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Abstract

An ordered partition of {1, 2, . . . , n} into k blocks B1, B2, . . . , Bk is a partition where

the order of blocks is considered. In the present paper, we we consider the case that each

blockBi has ri copies. Using this extension of ordered set partitions, we introduce a new

generalization of the Lah and Stirling numbers of both kinds which called multivariate

Lah and Stirling numbers, respectively. We study several combinatorial properties such

as explicit formulas, recurrence relations, generating functions, and some convolution

identities.

1 Introduction

Let [n] = {1, . . . , n}. A partition π of [n] is a family of nonempty, pairwise disjoint subsets
called blocks. A partition of [n] into k blocks is denoted B1/B2/ · · · /Bk such that min(B1) <
min(B2) < · · · < min(Bk).

For any n ≥ k ≥ 0, let
{
n

k

}
,
[
n

k

]
and

⌊
n

k

⌋
be the Stirling numbers of the second kind, first

kind and Lah numbers, respectively. The numbers
{
n

k

}
count the number of set partitions

of [n] into k blocks,
[
n

k

]
count the number of partitions of [n] into k cycles. Similarly, the

Lah numbers
⌊
n

k

⌋
count the number of partitions of set [n] into k nonempty lists.

The falling and rising factorials are defined, respectively by

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1), (x)0 = 1,
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and
〈x〉n = x(x− 1)(x− 2) · · · (x− n+ 1), 〈x〉0 = 1.

The Stirling numbers of second kind appear in the expansion xn =
∑

k

{
n

k

}
〈x〉k, and the

Stirling numbers of first kind appear in the expansion (x)n =
∑

k

[
n

k

]
xk. The Lah numbers

are connection coefficients between rising and falling factorials (x)n =
∑

k

⌊
n

k

⌋
〈x〉k.

The Lah numbers can be expressed in terms of Stirling numbers of second and first kinds
[6, p. 156], as follows:

⌊
n

k

⌋

=
n∑

j=k

[
n

j

]{
j

k

}

.

The Lah numbers have the following explicit formula [6, p. 134]:
⌊
n

k

⌋

=
n!

k!

(
n− 1

k − 1

)

.

An ordered partition π of [n] into k blocks is a partition where the order of blocks is
important πσ = Bσ(1)/Bσ(2)/ · · · /Bσ(k), where σ is a permutation of [k]. The number of
ordered set partitions of [n] into k blocks is given by k!

{
n

k

}
, [9, p. 106], as follows:

k!

{
n

k

}

=
∑

r1+r2+···+rk=n
ri≥1

(
n

r1, r2, . . . , rk

)

, (1)

where
(

n

r1,r2,...,rk

)
= n!

r1!r2!···rk!
is the multinomial coefficient. The coefficients

(
n

r1,r2,...,rk

)
have

the following horizontal generating function

(x1 + x2 + · · ·+ xk)
n =

∑

r1+r2+···+rk=n

(
n

r1, r2, . . . , rk

)

xr1
1 xr2

2 · · · xrk
k . (2)

The relation (2) can be generalized to multivariate falling and rising factorials [7, p. 149]:

〈x1 + x2 + · · ·+ xk〉n =
∑

r1+r2+···+rk=n

(
n

r1, r2, . . . , rk

)

〈x1〉r1〈x2〉r2 · · · 〈xk〉rk , (3)

and

(x1 + x2 + · · ·+ xk)n =
∑

r1+r2+···+rk=n

(
n

r1, r2, . . . , rk

)

(x1)r1(x2)r2 · · · (xk)rk . (4)

Many authors have investigated the Stirling and Lah numbers; see, for instance, [1, 2, 4,
8, 12].

The present paper is organized as follows: Section 2 introduces the multivariate Lah
numbers multipartitions set which generalize the set partitions and ordered set partitions.
Section 3 presents several properties of the multivariate Lah numbers by algebraic and com-
binatorial arguments. In the last section, we define the multivariate Stirling numbers of
the first and second kinds and we provide an expression for the multivariate Lah numbers in
terms of the multivariate Stirling numbers and multinomial Stirling numbers were introduced
by Moak [10].
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2 Combinatorial definition of multivariate Lah num-

bers

Let rk := (r1, r2, . . . , rk) be a sequence of nonnegative integers. Now suppose that we have
k categories of lists (C1, C2, . . . , Ck) such that |Ci| = ri. Let OPrk

n be the set partitions of
[n] into (r1 + r2 + · · ·+ rk)-lists. A partition π ∈ OPrk

n is of the form π = Br1
1 /Br2

2 / · · · /Brk
k

where Bri
i = Bi/Bi/ · · · /Bi

︸ ︷︷ ︸

ri times

.

Definition 1. Let π = Br1
1 /Br2

2 / · · · /Brk
k be a partition of the set OPrk

n . A multipartition
is a permutation of the multiset {Br1

1 , Br2
2 , . . . , Brk

k }. We let Sn,rk(π) denote the set of all
multipartitions of the multiset {Br1

1 , Br2
2 , . . . , Brk

k }.

Example 2. Let π = 1, 2
B1

/ 3
B1

,/4, 5
B2

/ 6
B3

, be a partition of the set [6] into (2, 1, 1)-lists. The set

S6,r3(π) of multipartitions associated with the partition π is

1, 2
B1

/ 3
B1

,/4, 5
B2

/ 6
B3

, 1, 2
B1

/4, 5
B2

/ 3
B1

/ 6
B3

; 1, 2
B1

/4, 5
B2

/ 6
B3

/ 3
B1

;

4, 5
B2

/1, 2
B1

/ 6
B3

/ 3
B1

; 4, 5
B2

/ 6
B3

/1, 2
B1

/ 3
B1

; 4, 5
B2

/1, 2
B1

/ 3
B1

/ 6
B3

.

Definition 3. For any n, r1, r2, . . . , rk ≥ 1, the multivariate Lah number, which we denote
by
⌊

n

r1,r2,...,rk

⌋
, is the number of multipartitions of the set [n] into nonempty rk-lists.

⌊
n

r1, r2, . . . , rk

⌋

=
∑

π∈OP
rk
n

|Sn,rk(π)|. (5)

Example 4. There are 3 multipartitions of the set [3] into (1, 2)-lists

1/2/3 ; 2/1/3 ; 2/3/1.

We have
⌊

3
1,1

⌋
= 12, so the corresponding multipartitions are

1/2, 3 ; 2, 3/1 ; 1/3, 2 ; 3, 2/1 ; 1, 2/3 ; 3/1, 2 ;

2, 1/3 ; 3/2, 1 ; 1, 3/2 ; 2/1, 3 ; 3, 1/2 ; 2/3, 1.

In the following theorem we provide an explicit formula for the multivariate Lah numbers.

Theorem 5. For any n, r1, r2, . . . , rk ≥ 1, we have

⌊
n

r1, r2, . . . , rk

⌋

=
(n− 1)!

(r1 + r2 + · · ·+ rk − 1)!

(
n

r1, r2, . . . , rk, n−
∑k

j=1 rj

)

. (6)
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Proof. To construct a multipartition of [n] into rk-lists we can do the following. First,
we select r1 elements from [n], each element corresponding to the beginning of one list of
category C1. There are

(
n

r1

)
possibilities. Then, we choose r2 elements from the remaining

n − r1 elements, which we place at the beginning of the lists of category C2 with
(
n−r1
r2

)

possible ways, and so on. We choose rk of the remaining n− r1 − · · · − rk−1 elements, which
we place at the start of the lists of category Ck. There are

(
n−r1−···−rk−1

rk

)
possibilities. The

remaining n−r1−· · ·−rk elements can be added with (r1+· · ·+rk)(r1+· · ·+rk+1) · · · (n−1)
possibilities. This gives us,

(
n

r1

)(
n− r1
r2

)

· · ·

(
n− r1 − · · · − rk−1

rk

) n−1−r1−···−rk)∏

i=0

(n− 1− i)

=
(n− 1)!

(r1 + r2 + · · ·+ rk − 1)!

(
n

r1, r2, . . . , rk, n−
∑k

j=1 rj

)

,

which completes the proof.

As particular cases of the multivariate Lah numbers, when k = 1 we obtain the classical
Lah numbers and for r1 + r2 + · · ·+ rk = n we get the multinomial coefficient

⌊
n

r1, r2, . . . , rk

⌋

=

(
n

r1, r2, . . . , rk

)

.

Also, when ri = 1 for all i ∈ [k] we obtain the ordered Lah numbers,

⌊
n

1, 1, . . . , 1
︸ ︷︷ ︸

k−times

⌋

= n!

(
n− 1

k − 1

)

.

Let σ(1), σ(2), . . . , σ(k) be a permutation of [k]. Then

⌊
n

r1, r2, . . . , rk

⌋

=

⌊
n

rσ(1), rσ(2), . . . , rσ(k)

⌋

.

From Relation (6), we deduce an expression for the multivariate Lah numbers in terms of
classical Lah numbers.

Corollary 6. For any n, r1, . . . , rk ≥ 1, we have

⌊
n

r1, r2, . . . , rk

⌋

=

(
r1 + r2 + · · ·+ rk

r1, r2, . . . , rk

)⌊
n

r1 + r2 + · · ·+ rk

⌋

. (7)
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3 Fundamental properties of multivariate Lah num-

bers

In this section, we provide some fundamental properties of the multivariate Lah numbers.
We start by given the exponential generating function.

Theorem 7. The exponential generating function of the multivariate Lah numbers is

∑

n≥0

⌊
n

r1, r2, . . . , rk

⌋
tn

n!
=

k∏

i=1

1

ri!

(
t

1− t

)ri

. (8)

Proof. From Theorem 5 and relation (7), we have

∑

n≥0

⌊
n

r1, . . . , rk

⌋
tn

n!
=
∑

n≥0

(n− 1)!

(r1 + · · ·+ rk − 1)!

(
n

r1, . . . , rk, n−
∑k

j=1 rj

)
tn

n!

=
1

r1! · · · rk!

∑

n≥0

(
n− 1

r1 + r2 + · · ·+ rk − 1

)

tn

=
tr1+r2+···+rk

r1! · · · rk!

∑

n≥0

(
n− 1

n− r1 − r2 − · · · − rk

)

tn

=
tr1+r2+···+rk

r1! · · · rk!

∑

n≥0

(
n+ r1 + r2 + · · ·+ rk − 1

n

)

tn

=
tr1+r2+···+rk

r1! · · · rk!

∑

n≥0

(
−r1 − r2 − · · · − rk

n

)

(−t)n

=
1

r1! · · · rk!

k∏

i=1

(
t

1− t

)ri

,

which completes the proof.

In the following theorem, we give the multivariate exponential generating function for
the multivariate Lah numbers.

Theorem 8. We have

∑

n≥0

∑

r1≥0

∑

r2≥0

· · ·
∑

rk≥0

⌊
n

r1, r2, . . . , rk

⌋
tn

n!
zr11 zr22 · · · zrkk = exp

(
t

1− t
(z1 + z2 + · · ·+ zk)

)

. (9)

Proof. The result follows immediately from Theorem (7).

An expression for the multivariate falling factorial in terms of the classical rising factorial
is given by the following theorem.
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Theorem 9. For any n ≥ 1, we have

(x1 + x2 + · · ·+ xk)n =
∑

r1+r2+···+rk≤n

⌊
n

r1, r2, . . . , rk

⌋

〈x1〉r1〈x2〉r2 · · · 〈xk〉rk , (10)

and

〈x1+x2+ · · ·+xk〉n =
∑

r1+r2+···+rk≤n

(−1)n−r1−···−rk

⌊
n

r1, r2, . . . , rk

⌋

(x1)r1(x2)r2 · · · (xk)rk . (11)

Proof. We have

(

1 +
t

1− t

)x1+x2+···+xk

=

(

1 +
t

1− t

)x1
(

1 +
t

1− t

)x2

· · ·

(

1 +
t

1− t

)xk

=

(
∑

r1≥0

(
t

1− t

)r1 〈x1〉r1
r1!

)(
∑

r2≥0

(
t

1− t

)r2 〈x2〉r2
r2!

)

× · · · ×

(
∑

rk≥0

(
t

1− t

)rk 〈rk〉rk
rk!

)

=
∑

r1,r2,...,rk≥0

k∏

i=1

1

ri!

(
t

1− t

)ri

〈x1〉r1〈x2〉r2 · · · 〈xk〉rk

=
∑

r1,r2,...,rk

(
∑

n≥0

⌊
n

r1, r2, . . . , rk

⌋
tn

n!

)

〈x1〉r1〈x2〉r2 · · · 〈xk〉rk

=
∑

n≥0

∑

r1,r2,...,rk

⌊
n

r1, r2, . . . , rk

⌋

〈x1〉r1〈x2〉r2 · · · 〈xk〉rk
tn

n!
. (12)

The left hand side of the first equality is

(

1 +
t

1− t

)x1+x2+···+xk

= (1− t)−(x1+x2+···+xk)

=
∑

n≥0

(−1)n
(
−x1 − x2 − · · · − xk

n

)

tn

=
∑

n≥0

(
x1 + x2 + · · ·+ xk + n− 1

n

)

tn

=
∑

n≥0

(x1 + x2 + · · ·+ xk)n
tn

n!
. (13)

Equating the coefficients of tn

n!
in (12) and (13) yields (10). Equation (11) follows by

substituting (−xi) for i ∈ [k].
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Using Theorem 9, we get, for example

(x1 + x2)2 = 〈x1〉2 + 2x1x2 + 〈x2〉2 + 2(x1 + x2),

(x1 + x2)3 = 〈x1〉3 + 3〈x1〉2x2 + 3x1〈x2〉2 + 〈x2〉3 + 6(〈x1〉2 + 2x1x2 + 〈x2〉2)

+ 6(x1 + x2),

(x1 + x2 + x3)2 = 〈x1〉2 + 〈x2〉2 + 〈x3〉2 + 2(x1x2 + x1x3 + x2x3) + 2(x1 + x2 + x3).

〈x1 + x2〉2 = 3(x1)2 − 6x1 − 6x2 + 6x1x2 + 3(x2)2.

Theorem 10. For any n, r1, r2, . . . , rk ≥ 1, we have

∑

s1+s2+...+sk≤n

(−1)
∑

i si−ri

⌊
n

s1, s2, . . . , sk

⌋⌊
s1
r1

⌋⌊
s2
r2

⌋

· · ·

⌊
sk
rk

⌋

=

(
n

r1, r2, . . . , rk

)

. (14)

Proof. From Relation (10), we have

(x1 + x2 + · · ·+ xk)n =
∑

s1+s2+···+sk≤n

⌊
n

s1, s2, . . . , sk

⌋

〈x1〉s1〈x2〉s2 · · · 〈xk〉sk

=
∑

s1+s2+···+sk≤n

⌊
n

s1, s2, . . . , sk

⌋
∑

r1,r2,...,rk

(−1)
∑

i si−ri

⌊
s1
r1

⌋⌊
s2
r2

⌋

· · ·

⌊
sk
rk

⌋

× (x1)r1(x2)r2 · · · (xk)rk .

On other hand, we have

(x1 + x2 + · · ·+ xk)n =
∑

r1+···+rk=n

(
n

r1, r2, . . . , rk

)

(x)r1(x)r2 · · · (x)rk . (15)

Equating the coefficients of (x)r1(x)r2 · · · (x)rk we obtain the result.

Corollary 11. The following identity holds

(x1)r1(x2)r2 · · · (xk)rk =
∑

s1,s2,...,sk

⌊
r1
s1

⌋⌊
r2
s2

⌋

· · ·

⌊
rk
sk

⌋

〈x1〉s1〈x2〉s2 · · · 〈xk〉sk . (16)

In the next theorem, we give a convolution identity involving the multivariate Lah num-
bers.

Theorem 12. We have

k∏

i=1

(
ri + si
ri

)⌊
n

r1 + s1, r2 + s2, . . . , rk + sk

⌋

=
n∑

j=1

(
n

j

)⌊
j

r1, r2, . . . , rk

⌋⌊
n− j

s1, s2, . . . , sk

⌋

. (17)
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Proof. From Theorem 7, we have

∑

n≥0

k∏

i=1

(
ri + si
ri

)⌊
n

r1 + s1, . . . , rk + sk

⌋
tn

n!
=

k∏

i=1

(
ri + si
ri

)
1

(ri + si)!

(
t

1− t

)(ri+si)

=

(
k∏

i=1

1

(ri)!

(
t

1− t

)ri
)(

k∏

j=1

1

(sj)!

(
t

1− t

)sj
)

=

(
∑

l≥0

⌊
l

r1, r2, . . . , rk

⌋
tl

l!

)

×

(
∑

m≥0

⌊
m

s1, s2, . . . , sk

⌋
tm

m!

)

.

Equating the coefficients of tn

n!
in both sides, we get the desired result.

Combinatorial proof of Theorem 12. Let C = {1, 2, . . . , k} be a list of k different colors.
The left hand side of the identity counts the number of multipartitions of the set [n] into
(r1 + s1, . . . , rk + sk)-lists such that the elements of ri lists among ri + si lists get colour i,
for all i ∈ [k]. In the right hand side, we start by choosing j elements from n and there are
(
n

j

)
ways to do. The j elements have to be partitioned into (r1, . . . , rk)-lists such that the

elements of the lists ri get colour i and the remaining n− j elements have to be partitioned
into (s1, . . . , sk)-lists.

In the following theorem we give a generalization of the formula (17).

Theorem 13. We have

k∏

i=1

(
ri

r1,i, . . . , rt,i

)⌊
n

r1, r2, . . . , rk

⌋

=
∑

j1,...,jt

(
n

j1, . . . , jt

) t∏

i=1

⌊
ji

r1,i, r2,i, . . . , rt,i

⌋

. (18)

with r1,i + r2,i + · · ·+ rt,i = ri for i ∈ [t].

Now we give some recurrence relations satisfied by the multivariate Lah numbers.

Theorem 14. The multivariate Lah numbers satisfy the following recurrence relations
(i) Triangular recurrence relation:

⌊
n

r1, r2, . . . , rk

⌋

=
k∑

i=1

⌊
n− 1

r1, . . . , ri − 1, . . . , rk

⌋

+ (n+ r1 + · · ·+ rk − 1)

⌊
n− 1

r1, r2, . . . , rk

⌋

, (19)

with initial terms
⌊

n

r1,r2,...,rk

⌋
= 0 if n < r1 + r2 + · · ·+ rk.
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(ii) Horizontal recurrence relation:

⌊
n

r1, r2, . . . , rk

⌋

=
∑

r1+···+rk≤j≤n

(r1 + · · ·+ rk + j)n−j

k∑

i=1

⌊
j − 1

r1, . . . , ri − 1, . . . , rk

⌋

. (20)

(iii) Diagonal recurrence relation:

⌊
n

r1, r2, . . . , rk

⌋

=

r1+···+rk∑

j=0

∑

s1+···+sk=j

(
j

s1, . . . , sk

)

× (n+ r1 + · · ·+ rk − 2j − 1)

⌊
n− j − 1

r1 − s1, . . . , rk − sk

⌋

. (21)

Proof. Let us show (19). A multipartition of the set [n] into (r1, r2, . . . , rk)-lists can be
obtained from a multipartition of the set [n− 1] into (r1, · · · , ri− 1, · · · , rk)-lists (1 ≤ i ≤ k)
to which we add a single list {n} of category Ci, or from a multipartition of the set [n− 1]
into (r1, r2, . . . , rk)-lists, by adding the element {n} before any existing elements or at the
end of any list. Then there are (n+ r1 + · · ·+ rk − 1)

⌊
n−1

r1,r2,...,rk

⌋
ways.

Next, we show (20). For a given r1 + · · · + rk ≤ j ≤ n and 1 ≤ i ≤ k, let us consider
the elements of [j − 1] which are not in the same list with the element {n}. The number
of multipartitions of [j − 1] into (r1, . . . , ri − 1, . . . , rk)-lists is

⌊
j−1

r1,...,ri−1,...,rk

⌋
, and there are

(r1+ · · ·+rk+j)n−j ways to add the remaining elements of [j, n−1] into (r1, r2, . . . , rk)-lists.
Summing over all possible j and i gives the result.

Finally, we show (21). Let j (0 ≤ j ≤ r1 + · · ·+ rk) be the number of lists which contain
exactly one element, then the number of ways to choose a such lists is

(
j

s1,...,sk

)
. Now it

remains to count the number of multipartitions of [j + 1, n] into (r1 − s1, . . . , rk − sk)-lists.
So, the number of multipartitions of [j+1, n−1] into (r1−s1, . . . , rk−sk)-lists is

⌊
n−j−1

r1−s1,...,rk−sk

⌋

and there are (n+ r1 + · · ·+ rk − 2j − 1) ways to add the element {n} in any list. Summing
up yields the desired result.

4 Multivariate Stirling numbers

Definition 15. For any n, r1, r2, . . . , rk ≥ 0, the multivariate Stirling numbers of the first
kind, denoted

[
n

r1,r2,...,rk

]
, are defined as the numbers of multipartitions of the set [n] into

(r1, r2, . . . , rk)-cycles. Analogously, we define the multivariate Stirling numbers of second
kind, denoted

{
n

r1,r2,...,rk

}
, as the numbers of multipartitions of [n] into (r1, r2, . . . , rk)-blocks.

From Definition 15, we deduce that the multivariate Stirling numbers of the first kind
satisfy the following recurrence relation

[
n

r1, r2, . . . , rk

]

=
k∑

i=1

[
n− 1

r1, . . . , ri − 1, . . . , rk

]

+ (n− 1)

[
n− 1

r1, r2, . . . , rk

]

, (22)
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with
[

n

r1,r2,...,rk

]
= 0 if n < r1+ r2+ · · ·+ rk. The multivariate Stirling numbers of the second

kind satisfy the following recurrence relation

{
n

r1, r2, . . . , rk

}

=
k∑

i=1

{
n− 1

r1, . . . , ri − 1, . . . , rk

}

+ (r1 + r2 + · · ·+ rk)

{
n− 1

r1, r2, . . . , rk

}

. (23)

with
{

n

r1,r2,...,rk

}
= 0 if n < r1 + r2 + · · ·+ rk.

As particular cases, we have
[

n

1, 1, . . . , 1
︸ ︷︷ ︸

k−times

]

= k!

[
n

k

]

, for n ≥ k,

{
n

1, 1, . . . , 1
︸ ︷︷ ︸

k−times

}

= k!

{
n

k

}

, for n ≥ k,

and {
n

r1, r2, . . . , rk

}

=

(
n

r1, r2, . . . , rk

)

, for r1 + r2 + · · ·+ rk = n.

Next, we give an explicit formula for the multivariate Stirling of the second kind.

Theorem 16. For any n ≥ 0, we have

{
n

r1, r2, . . . , rk

}

=
1

r1!r2! · · · rk!

r1+···+rk∑

j=0

(−1)j
(
r1 + · · ·+ rk

j

)

(r1 + · · ·+ rk − j)n. (24)

Proof. The result is obtained by applying the inclusion-exclusion principle.

Theorem 17. For any n ≥ 1, we have

(x1 + x2 + · · ·+ xk)
n =

∑

r1+ri+···+rk≤n

{
n

r1, r2, . . . , rk

}

〈x1〉r1〈x2〉r2 · · · 〈xk〉rk . (25)

and

(x1 + x2 + · · ·+ xk)n =
∑

r1+ri+···+rk≤n

[
n

r1, r2, . . . , rk

]

xr1
1 xr2

2 · · · xrk
k . (26)

Proof. The result is obtained using induction proof.

Theorem 18. The exponential generating function of the multivariate Stirling numbers of
the first and second kind

∑

n≥0

[
n

r1, r2, . . . , rk

]
tn

n!
=

k∏

i=1

1

ri!

(

ln

(
1

1− t

))ri

, (27)
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and
∑

n≥0

{
n

r1, r2, . . . , rk

}
tn

n!
=

k∏

i=1

(et − 1)
ri

ri!
. (28)

From Theorem 18, we obtain

∑

n≥0

∑

ri≥0

[
n

r1, r2, . . . , rk

]
tn

n!
zr11 · · · zrkk = (1− t)−z1−···−zk , (29)

and
∑

n≥0

∑

ri≥0

{
n

r1, r2, . . . , rk

}
tn

n!
zr11 · · · zrkk = exp

(
(et − 1)(z1 + · · ·+ zk)

)
. (30)

The connection relation between the multivariate Stirling numbers and classical Stirling
numbers is {

n

r1, r2, . . . , rk

}

=

(
r1 + r2 + · · ·+ rk

r1, r2, . . . , rk

){
n

r1 + r2 + · · ·+ rk

}

, (31)

and

[
n

r1, r2, . . . , rk

]

=

(
r1 + r2 + · · ·+ rk

r1, r2, . . . , rk

)[
n

r1 + r2 + · · ·+ rk

]

. (32)

In the following theorem we express the multivariate Lah numbers in terms of the mul-
tivariate Stirling numbers.

Theorem 19. For any n ≥ 1, we have

⌊
n

r1, r2, . . . , rk

⌋

=
n∑

j1+···+jk=r1+···+rk

[
n

j1, j2, . . . , jk

]{
j1
r1

}{
j2
r2

}

· · ·

{
jk
rk

}

. (33)

Proof. The result is obtained from (10) and (25).
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