
23 11

Article 20.3.7
Journal of Integer Sequences, Vol. 23 (2020),2

3

6

1

47

Another Lucasnomial Generalization

of Wolstenholme’s Congruence

Christian Ballot
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Abstract

If p ≥ 5 is a prime, then Wolstenholme’s congruence stipulates that
(

2p−1
p−1

)

≡ 1

(mod p3). New generalizations of this congruence to Lucasnomials (mod U2
pVp/V1)

are given, where U and V are a pair of Lucas sequences.

1 Introduction

The binomial coefficient congruence

(

2p− 1

p− 1

)

≡ 1 (mod p3), (1)

valid for all primes p ≥ 5, was established by Wolstenholme [21] in 1862.
Glaisher ([9, p. 21], [10, p. 33]) later gave the slightly more general congruence

(

(k + 1)p− 1

p− 1

)

≡ 1 (mod p3), (2)

for all nonnegative integers k and all primes p ≥ 5.
An interest in finding an analogue, or a generalization of the Wolstenholme or the Glaisher

congruences for Lucasnomials appears in various papers [2, 4, 12, 13, 14, 19].
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If A = (an)n≥0 is a sequence of integers, an 6= 0 for n > 0, then generalized binomial
coefficients,

(

m
n

)

A
, with respect to A are defined for m ≥ n ≥ 0 to be

(

m

n

)

A

=
amam−1 . . . am−n+1

anan−1 . . . a1
,

if m ≥ n ≥ 1, and 1 if n = 0.
Lucasnomials

(

m
n

)

U
are generalized binomial coefficients defined with respect to a funda-

mental Lucas sequence U . They turn out always to be integers. Given two nonzero integers
P and Q, the fundamental Lucas sequence U = U(P,Q) is the second-order linear recurring
sequence that satisfies the recursion

Un+2 = PUn+1 −QUn, (3)

for all integers n, and has initial conditions U0 = 0 and U1 = 1.
If Un 6= 0 for all n ≥ 1, then U is said to be nondegenerate. A necessary and sufficient

condition for U to be nondegenerate is that U12 6= 0. Lucas sequences U are divisibility

sequences, i.e., they satisfy
m | n =⇒ Um | Un,

for all n ≥ m ≥ 1. If gcd(P,Q) = 1, then U(P,Q) is called regular. If U is regular, then it
satisfies

gcd(Um, Un) = |Ugcd(m,n)|,

for all nonnegative m and n, not both zero. A sequence with this property is a strong

divisibility sequence. A prime p is regular with respect to U(P,Q) if p ∤ gcd(P,Q). An
integer m is said to be regular if all its prime factors are regular. A special prime is one that
divides gcd(P,Q). By extension an integer m is said to be special if all its prime factors are
special. If m ≥ 2 is an integer, then the rank, ρ = ρ(m), of m is the least t ≥ 2 for which
m | Ut. It is guaranteed to exist if gcd(m,Q) = 1. If gcd(m,Q) = 1, then the rank ρ satisfies

m | Un ⇐⇒ ρ | n.

If p ∤ Q is an odd prime, then ρ(p) is a divisor of p−(D | p), where D = P 2−4Q and (D | p) is
the Legendre character of D with respect to p. The rank of p is maximal if ρ(p) = p−(D | p).
To every Lucas sequence U(P,Q), there is an associate, or companion Lucas sequence V
which satisfies the same recursion (3), but has initial values V0 = 2, V1 = P . If D 6= 0 and
α and β denote the zeros of x2 − Px+Q, then for all n ≥ 0

Un =
αn − βn

α− β
and Vn = αn + βn. (4)

We won’t say much more about Lucas sequences, but refer interested readers to the original
Lucas memoir [16], and to Chapter 4 of the book [20]. The reason why it is not unreasonable,
with luck, to expect properties of ordinary binomial coefficients to extend to Lucasnomials
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is that binomial coefficients are special Lucasnomials. Indeed, the binomial coefficients are
the Lucasnomials attached to the fundamental Lucas sequence Un(2, 1) = n.

In [4], one finds two distinct generalizations of (2) for Lucasnomials. The first, which
appeared in a weaker form in [19, Lemma 6], received a fully detailed proof and is stated
below as a theorem. It is actually a concatenation of Theorems 3 and 7 in [4].

Theorem 1. Let U = U(P,Q) be a fundamental Lucas sequence with parameters P and Q.

If a prime p ≥ 3, p ∤ Q, has rank ρ in U(P,Q), then the congruence

(

(k + 1)ρ− 1

ρ− 1

)

U

≡ (−1)k(ρ−1)Qkρ(ρ−1)/2 (mod pν), (5)

holds for all integers k ≥ 0 with

ν = 2 + [ p ≥ 5 ] · [ ρ is maximal ].

In the statement of the theorem we made use of the Iverson symbol [−], where [P ] is 1,
if P is a true statement, and [P ] is 0 otherwise. That is,

ν =

{

3, if ρ is maximal and p > 3;

2, otherwise.

In stating Theorem 1, one would expect the Lucas sequence U to be nondegenerate.
However, with the convention that two zero-terms, one in the numerator, the other in the
denominator of a Lucasnomial, cancel out as 1, the theorem holds even in the degenerate
case [4].

The second generalization, [4, Thm. 9], went as follows:

Theorem 2. Suppose U(P,Q) is a nondegenerate regular fundamental Lucas sequence and

p ≥ 3 is a prime. Then
(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod U2
p ),

for all k ≥ 0.

When |Up| > 1, p is the rank of Up. Thus, as mentioned in [4], if |Up| is prime, then
Theorem 2 follows from Theorem 1. Indeed, the hypotheses of Theorem 2 entail that if |Up|
is prime, then Up ∤ Q. For if Up | Q, then, by (3), Up ≡ P p−1 (mod Up), implying that
Up | P . This would contradict the regularity of U . For U(1,−1), i.e., for the Fibonacci
sequence, the congruence in Theorem 2 follows from the statement of a problem posed by
Ohtsuka [18]. Mention was made in [4] that the published solution to the Ohtsuka problem
[3] can be turned into a general proof of Theorem 2. This note provides a proof of Theorem
3, a more general theorem and a stronger congruence than Theorem 2, which, when U is
the Fibonacci sequence, reduces to the initial problem [18] posed by Ohtsuka. We point out
that the congruence holds irrespective of the regularity of U(P,Q).
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Theorem 3. Suppose U(P,Q) is a nondegenerate fundamental Lucas sequence and p ≥ 3 is

a prime. Then the congruence
(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod U2
pVp/P ),

holds for all k ≥ 0, where V (P,Q) is the companion Lucas sequence associated with U .

Remark 4. Theorem 3 does not hold with the modulus U2
pVp. For instance, with P = 5, Q = 1

and p = 5, we find that
(

2p−1
p−1

)

U
≡ 153 318 506 6≡ 1 (mod U2

pVp). Here, U2
5V5 = 766 592 525,

whereas U2
5V5/P = 153 318 505.

Theorem 3 implies a stronger version of Theorem 2 where U(P,Q) need not be regular,
which is worth pointing out and stating.

Theorem 5. Suppose U(P,Q) is a nondegenerate fundamental Lucas sequence and p ≥ 3 is

a prime. Then for all k ≥ 0
(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod U2
p ).

Section 2 gives a proof of Theorem 3. We proceed roughly as follows. Put Mp =
UpU2p/P = U2

pVp/P . Let Rp be the largest regular integer factor of Mp, i.e., the largest
factor of Mp prime to gcd(P,Q). Then Mp = RpSp, where Sp is the largest special factor
of Mp. To prove the congruence of Theorem 3 modulo Rp, we will use a generalization of
the non-published proof of Ohtsuka, who took the kind initiative to send it to the author in
February 2015. Actually, for the prime p = 3, this approach immediately gives the congru-
ence modulo M3. (Two alternatives would have been either to use a generalization of the
published solution [3] to Ohtsuka’s problem [18], or to use Theorem 1. The first alternative
is longer. The second can only yield the congruence modulo gcd(U2

p , Rp).) To prove the
congruence of Theorem 3 modulo Sp, given a special prime q it will suffice to show that both

integers
(

(k+1)p−1
p−1

)

U
and Qkp(p−1)/2 have a q-adic valuation at least as high as that of Mp. We

are able to prove the congruence modulo Sp in all cases because a full description [6] of the
q-adic valuation of the terms of Lucas sequences exists. (Throughout the paper, if m is an
integer, νq(m) denotes its q-adic valuation.) Actually, by Remark 19 of Section 4, proving
the regular case only would have been sufficient to imply Theorem 3 in its full generality.

Section 3 gives some further results: In Proposition 16, we find a few instances of pairs
(U(P,Q), p) when Theorem 3 holds with respect to the modulus U3

pVp/P .
Note that the congruence of Glaisher (2) gives

(

kp

p

)

=
kp

p

(

kp− 1

p− 1

)

≡

(

k

1

)

(mod p3).

It was generalized further [8] as follows: if p ≥ 5 is prime and ℓ and k are nonnegative
integers, then

(

kp

ℓp

)

≡

(

k

ℓ

)

(mod p3). (6)
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Kimball and Webb [15] gave an analogue of (6) for Fibonomials, i.e., Lucasnomials with
respect to the Fibonacci sequence U(1,−1), but modulo p2. However, a Lucasnomial gener-
alization of (6) along the line of Theorem 1 modulo p3 exists [4, Thm. 13]. We give another,
in line with Theorem 3, in Theorem 17.

Section 3 contains yet another proof of Theorem 3 for the case p = 3. This proof
generalizes the proof given in the published solution [3] of Ohtsuka’s problem [18].

The referee made some numerical experiments that suggested that a polynomial version
of Theorem 3 might hold in the ring Z[P,Q] and that this polynomial version might also hold
for p = 2 whenever 4 divides k. We added a new section to the paper to address the referee’s
questions. Section 4 contains Theorems 18 and 20 which prove the referee’s observations to
be exact.

2 Proof of Theorem 3

We begin with a generalized Cassini identity. This identity is proved [11] in a long and
indirect manner using matrices and, probably, in other places as well. We give a very short
and direct proof which uses the formulas (4) in the next lemma.

Lemma 6. Suppose U(P,Q) is a fundamental Lucas sequence with nonzero discriminant

D = P 2 − 4Q. Then, for all r ≥ 0, we have the identity

UaUb − UcUd = Qr(Ua−rUb−r − Uc−rUd−r),

provided a+ b = c+ d.

Proof. The quantity UtUn−t −QrUt−rUn−t−r is independent of t. Indeed, if α and β are the
distinct zeros of x2 − Px+Q, then using Q = αβ we obtain

D(UtUn−t −QrUt−rUn−t−r) = (αt − βt)(αn−t − βn−t)−Qr(αt−r − βt−r)(αn−t−r − βn−t−r)

= (αn + βn − αtβn−t − βtαn−t)−Qr(αn−2r + βn−2r) +Qr(αt−rβn−t−r + βt−rαn−t−r)

= Vn −QrVn−2r.

Therefore, for all integers t and s, we see that

UtUn−t −QrUt−rUn−t−r = UsUn−s −QrUs−rUn−s−r,

which yields the identity on putting a = t, b = n− t, c = s and d = n− s.

Lemma 7. For all odd primes p and all integers k ≥ 1, we have

(

(k + 1)p− 1

p− 1

)

U

=

(p−1)/2
∏

i=1

(

UkpU(k+1)p

UiUp−i

+Qkp

)

.
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Proof. By Lemma 6, we see that

U(k+1)p−iUkp+i − U(k+1)pUkp = Qkp(Up−iUi − UpU0).

Thus,
U(k+1)p−iUkp+i = U(k+1)pUkp +QkpUp−iUi.

Therefore,

(

(k + 1)p− 1

p− 1

)

U

=

p−1
∏

i=1

Ukp+i

Ui

=

(p−1)/2
∏

i=1

U(k+1)p−iUkp+i

Up−iUi

=

(p−1)/2
∏

i=1

U(k+1)pUkp +QkpUp−iUi

Up−iUi

=

(p−1)/2
∏

i=1

(

UkpU(k+1)p

UiUp−i

+Qkp

)

.

Lemma 8. Theorem 3 holds for p = 3.

Proof. By Lemma 7, we obtain
(

(k + 1)p− 1

p− 1

)

U

= UkpU(k+1)p/P +Qkp ≡ Qkp = Qkp(p−1)/2 (mod Mp),

for p = 3 since U2 = P and UpU2p divides UkpU(k+1)p, where Mp = UpU2p/P .

Lemma 9. Suppose q ∤ Q is a prime. Then, for all n ≥ 0, q ∤ gcd(Un+1, Un).

Proof. If not, there must exist a minimal integer m ≥ 1 such that q divides Um and Um+1.
Since q ∤ gcd(U1, U2), it must be that m ≥ 2. But as QUm−1 = PUm − Um+1 and q ∤ Q, we
see that q | Um−1. Thus, q | gcd(Um−1, Um), which contradicts the minimality of m.

Lemma 10. Let q be a regular prime with respect to U(P,Q). Then, for all m ≥ n > 0,
gcd(Um, Un) and Ugcd(m,n) share the same q-adic valuation.

Proof. If q | Q, then q ∤ Un for any n > 0. Thus, the result holds in this case. Suppose
q ∤ Q. Certainly, because U is a divisibility sequence, the q-adic valuation of Ugcd(m,n) is less
than or equal to the q-adic valuation of gcd(Um, Un). Assume qℓ | gcd(Um, Un). Then by the
Lucas identity

Um = Un+1Um−n −QUnUm−n−1,

we see that qℓ | Un+1Um−n. Since q ∤ Q we know by Lemma 9 that q does not divide Un+1.
Thus, qℓ | Um−n. Therefore, q

ℓ | Ur, where r is the first remainder in the Euclidean division
of m by n. Reiterating the reasoning with n and r in place of m and n and, further, with
any two successive remainders in the Euclidean division algorithm of m by n we find that qℓ

divides Ugcd(m,n).
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Theorem 11. The congruence of Theorem 3 holds modulo Rp, where Rp is the regular part

of Mp = UpU2p/P .

Proof. Both UkpU(k+1)p and UiUp−i are divisible by U2 = P so that

UkpU(k+1)p

UiUp−i

=
UkpU(k+1)p/P

UiUp−i/P
.

By Lemma 7, the theorem will hold if we show that for all i, 1 ≤ i ≤ (p − 1)/2, UiUp−i/P
and Rp are coprime integers. Let q be a prime factor of Rp. Since i and p − i are coprime,
Lemma 10 tells us that q ∤ gcd(Ui, Up−i). Thus, with the notation m ∼q n meaning that
νq(m) = νq(n), we obtain

gcd(UiUp−i, UpU2p) ∼q gcd(Ui, UpU2p) · gcd(Up−i, UpU2p)

∼q gcd(Ui, U2p) · gcd(Up−i, U2p)

∼q U1U2 = P

Therefore, gcd(UiUp−i/P,Mp) ∼q 1.

We now consider the congruence of Theorem 3 modulo special primes. Hence, throughout
the remainder of this section q designates a special prime of U(P,Q) with P = qaP ′ and
Q = qbQ′, a ≥ 1, b ≥ 1 and q ∤ P ′Q′.

The q-adic valuation of the terms Un, (n ≥ 1), is simplest in the case b > 2a. In this
case, we have [6, Thm. 1.2] for all n ≥ 1

νq(Un) = (n− 1)a. (7)

Lemma 12. Suppose U(P,Q) is a fundamental Lucas sequence and p ≥ 5 is a prime. If q
a special prime with b > 2a, then for all k ≥ 0

(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod qνq(Mp)),

where Mp = UpU2p/P .

Proof. By (7), νq(Mp) = (p − 1)a + (2p − 1)a − a = 3(p − 1)a. Thus, to prove the lemma

it suffices to see that both
(

(k+1)p−1
p−1

)

U
and Qkp(p−1)/2 have a q-adic valuation of at least

3(p− 1)a. Indeed, we have for all k ≥ 1 and p ≥ 5

νq(Q
kp(p−1)/2) = bkp(p− 1)/2 > ap(p− 1) > 3(p− 1)a. (8)

Also as
(

(k+1)p−1
p−1

)

U
=

∏p−1
i=1

Ukp+i

Ui
, we find using (7) that

νq

((

(k + 1)p− 1

p− 1

)

U

)

=

p−1
∑

i=1

(

(kp+ i− 1)a− (i− 1)a
)

=

p−1
∑

i=1

kpa = k(p− 1)pa > 3(p− 1)a.
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We now address the case b = 2a.

Lemma 13. Suppose U(P,Q) is a fundamental Lucas sequence and p ≥ 5 is a prime. If q
is a special prime with b = 2a, then for all k ≥ 0

(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod qνq(Mp)),

where Mp = UpU2p/P .

Proof. If b = 2a, then, as seen in the proof of [6, Thm. 2.2], we have for all n ≥ 0, Un =
q(n−1)aU ′

n, where U ′ is the Lucas sequence U(P ′, Q′). Thus,

νq(Mp) = 3(p− 1)a+ νq(M
′
p),

where M ′
p = U ′

pU
′
2p/P

′. Since q is regular with respect to U ′, we find by Theorem 11 that

(

(k + 1)p− 1

p− 1

)

U ′

≡ (Q′)kp(p−1)/2 (mod qνq(M
′

p)). (9)

Since Un = q(n−1)aU ′
n, we see that

(

(k + 1)p− 1

p− 1

)

U

= qkp(p−1)a

(

(k + 1)p− 1

p− 1

)

U ′

.

But we also find that
Qkp(p−1)/2 = qkp(p−1)a · (Q′)kp(p−1)/2.

Thus multiplying the congruence (9) through by qkp(p−1)a we obtain

(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod qνq(M
′

p)+kp(p−1)a).

Since kp(p− 1)a > 3(p− 1)a, we may degrade the modulus in the previous congruence and
prove our lemma.

If b < 2a, then by [6, Thm. 1.2]

νq(U2n+1) = bn, (10)

while
νq(U2n) = bn+ (a− b) + νq(n) + c, (11)

where c is a nonzero constant only if q = 2 or 3, 2a = b+ 1 and q | n.
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Lemma 14. Suppose U(P,Q) is a fundamental Lucas sequence and p ≥ 5 is a prime. If q
a special prime with b < 2a, then for all k ≥ 0

(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod qνq(Mp)),

where Mp = UpU2p/P .

Proof. By equations (10) and (11), we calculate that

νq(Mp) = 3b(p− 1)/2 + νq(p).

Indeed, by (11), for c to be nonzero, we need q to divide p, i.e., q = p. As p ≥ 5, q is not
equal to 2 or 3. Thus, c = 0.

Again we verify below that νq(Q
kp(p−1)/2) exceeds νq(Mp) for all k ≥ 1. For

νq(Q
kp(p−1)/2) = kbp(p− 1)/2 ≥ 5b(p− 1)/2 > 3b(p− 1)/2 + νq(p).

Now, assuming k is even, we write

(

(k + 1)p− 1

p− 1

)

U

=

p−1
∏

i=1

Ukp+i

Ui

=

(p−1)/2
∏

i=1

Ukp+2i

U2i

·
Ukp+2i−1

U2i−1

.

In evaluating the q-adic valuation of
(

(k+1)p−1
p−1

)

U
, we make two observations. First, there are

exactly (p − 1)/2 even-indexed terms in both the numerator and the denominator of the
above product. So the contribution of the quantities (a− b) from equation (11) cancel out.
The terms involving a nonzero quantity c require q to divide their index. We claim there are
at least as many such indices among the ‘kp+2i’ as among the ‘2i’ so their total contribution
to the q-adic valuation of

(

(k+1)p−1
p−1

)

U
is nonnegative. If q = 2 this is clearly true. If q = 3,

then 3 divides an integer in the interval [1, (p − 1)/2] exactly ⌊(p − 1)/6⌋ times. It divides
an integer in [1+ kp

2
, p−1

2
+ kp

2
] exactly ⌊(kp+ p− 1)/6⌋− ⌊(kp)/6⌋ times. But as for any two

real numbers x and y, ⌊x+ y⌋ ≥ ⌊x⌋+ ⌊y⌋, we see that

⌊

kp+ p− 1

6

⌋

≥

⌊

p− 1

6

⌋

+

⌊

kp

6

⌋

.

The total contribution of the quantities νq(n) which appear in (11) for even-indexed terms
is given by

νq

( (p−1)/2
∏

i=1

kp/2 + i

i

)

= νq

((

kp/2 + (p− 1)/2

(p− 1)/2

))

≥ 0,

since binomial coefficients are integers.
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Thus, using again equations (10) and (11), we deduce that the q-adic valuation of
(

(k+1)p−1
p−1

)

U
is at least

b

(p−1)/2
∑

i=1

(

(kp/2 + i)− i
)

+ b

(p−1)/2
∑

i=1

(

(kp/2 + i− 1)− (i− 1)
)

= kbp(p− 1)/2 > νq(Mp),

proving our claim. The case k odd can be treated similarly obtaining again the lower bound
kbp(p− 1)/2 for νq

((

(k+1)p−1
p−1

)

U

)

.

Thus gathering together Lemmas 12, 13 and 14, we have shown the following theorem.

Theorem 15. Let U = U(P,Q) be a nondegenerate fundamental Lucas sequence, p ≥ 5 a

prime, k ≥ 0 an integer. Then
(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod Sp),

where Sp is the largest special factor of Mp = UpU2p/P .

Since Mp = RpSp and gcd(Rp, Sp) = 1, putting together Lemma 8 for the case p = 3 and
Theorems 11 and 15, we have a proof of Theorem 3.

3 Further complementary results

By Theorem 1, the condition ‘|Up| is prime and has maximal rank in U ’ is a sufficient
condition for the congruence in Theorem 2 to hold modulo U3

p . The next proposition describes
all the cases when this rare condition is met. We recall first that a regular U is called n-
defective if all primes of rank n divide D. We know that if n > 30 and U is regular, then
U is never n-defective [7]. Moreover, all cases of defectiveness were described in several
tables [1, 7] using the parameters P and D. A single table [5, p. 33] describes all cases of
defectiveness using the parameters P and Q.

Proposition 16. Suppose p ≥ 5 is prime and |Up| is a prime of maximal rank in U , where

U = U(P,Q), P > 0, is a fundamental Lucas sequence other than I = U(2, 1). Then, either

p = 5 and (P,Q) ∈ {(1,−1), (1, 4), (2, 11)},

or

p = 7 and (P,Q) = (1, 2).

Thus, in these four cases, we find that
(

(k + 1)p− 1

p− 1

)

U

≡ Q
kp(p−1)

2 (mod U3
pVp/P ), (12)

for all k ≥ 0.
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Proof. Note that the hypotheses imply that U(P,Q) is regular. For if a prime q divides
gcd(P,Q), then, by [6, Thm. 1.1], Up is at least divisible by q(p−1)/2. As p ≥ 5, this would
contradict the primality of |Up|. Because |Up| divides Un at n = p the rank of |Up| must
divide p and thus be equal to p. If this rank is maximal, then ρ(|Up|) = p = |Up|± 1, or |Up|.
As p ≥ 5, there are no two primes |Up| and p one apart from each other. Hence, Up = ±p.
Not surprisingly this Diophantine equation has few solutions since Un grows exponentially.
But the condition Up = ±p implies that p | D and that U is p-defective. Therefore, p ≤ 30
and we need only check those U in [5, Table A, p. 33] that are p-defective with 5 ≤ p ≤ 29.
Actually, there are only seven U that are 5-defective, two that are 7-defective and one which
is 13-defective.

Suppose p = 5. The seven sequences correspond to (P,Q) = (1,−1), (1, 2), (1, 3), (1, 4),
(2, 11), (12, 55) and (12, 377). The discriminant D = P 2 − 4Q is divisible by 5 only for
(P,Q) = (1,−1), (1, 4) and (2, 11). Since U5 = P 4 − 3P 2Q + Q2, it is easy to check that
U5 is ±5 in these three cases. If p = 7, then U(1, 2) and U(1, 5) are 7-defective and their
respective seventh terms are 7 and 1. The only 13-defective sequence is U(1, 2) with D = −7
not divisible by 13. Since p = Up, p ∤ Q. By the identity V 2

p − DU2
p = 4Qp, we see that

gcd(Up, Vp) = 1. Thus, the congruence (12) holds.

Thus, for instance, if U = U(1, 2), p = 7 and k = 1, then Up = 7, Vp = −13 and
(

2p− 1

p− 1

)

U

−Q
p(p−1)

2 = −9 · 11 · 17 · 23− 221 = −73 · 13 · 499 ≡ 0 (mod U3
pVp).

However, again, the congruence modulo U3
p holds as a consequence of Theorem 1.

Note that Theorem 3 yields for all k ≥ 1
(

kp

p

)

U

=

(

kp− 1

p− 1

)

U

·
Ukp

Up

≡ Q(k−1)p(p−1)/2

(

k

1

)

U ′

(mod U2
pVp/P ),

where U ′
n = Unp. This can be generalized to all Lucasnomials of the type

(

kp
ℓp

)

U
.

Theorem 17. Suppose U = U(P,Q) is a fundamental Lucas sequence, p ≥ 3 is a prime and

k ≥ ℓ ≥ 0 are integers. Then
(

kp

ℓp

)

U

≡ Q(k−ℓ)ℓ(p2)
(

k

ℓ

)

U ′

(mod Uν
p Vp/P ), (13)

where U ′
n = Upn and ν = 2 + [ p ≥ 5 ] · [Up = ±p ].

Proof. It suffices to reproduce the proof of [4, Thm. 13] replacing ρ by p and the modulus
p3 by Uν

p Vp/P . The key point in the proof of [4, Thm. 13] was [4, Rmk. 4], which has an
equivalent here, namely

(

(k + 1)p− 1

p− 1

)

U

≡

(

2p− 1

p− 1

)k

U

(mod Uν
p Vp/P ),

by Theorem 3 and Proposition 16.
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For the sake of curiosity we give another proof of Theorem 3 for the case p = 3, which
generalizes the proof published for p = 3 in the Fibonacci case [3, p. 191].
Another proof of Theorem 3 for p = 3, i.e., of Lemma 8. Put

M :=
U2
3V3

P
= U3 ·

U6

P
= (P 2 −Q)(P 4 − 4P 2Q+ 3Q2) = P 6 − 5QP 4 + 7P 2Q2 − 3Q3.

One may observe that ak :=
(

3(k+1)−1
3−1

)

U
= U3k+2U3k+1/P is a recurrent sequence. It is of the

form (Aα3k +Bβ3k) · (Cα3k +Dβ3k) for some constants A, B, C and D, where α and β are
the zeros of x2 − Px+Q. Thus, (ak) is annihilated by the cubic polynomial

C(x) = (x− α6)(x− β6)(x−Q3) = x3 − (Q3 + V6)x
2 + (Q3V6 +Q6)x−Q9.

For k = −1, 0 and 1, one can check that ak ≡ Q3k (mod M). For instance,

a1 = U4U5/P = (P 2 − 2Q)(P 4 − 3P 2Q+Q2) = M +Q3 ≡ Q3 (mod M).

Thus, that ak ≡ Q3k (mod M), for all k ≥ 0, easily follows by induction on noting that

C(x) = (x3 −Q9)− (Q3 + V6)(x
2 −Q3x).

4 A polynomial version of Theorem 3

The referee said he made some quick numerical experiments which indicated the congruence
of Theorem 3 may hold in the polynomial ring Z[P,Q] and asked whether, if true, this
statement is implied by Theorem 3. The two statements would then be clearly equivalent.
We point out that the foregoing second proof of Theorem 3, for the case p = 3, at the
end of Section 3, proves the Z[P,Q]-statement is true when p = 3. We had played with a
similar proof for the case p = 5, but writing a proof along these lines for general p seemed
cumbersome. However, we are able to answer the referee’s question in the positive in the
next theorem. Note that the nondegeneracy hypothesis is no longer needed.

Theorem 18. Let p ≥ 3 be a prime number, k ≥ 0 an integer and {U, V } a pair of Lucas

sequences with parameters P and Q. Then the congruence

(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod U2
pVp/P ),

holds in the ring Z[P,Q].

Proof. As noted by Lucas [17, p. 312-13], Un and Vn are homogeneous polynomials in Z[P,Q]
of respective degrees n− 1 and n if one views the variable Q as being of degree 2. Moreover,
as easily checked by induction on n using the recursion (3) each Un(P,Q), n ≥ 2, is, as
a polynomial in P , monic of leading term P n−1, and each Vn(P,Q), n ≥ 1, is also monic

12



in P with leading term P n. Thus the modulus M(P,Q) = MQ(P ) := U2
pVp/P is a monic

polynomial in P in Z[Q][P ]. All Lucasnomials are also polynomials in Z[P,Q]. This is often
shown by induction using the identity:

(

m

n

)

U

= Un+1

(

m− 1

n

)

U

−QUm−n−1

(

m− 1

n− 1

)

U

.

Thus, we find that f(P,Q) :=
(

(k+1)p−1
p−1

)

U
− Qkp(p−1)/2 is a polynomial in Z[P,Q]. Let us

put f(P,Q) = fQ(P ) ∈ Z[Q][P ]. Then the euclidean division of fQ(P ) by MQ(P ) yields two
polynomials qQ(P ) and rQ(P ) in Z[Q][P ] satisfying

fQ(P ) = qQ(P ) ·MQ(P ) + rQ(P ), (14)

with the degree in P of rQ(P ) less than the degree of MQ(P ). Indeed, MQ(P ) is a monic
polynomial in P so we know qQ(P ) has polynomial coefficients in Z[Q]. Therefore, rQ(P ) is
also in Z[Q][P ]. Let us fix Q to some nonzero value y in Z. We may choose an integer value
x for P large enough so that both U12(x, y) 6= 0 and |My(x)| > |ry(x)|. Thus, U(x, y) is a
nondegenerate fundamental Lucas sequence. Therefore, by Theorem 3, the integer My(x)
divides the integer fy(x). It follows from (14) that My(x) divides ry(x). Thus, ry(x) = 0
as an integer. Since there are arbitrarily many such integer values x for P , i.e., more than
the degree of ry(P ), we deduce that ry(P ) = 0 as a polynomial. Thus, the polynomial
coefficients in Z[Q] of rQ(P ) have y as a zero. Since y was arbitrary, rQ(P ) must be the zero
polynomial in the ring Z[P,Q]. By equation (14) we conclude that M(P,Q) divides f(P,Q)
in Z[P,Q].

Remark 19. In the proof of Theorem 18 having fixed a nonzero value y for Q we could have
made the additional requirement on the integer value x for P that it be prime to y. Thus,
it is enough to have Theorem 3 hold in the regular case to imply Theorem 18, which in turn
implies Theorem 3 in full generality.

The referee’s computations also seemed to indicate the polynomial version in Z[P,Q] of
Theorem 3 held for the case p = 2 whenever k is a multiple of 4. Theorem 3 does not
consider the case p = 2, as the Wolstenholme congruence itself does not even hold modulo
p2, when p = 2. However, we can easily prove the referee’s observation is true when 4 | k. It
is actually true for the higher modulus U3

pVp/P . Thus, we make this an additional theorem.

Theorem 20. Suppose {U, V } is a pair of Lucas sequences with parameters P and Q, k ≥ 0
is an integer divisible by 4 and p = 2. Then the congruence

(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod U3
pVp/P ),

holds in the ring Z[P,Q].
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Proof. Since U3
2V2/P = P 2(P 2 − 2Q), the congruence to verify becomes for p = 2

U2k+1 ≡ Qk (mod P 2(P 2 − 2Q)).

Putting k = 4n, we proceed by induction on n. The congruence holds true for n = 0 and
n = 1 as is easily checked. For n = 1, we obtain U9−Q4 = P 2(P 6−7P 4Q+15P 2Q2−10Q3)
and, using P 2 ≡ 2Q (mod P 2 − 2Q), we see that the factor

P 6 − 7P 4Q+ 15P 2Q2 − 10Q3 ≡ (8− 28 + 30− 10)Q3 = 0 (mod P 2 − 2Q).

The linear recurrent sequence (U8n+1) satisfies

U8(n+2)+1 = V8U8(n+1)+1 −Q8U8n+1, (15)

for all n ≥ 0. Now

V8 − 2Q4 = P 2(P 6 − 8P 4Q+ 20P 2Q2 − 16Q3),

and the factor P 6 − 8P 4Q+ 20P 2Q2 − 16Q3, using P 2 ≡ 2Q (mod P 2 − 2Q), is seen to be
congruent to (8− 32 + 40− 16)Q3 = 0 modulo P 2 − 2Q. Thus, assuming U8n+1 ≡ Q4n and
U8(n+1)+1 ≡ Q4n+4 modulo P 2 − 2Q, we obtain inductively by (15) that

U8(n+2)+1 ≡ 2Q4 ·Q4n+4 −Q8 ·Q4n = Q4(n+2) (mod P 2(P 2 − 2Q)),

proving the claim.

We remark that if k = 1, 2 and 3, the Z[P,Q]-congruence of Theorem 20 does not hold
even when degrading the modulus to U2

2V2/P . However, to complete the picture we can
prove, using the line of proof of Theorem 20, the following proposition.

Proposition 21. Suppose {U, V } is a pair of Lucas sequences with parameters P and Q and

p = 2. Then the congruence
(

(k + 1)p− 1

p− 1

)

U

≡ Qkp(p−1)/2 (mod M(P,Q)),

holds in the ring Z[P,Q], where

M(P,Q) =

{

P 2 − 2Q = U2V2/P, if k = 4n+ 1;

P 2 = U2
2 = U3

2/P, if k = 4n+ 2.
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