When the Large Divisors of a Natural Number Are in Arithmetic Progression

Hung Viet Chu
Department of Mathematics
University of Illinois at Urbana-Champaign
Champaign, IL 61820
USA
hungchu2@illinois.edu

Abstract
Iannucci considered the positive divisors of a natural number \(n \) that do not exceed the square root of \(n \) and found all numbers whose such divisors are in arithmetic progression. Continuing the work, we define large divisors to be divisors at least \(\sqrt{n} \) and find all numbers whose large divisors are in arithmetic progression. The asymptotic formula for the count of these numbers not larger than \(x \) is observed to be \(\frac{x \log \log x}{\log x} \).

1 Introduction
For a natural number \(n \), let \(L_n \) denote the set of positive divisors of \(n \) that are at least \(\sqrt{n} \) and strictly smaller than \(n \); that is,

\[
L_n := \{ d : d \mid n, \sqrt{n} \leq d < n \}.
\]

Also, define

\[
L'_n := \{ d : d \mid n, \sqrt{n} \leq d \leq n \}.
\]

We call \(L'_n \) the set of large divisors of \(n \). Clearly, we have \(|L'_n| = |L_n| + 1 \). In this paper, we will determine the set of all natural numbers \(n \) such that either \(L_n \) or \(L'_n \) forms an arithmetic progression. Since \(L_n \subset L'_n \), if \(L'_n \) forms an arithmetic progression, then so does \(L_n \). Hence, we will first focus our attention on \(L_n \) and find all \(n \) such that

\[
L_n = \{ d, d + a, d + 2a, \ldots, d + (k - 1)a \}
\]
for some natural numbers d, a, and k. Note that L_n can be empty and in that case, L_n vacuously forms an arithmetic progression. Let $|L_n| = k \geq 0$.

Our work is a companion to a paper of Iannucci [3], who defined small divisors of n to be divisors not exceeding \sqrt{n} and found all natural numbers whose small divisors are in arithmetic progression. For previous work on divisors in or not in arithmetic progression, see [1, 6] and on small divisors, see [2, 4].

As usual, we have the divisor-counting function

$$\tau(n) := \sum_{d \mid n} 1.$$

Since $\tau(n)$ is multiplicative, for the k distinct primes $p_1 < p_2 < \cdots < p_k$ and natural numbers a_1, a_2, \ldots, a_k, we have

$$\tau(p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}) = (a_1 + 1)(a_2 + 1) \cdots (a_k + 1).$$

(1)

If $n = bc$ and $b \leq c$, then $b \leq \sqrt{n} \leq c$; hence

$$\tau(n) = \begin{cases} 2|L_n|, & \text{if } n \text{ is not a square;} \\ 2|L_n| - 1, & \text{if } n \text{ is a square} \end{cases} = \begin{cases} 2|L_n| + 2, & \text{if } n \text{ is not a square;} \\ 2|L_n| + 1, & \text{if } n \text{ is a square.} \end{cases}$$

(2)

Theorem 1. Let n be a natural number. If numbers in L_n are in arithmetic progression, then one of the following holds:

(i) $n = 1$, and hence $L_n = \emptyset$.

(ii) $n = p$ for some prime p, and hence $L_n = \{p\}$.

(iii) $n = p^2$ for some prime p, and hence $L_n = \{p\}$.

(iv) $n = p^3$ for some prime p, and hence $L_n = \{p^2\}$.

(v) $n = pq$ for some primes $p < q$, and hence $L_n = \{q\}$.

(vi) $n = p^4$ for some prime p, and hence $L_n = \{p^2, p^3\}$.

(vii) $n = p^5$ for some prime p, and hence $L_n = \{p^3, p^4\}$.

(viii) $n = p^2q$ for some primes $p < q$, and hence $L_n = \{p^2, pq\}$ or $L_n = \{q, pq\}$.

(ix) $n = pq^2$ for some primes $p < q$, and hence $L_n = \{pq, q^2\}$.

(x) $n = pqr$ for some primes $p < q < r$, $pq < r$ and $p = \frac{1}{2}(q + 1)$, and hence $L_n = \{r, rp, rq\}$.

(xi) $n = p^3q$ for some primes $p > q$ and $q = \frac{1}{2}(p + 1)$, and hence $L_n = \{p^2, p^2q, p^3\}$. 2
To prove Theorem 1, we first find all forms of n when $|L_n| = k \leq 3$ by case analysis, then show that k cannot be larger than 3. To find all n such that L'_n forms an arithmetic progression, we need only to check the 11 forms in Theorem 1. It is straightforward to prove the following corollary, so we omit the proof.

Corollary 2. Let n be a natural number. If numbers in L'_n are in arithmetic progression, then one of the following holds:

(i) $n = 1$, and hence $L'_n = \{1\}$.

(ii) $n = p$, and hence $L'_n = \{p\}$.

(iii) $n = p^2$ for some prime p, and hence $L'_n = \{p, p^2\}$.

(iv) $n = p^3$ for some prime p, and hence $L'_n = \{p^2, p^3\}$.

(v) $n = pq$ for some primes $p < q$, and hence $L'_n = \{q, pq\}$.

2 Small cases of $|L_n|$

Assuming L_n is in arithmetic progression, we fully characterize n when $|L_n| \leq 3$ and prove that $|L_n| \neq 4$.

Lemma 3. If L_n forms an arithmetic progression and $k \leq 3$, then one of the items in Theorem 1 is true.

Proof. We consider four cases corresponding to each $0 \leq k \leq 3$.

Case 1: If $k = 0$, then by (2), we have $\tau(n) \in \{1, 2\}$. If $\tau(n) = 1$, then $n = 1$. If $\tau(n) = 2$, then $n = p$ for some prime p. Hence, $L_n = \emptyset$. This corresponds to items (i) and (ii) of the theorem.

Case 2: If $k = 1$, then by (2), we have $\tau(n) \in \{3, 4\}$.

If $\tau(n) = 3$, then by (1), we have $n = p^2$ for some prime p, and hence $L_n = \{p\}$. This corresponds to item (iii) of the theorem.

If $\tau(n) = 4$, then by (1), we have $n = p^3$ for some prime p or $n = pq$ for some primes $p < q$. For the former, we get $L_n = \{p^3\}$ and for the latter, we get $L_n = \{q\}$, corresponding to items (iv) and (v) of the theorem.

Case 3: If $k = 2$, then by (2), we have $\tau(n) \in \{5, 6\}$.

If $\tau(n) = 5$, then by (1), we have $n = p^4$ for some prime p, and hence $L_n = \{p^2, p^3\}$. This corresponds to item (vi).

If $\tau(n) = 6$, then by (1), we have $n = p^5$ for some prime p or $n = p^2q$ or pq^2 for some primes $p < q$.

3
If \(n = p^5 \), then \(L_n = \{p^3, p^4\} \).

If \(n = p^2q \) for some primes \(p < q < p^2 \), then \(L_n = \{p^2, pq\} \). If \(n = p^2q \) for some primes \(p^2 < q \), we get \(L_n = \{q, pq\} \).

If \(n = pq^2 \) for some primes \(p < q \), then \(L_n = \{pq, q^2\} \).

These correspond to items (vii), (viii), (ix).

Case 4: If \(k = 3 \), then by (2), we have \(\tau(n) \in \{7, 8\} \).

If \(\tau(n) = 7 \), then by (1), we get \(n = p^6 \) for some prime \(p \). Then \(L_n = \{p^3, p^4, p^5\} \), which is impossible since \(p^5 - p^4 \neq p^4 - p^3 \).

If \(\tau(n) = 8 \), then by (1), we get \(n = pqr \) for some distinct primes \(p, q, r \) or \(p^3q \) for some distinct primes \(p, q \).

If \(n = pqr \), we may assume that \(p < q < r \). Two subcases are either \(r > pq \) or \(r < pq \).

- \(r > pq \): We have \(L_n = \{r, pr, qr\} \) and so, \(qr - pr = pr - r \), which implies that \(p = \frac{1}{2}(q + 1) \). This is item (x).
- \(r < pq \): We have \(L_n = \{pq, pr, qr\} \) and so, \(qr - pr = pr - pq \), which implies that \(p = \frac{qr}{2r-q} \). So, either \((2r-q)|q \) or \((2r-q)|r \). However, both are impossible since \(2r - q > r > q \).

If \(n = p^3q \), two subcases are either \(p < q \) or \(p > q \).

- \(p < q \): If \(p < q < p^3 \), then \(L_n = \{p^3, pq, p^2q\} \). Either \(p^2q - pq = pq - p^3 \) or \(p^2q - p^3 = p^3 - pq \). It is easy to see that both cases are impossible. If \(q > p^3 \), then \(L_n = \{q, pq, p^2q\} \). Since \(p^2q - pq = pq - q \), we get \(p^2 = 2p - 1 \), which implies that \(p = 1 \), a contradiction.
- \(p > q \): \(L_n = \{p^2, p^2q, p^3\} \). So, \(p^3 - p^2q = p^2q - p^2 \). Then \(q = \frac{1}{2}(p + 1) \). This is item (xi).

Lemma 4. Our set \(L_n \) cannot have exactly 4 elements.

Proof. We prove this by contradiction. Suppose that \(|L_n| = 4\). By (2), we have \(\tau(n) \in \{9, 10\} \).

If \(\tau(n) = 9 \), then (1) implies that \(n = p^8 \) for some prime \(p \) or \(n = p^2q^2 \) for some primes \(p < q \).

- If \(n = p^8 \), then \(L_n = \{p^4, p^5, p^6, p^7\} \), which cannot form an arithmetic progression.
- If \(n = p^2q^2 \) for \(p < q \), then \(L_n = \{pq, p^2q, q^2, pq^2\} \). So, \(pq^2 + pq = p^2q + q^2 \), which implies that \(p = q \), a contradiction.
If \(\tau(n) = 10 \), either \(n = p^9 \) for some prime \(p \) or \(n = pq^4 \) for distinct primes \(p, q \).

If \(n = p^9 \), then \(L_n = \{p^5, p^6, p^7, p^8\} \), which cannot form an arithmetic progression.

If \(n = pq^4 \), we have four subcases.

\(p < q \): \(L_n = \{pq^2, q^3, pq^3, q^4\} \), so \(pq^2 + q^4 = q^3 + pq^3 \), which implies that \(p = q \), a contradiction.

\(q < p < q^2 \): \(L_n = \{q^3, pq^2, q^4, pq^3\} \), so \(q^3 + pq^3 = pq^2 + q^4 \), which implies that \(p = q \), a contradiction.

\(q^2 < p < q^4 \): \(L_n = \{pq, q^4, pq^2, pq^3\} \). Either \(pq^3 + pq = pq^2 + q^4 \) or \(pq^3 + q^4 = pq + pq^2 \). The former gives \(q = 1 \), while the latter gives \(p = -\frac{q^3}{q^2 - q - 1} \). Both pose a contradiction.

\(q^4 < p \): \(L_n = \{p, pq, pq^2, pq^3\} \), so \(p + pq^3 = pq + pq^2 \), which implies that \(q = 1 \), a contradiction.

Therefore, \(|L_n| \neq 4 \). \(\square \)

3 Proof of Theorem 1

By Lemmas 3 and 4, to prove Theorem 1, it suffices to prove that \(|L_n| \leq 4 \).

Proof of Theorem 1. We prove this by contradiction. Suppose that \(k = |L_n| \geq 5 \). Recall that

\[
L_n = \{d, d + a, d + 2a, \ldots, d + (k - 1)a\}
\]

for some natural numbers \(d \) and \(a \). Let \(\gcd(d, a) = \ell \). Write \(d = \ell k_1 \) and \(a = \ell k_2 \). Clearly, \(\gcd(k_1, k_2) = 1 \), so there exist integers \(s, t \) such that \(sk_1 + tk_2 = 1 \).

Let

\[
M = \text{lcm}(d, d + a, d + 2a, \ldots, d + (k - 1)a);
\]

that is, \(M \) denotes the least common multiple of all numbers in \(L_n \). Write

\[
M = \text{lcm}(\ell k_1, \ell k_1 + \ell k_2, \ell k_1 + 2\ell k_2, \ldots, \ell k_1 + (k - 1)\ell k_2) = \ell \cdot \text{lcm}(k_1, k_1 + k_2, k_1 + 2k_2, \ldots, k_1 + (k - 1)k_2).
\]

We claim that \(\gcd(k_1 + (k - 2)k_2, k_1 + (k - 1)k_2) = 1 \). Indeed, let

\[
x = k_1 + (k - 1)k_2 \\
y = k_1 + (k - 2)k_2.
\]

We have

\[
k_2 = x - y \\
k_1 = x - (k - 1)k_2 = x - (k - 1)(x - y).
\]
Because $sk_1 + tk_2 = 1$, we have
\[
s(x - (k - 1)(x - y)) + t(x - y) = 1.
\]
So,
\[
(t + s - s(k - 1))x + ((k - 1)s - t)y = 1,
\]
which implies that $\gcd(x, y) = 1$. Hence,
\[
N = \ell(k_1 + (k - 2)k_2)(k_1 + (k - 1)k_2) = \ell \cdot \text{lcm}(k_1 + (k - 2)k_2, k_1 + (k - 1)k_2)
\]
divides M. Because N divides M and M divides n, we know that N divides n. Clearly, $N > \ell(k_1 + (k - 1)k_2) = d + (k - 1)a \geq \sqrt{n}$. Because $N \notin L_n$, we get $N = n$. So, $\ell(k_1 + (k - 3)k_2)$ divides N. Hence,
\[
k_1 + (k - 3)k_2 \text{ divides } (k_1 + (k - 2)k_2)(k_1 + (k - 1)k_2).
\]
Using the same argument as above, we know that $\gcd(k_1 + (k - 3)k_2, k_1 + (k - 2)k_2) = 1$. So,
\[
k_1 + (k - 3)k_2 \text{ divides } k_1 + (k - 1)k_2.
\]
Write $k_1 + (k - 1)k_2 = u(k_1 + (k - 3)k_2)$ for some integer $u \geq 2$. Simplifying the equation, we get
\[
\frac{3u - 1}{u - 1} = \frac{k_1 + k k_2}{k_2} = \frac{k_1}{k_2} + k > 5.
\]
So, $u < 2$. This contradicts that $u \geq 2$. Therefore, it must be that $|L_n| < 5$, as desired. \qed

Remark 5. We can estimate how often a natural number n not larger than $x > 0$ has its large divisors form an arithmetic progression. Let $f(x)$ be the function counting such numbers not larger than x.

The number of n not larger than x that is either of form p, p^2, or p^3 for a prime p is asymptotic to
\[
\sum_{i=1}^{3} \pi(x^{1/i}) \sim \sum_{i=1}^{3} \frac{ix^{1/i}}{\log x}.
\]
By a result of Landau [5, §56], the number of $n \leq x$ of the form pq for primes $p < q$ is asymptotic to
\[
\frac{x \log \log x}{\log x}.
\]
Combined with Corollary 2, we know that
\[
f(x) \sim \frac{x \log \log x}{\log x},
\]
which is similar to the asymptotic formula for the case of small divisors [3].
References

2010 Mathematics Subject Classification: Primary 11B25.

Keywords: divisor, arithmetic progression.

Received January 29 2020; revised version received May 10 2020; May 12 2020. Published in *Journal of Integer Sequences*, June 9 2020.

Return to *Journal of Integer Sequences* home page.