form of σodd that all n which are 2
modulo 3 have type (II), hence Πodd(3n+2)/2 = (6n+4)/2 = 3n+2, and also Π⊕(3n+2) =
Π(3n + 3) − 1 = 2n + 1, since all multiples of 3 in the permutation Π have type (IV), by
Theorem 3.

The case j = 2 is similar, but more involved. We must see that Π⊕(Πodd(3n + 3)/2) =
2n+ 2, which holds, replacing n+ 1 by n, if and only if

Π
(

1
2
Πodd(3n) + 1

)

= 2n+ 1.

There are two possible types for Πodd(3n): (A) type (IV), and (B) type (II).
In case (A) we have Πodd(3n) = 2n, so then we have to see that Π(n+1) = 2n+1, which

means that Π(n+ 1) should have type (I). Using Theorem 3, part d), this holds if and only
if Π(3n+ 1) has type (I).

In case (B) we have Πodd(3n) = 6n, so then we have to see that Π(3n + 1) = 2n + 1,
which means that Π(3n+1) should have type (III). We should therefore prove the following.

(A) Π(3n+ 1) has Type (I) iff Πodd(3n) has Type (IV)

(B) Π(3n+ 1) has Type (III) iff Πodd(3n) has Type (II) .

Let σ =: σ36 be the morphism generating the sequence s36 of types of Π. The sequence
Ts36 = s36(2)s36(3) . . . is also 3-automatic, and a simple computation yields that Ts36 is the
fixed point of the morphism τ on {1, 3, 4} given by

τ(1) = 141, τ(3) = 143, τ(4) = 143.

Now consider the product morphism τ × σodd on the relevant subset of {1, 3, 4} × {2, 3, 4}.
Starting with the first symbol (1, 3) of the fixed point of the product morphism, one finds
quickly that these relevant symbols are (1, 3), (4, 2), (1, 4) and (3, 2). It is also easy to see
that at entries which are a multiple of 3, only the two symbols (1, 4) and (3, 2) occur. This
proves (A) and (B).
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3 Conclusion

We have introduced a frame work to analyze permutations generated by a left-right filling
algorithm. This has lead to a compact description of sequences A026136, A026142, A026172,
and A026177 in the OEIS. We leave the permutation given in A026166 to the interested
reader. There are numerous relations that can be derived from this description as we showed,
for example, at the end of Section 2.2. Here is one conjecture on the basic permutation
Π = Π36 in Section 2.1: Rpos and Rrec seem to be disjoint sequences. The complement of
their union: {6, 12, 16, 18, 24, 30, . . .}, divided by 2: {3, 6, 8, 9, 12, 15, . . .} is equal to A189637,
the positions of 1 in A116178, where A116178 is Stewart’s choral sequence, the unique fixed
point of the morphism 0 → 001, 1 → 011.
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