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Hùng Viê.t Chu
Department of Mathematics

University of Illinois at Urbana-Champaign
Champaign, IL 61820

USA
hungchu2@illinois.edu

Abstract

Iannucci considered the positive divisors of a natural number n that do not exceed

the square root of n and found all numbers whose such divisors are in arithmetic

progression. Continuing the work, we define large divisors to be divisors at least
√
n

and find all numbers whose large divisors are in arithmetic progression. The asymptotic

formula for the count of these numbers not larger than x is observed to be x log log x
log x .

1 Introduction

For a natural number n, let Ln denote the set of positive divisors of n that are at least
√
n

and strictly smaller than n; that is,

Ln := {d : d|n,√n ≤ d < n}.
Also, define

L′
n := {d : d|n,√n ≤ d ≤ n}.

We call L′
n the set of large divisors of n. Clearly, we have |L′

n| = |Ln|+ 1. In this paper, we
will determine the set of all natural numbers n such that either Ln or L′

n forms an arithmetic
progression. Since Ln ⊂ L′

n, if L
′
n forms an arithmetic progression, then so does Ln. Hence,

we will first focus our attention on Ln and find all n such that

Ln = {d, d+ a, d+ 2a, . . . , d+ (k − 1)a}
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for some natural numbers d, a, and k. Note that Ln can be empty and in that case, Ln

vacuously forms an arithmetic progression. Let |Ln| = k ≥ 0.
Our work is a companion to a paper of Iannucci [3], who defined small divisors of n

to be divisors not exceeding
√
n and found all natural numbers whose small divisors are in

arithmetic progression. For previous work on divisors in or not in arithmetic progression,
see [1, 6] and on small divisors, see [2, 4].

As usual, we have the divisor-counting function

τ(n) :=
∑

d|n

1.

Since τ(n) is multiplicative, for the k distinct primes p1 < p2 < · · · < pk and natural numbers
a1, a2, . . . , ak, we have

τ(pa11 pa22 · · · pakk ) = (a1 + 1)(a2 + 1) · · · (ak + 1). (1)

If n = bc and b ≤ c, then b ≤ √
n ≤ c; hence

τ(n) =

{

2|L′
n|, if n is not a square;

2|L′
n| − 1, if n is a square

=

{

2|Ln|+ 2, if n is not a square;

2|Ln|+ 1, if n is a square.
(2)

Theorem 1. Let n be a natural number. If numbers in Ln are in arithmetic progression,
then one of the following holds:

(i) n = 1, and hence Ln = ∅.

(ii) n = p for some prime p, and hence Ln = ∅.

(iii) n = p2 for some prime p, and hence Ln = {p}.

(iv) n = p3 for some prime p, and hence Ln = {p2}.

(v) n = pq for some primes p < q, and hence Ln = {q}.

(vi) n = p4 for some prime p, and hence Ln = {p2, p3}.

(vii) n = p5 for some prime p, and hence Ln = {p3, p4}.

(viii) n = p2q for some primes p < q, and hence Ln = {p2, pq} or Ln = {q, pq}.

(ix) n = pq2 for some primes p < q, and hence Ln = {pq, q2}.

(x) n = pqr for some primes p < q < r, pq < r and p = 1
2
(q + 1), and hence Ln =

{r, rp, rq}.

(xi) n = p3q for some primes p > q and q = 1
2
(p+ 1), and hence Ln = {p2, p2q, p3}.
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To prove Theorem 1, we first find all forms of n when |Ln| = k ≤ 3 by case analysis,
then show that k cannot be larger than 3. To find all n such that L′

n forms an arithmetic
progression, we need only to check the 11 forms in Theorem 1. It is straightforward to prove
the following corollary, so we omit the proof.

Corollary 2. Let n be a natural number. If numbers in L′
n are in arithmetic progression,

then one of the following holds:

(i) n = 1, and hence L′
n = {1}.

(ii) n = p, and hence L′
n = {p}.

(iii) n = p2 for some prime p, and hence L′
n = {p, p2}.

(iv) n = p3 for some prime p, and hence L′
n = {p2, p3}.

(v) n = pq for some primes p < q, and hence L′
n = {q, pq}.

2 Small cases of |Ln|
Assuming Ln is in arithmetic progression, we fully characterize n when |Ln| ≤ 3 and prove
that |Ln| 6= 4.

Lemma 3. If Ln forms an arithmetic progression and k ≤ 3, then one of the items in
Theorem 1 is true.

Proof. We consider four cases corresponding to each 0 ≤ k ≤ 3.

Case 1: If k = 0, then by (2), we have τ(n) ∈ {1, 2}. If τ(n) = 1, then n = 1. If τ(n) = 2,
then n = p for some prime p. Hence, Ln = ∅. This corresponds to items (i) and (ii) of the
theorem.

Case 2: If k = 1, then by (2), we have τ(n) ∈ {3, 4}.
If τ(n) = 3, then by (1), we have n = p2 for some prime p, and hence Ln = {p}. This

corresponds to item (iii) of the theorem.
If τ(n) = 4, then by (1), we have n = p3 for some prime p or n = pq for some primes

p < q. For the former, we get Ln = {p2} and for the latter, we get Ln = {q}, corresponding
to items (iv) and (v) of the theorem.

Case 3: If k = 2, then by (2), we have τ(n) ∈ {5, 6}.
If τ(n) = 5, then by (1), we have n = p4 for some prime p, and hence Ln = {p2, p3}. This

corresponds to item (vi).
If τ(n) = 6, then by (1), we have n = p5 for some prime p or n = p2q or pq2 for some

primes p < q.
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If n = p5, then Ln = {p3, p4}.

If n = p2q for some primes p < q < p2, then Ln = {p2, pq}. If n = p2q for some primes
p2 < q, we get Ln = {q, pq}.

If n = pq2 for some primes p < q, then Ln = {pq.q2}.

These correspond to items (vii), (viii), (ix).

Case 4: If k = 3, then by (2), we have τ(n) ∈ {7, 8}.
If τ(n) = 7, then by (1), we get n = p6 for some prime p. Then Ln = {p3, p4, p5}, which

is impossible since p5 − p4 6= p4 − p3.
If τ(n) = 8, then by (1), we get n = pqr for some distinct primes p, q, r or p3q for some

distinct primes p, q.

If n = pqr, we may assume that p < q < r. Two subcases are either r > pq or r < pq.

r > pq: We have Ln = {r, pr, qr} and so, qr − pr = pr − r, which implies that
p = 1

2
(q + 1). This is item (x).

r < pq: We have Ln = {pq, pr, qr} and so, qr − pr = pr − pq, which implies that
p = qr

2r−q
. So, either (2r − q)|q or (2r − q)|r. However, both are impossible since

2r − q > r > q.

If n = p3q, two subcases are either p < q or p > q.

p < q: If p < q < p3, then Ln = {p3, pq, p2q}. Either p2q − pq = pq − p3 or
p2q − p3 = p3 − pq. It is easy to see that both cases are impossible. If q > p3,
then Ln = {q, pq, p2q}. Since p2q− pq = pq− q, we get p2 = 2p− 1, which implies
that p = 1, a contradiction.

p > q: Ln = {p2, p2q, p3}. So, p3 − p2q = p2q − p2. Then q = 1
2
(p + 1). This is

item (xi).

Lemma 4. Our set Ln cannot have exactly 4 elements.

Proof. We prove this by contradiction. Suppose that |Ln| = 4. By (2), we have τ(n) ∈
{9, 10}.

If τ(n) = 9, then (1) implies that n = p8 for some prime p or n = p2q2 for some primes
p < q.

If n = p8, then Ln = {p4, p5, p6, p7}, which cannot form an arithmetic progression.

If n = p2q2 for p < q, then Ln = {pq, p2q, q2, pq2}. So, pq2 + pq = p2q + q2, which
implies that p = q, a contradiction.
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If τ(n) = 10, either n = p9 for some prime p or n = pq4 for distinct primes p, q.

If n = p9, then Ln = {p5, p6, p7, p8}, which cannot form an arithmetic progression.

If n = pq4, we have four subcases.

p < q: Ln = {pq2, q3, pq3, q4}, so pq2+q4 = q3+pq3, which implies that p = q,
a contradiction.

q < p < q2: Ln = {q3, pq2, q4, pq3}, so q3 + pq3 = pq2 + q4, which implies that
p = q, a contradiction.

q2 < p < q4: Ln = {pq, q4, pq2, pq3}. Either pq3 + pq = pq2 + q4 or pq3 + q4 =

pq + pq2. The former gives q = 1, while the latter gives p = − q3

q2−q−1
. Both

pose a contradiction.

q4 < p: Ln = {p, pq, pq2, pq3}, so p+pq3 = pq+pq2, which implies that q = 1,
a contradiction.

Therefore, |Ln| 6= 4.

3 Proof of Theorem 1

By Lemmas 3 and 4, to prove Theorem 1, it suffices to prove that |Ln| ≤ 4.

Proof of Theorem 1. We prove this by contradiction. Suppose that k = |Ln| ≥ 5. Recall
that

Ln = {d, d+ a, d+ 2a, . . . , d+ (k − 1)a}
for some natural numbers d and a. Let gcd(d, a) = ℓ. Write d = ℓk1 and a = ℓk2. Clearly,
gcd(k1, k2) = 1, so there exist integers s, t such that sk1 + tk2 = 1.

Let
M = lcm (d, d+ a, d+ 2a, . . . , d+ (k − 1)a);

that is, M denotes the least common multiple of all numbers in Ln. Write

M = lcm (ℓk1, ℓk1 + ℓk2, ℓk1 + 2ℓk2, . . . , ℓk1 + (k − 1)ℓk2)

= ℓ · lcm (k1, k1 + k2, k1 + 2k2, . . . , k1 + (k − 1)k2).

We claim that gcd(k1 + (k − 2)k2, k1 + (k − 1)k2) = 1. Indeed, let

x = k1 + (k − 1)k2

y = k1 + (k − 2)k2.

We have

k2 = x− y

k1 = x− (k − 1)k2 = x− (k − 1)(x− y).
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Because sk1 + tk2 = 1, we have

s(x− (k − 1)(x− y)) + t(x− y) = 1.

So,
(t+ s− s(k − 1))x+ ((k − 1)s− t)y = 1,

which implies that gcd(x, y) = 1. Hence,

N = ℓ(k1 +(k− 2)k2)(k1 +(k− 1)k2) = ℓ · lcm (k1 + (k − 2)k2, k1 + (k − 1)k2) divides M.

Because N divides M and M divides n, we know that N divides n. Clearly, N > ℓ(k1+(k−
1)k2) = d + (k − 1)a ≥ √

n. Because N /∈ Ln, we get N = n. So, ℓ(k1 + (k − 3)k2) divides
N . Hence,

k1 + (k − 3)k2 divides (k1 + (k − 2)k2)(k1 + (k − 1)k2).

Using the same argument as above, we know that gcd(k1 + (k − 3)k2, k1 + (k − 2)k2) = 1.
So,

k1 + (k − 3)k2 divides k1 + (k − 1)k2.

Write k1 + (k − 1)k2 = u(k1 + (k − 3)k2) for some integer u ≥ 2. Simplifying the equation,
we get

3u− 1

u− 1
=

k1 + kk2
k2

=
k1
k2

+ k > 5.

So, u < 2. This contradicts that u ≥ 2. Therefore, it must be that |Ln| < 5, as desired.

Remark 5. We can estimate how often a natural number n not larger than x > 0 has its large
divisors form an arithmetic progression. Let f(x) be the function counting such numbers
not larger than x.

The number of n not larger than x that is either of form p, p2, or p3 for a prime p is
asymptotic to

3
∑

i=1

π(x1/i) ∼
3

∑

i=1

ix1/i

log x
.

By a result of Landau [5, §56], the number of n ≤ x of the form pq for primes p < q is
asymptotic to

x log log x

log x
.

Combined with Corollary 2, we know that

f(x) ∼ x log log x

log x
,

which is similar to the asymptotic formula for the case of small divisors [3].
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