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Abstract

The minimal excludant, or “mex” function, on a set S of positive integers is the

least positive integer not in S. In this paper, the mex function is extended to integer

partitions generalized by constricting the universal set from all positive integers to those

in certain arithmetic progressions. There are numerous surprising partition identities

connected with this restricted mex function. This paper provides an account of some

of the most conspicuous cases.

1 Introduction

The minimal excludant function (mex-function) appears extensively in combinatorial game
theory (e.g., [7]). For each set S of nonnegative integers we define it as follows:

mex(S) = min(Z≥0\S). (1)

The mex function is perhaps best known in its uses in the game of nim and the Sprague-
Grundy theory originating in the 1930’s.
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We shall generalize the mex-function to apply to integer partitions. We define mexA,a(π)
to be the smallest integer congruent to a modulo A that is not a part of the integer partition
π.

We define pA,a(n) to be the number of partitions π of n, where

mexA,a(π) ≡ a (mod 2A), (2)

and pA,a(n) to be the number of partitions π of n, where

mexA,a(π) ≡ A+ a (mod 2A). (3)

If p(n) denotes the number of integer partitions of n, then clearly

p(n) = pA,a(n) + pA,a(n). (4)

For example, consider n = 4, A = 2, and a = 1. There are five partitions of 4, so p(4) = 5,
where p(n) is the number of partitions of n. These partitions along with first missing odd
part (m.o.) are 4 (m.0. 1), 3+ 1 (m.o. 5), 2+ 2 (m.o. 1), 2+ 1+ 1 (m.o. 3) and 1+ 1+ 1+ 1
(m.o. 3). Thus three partitions have mex2,1 congruent to 1 mod 4, and two have mex2,1
congruent to 3 mod 4. Thus p2,1(4) = 3 and p2,1(4) = 2.

Let us define
FA,a(q) =

∑

n≥0

pA,a(n)q
n, (5)

and
FA,a(q) =

∑

n≥0

pA,a(n)q
n. (6)

Then

FA,a(q) + FA,a(q) =
∑

n≥0

p(n)qn (7)

=
∞
∏

n=1

1

1− qn
:= F (q), by [2, p. 3, Th. 1.1].

Thus by (7), every identity for FA,a(q) yields a natural identity for FA,a(q) and vice versa.
Our theorems also require pe(n) (resp., po(n)), the number of partitions of n into an even

(resp., odd) numbers of parts. Hence by the methods of [2, Ch. 1], we get

Fe(q) :=
∑

n≥0

pe(n)q
n =

∞
∑

n=0

q2n

(q; q)2n
, (8)

and

Fo(q) :=
∑

n≥0

po(n)q
n =

∞
∑

n=0

q2n+1

(q; q)2n+1

, (9)

2



where
(x; q)n = (1− x)(1− xq) · · · (1− xqn−1). (10)

In order to prove our theorems for p1,1(n) and p3,3(n), we must recall two partition
statistics, the rank and the crank.

The rank of a partition is the largest part minus the number of parts. The crank of a
partition is the largest part of the partition if there are no ones as parts, and otherwise is
the number of parts larger than the number of ones minus the numbers of ones.

Our first theorem (which is actually a lemma for treating p1,1(n)) is originally due to
Uncu [10]. Our proof differs from his and is included for completeness. Also see Somos [9].

Theorem 1. The generating function for partitions with non-negative crank is

1

(q; q)∞

∑

n≥0

(−1)nq(
n+1

2 ). (11)

This leads directly to the following three results:

Theorem 2. p1,1(n) equals the number of partitions of n with non-negative crank.

Theorem 3. p3,3(n) equals the number of partitions of n with rank ≥ −1.

Theorem 4. p2,1(n) = pe(n).

Our last two theorems are the real surprises in this study. The theory of partitions is
replete with uncanny partition identities, of which the first Rogers-Ramanujan identity is
the most famous example:

Theorem 5 (Rogers-Ramanujan). [2, Ch. 7] The number of partitions of n in which the
difference between parts is at least 2 equals the number of partitions of n in which all parts
are congruent to 1 or 4 modulo 5.

It turns out that p4,2(n) and p6,3(n) appear in identities of this nature.

Theorem 6. p4,2(n) − po(n) equals the number of partitions of n into parts congruent to
±4,±6,±8,±10 (mod 32).

Theorem 7. p6,3(n) − po(n) equals the number of partitions of n into parts congruent to
±2,±4,±5,±6,±7,±8 (mod 24).

Table 1 gives the first few values of these sequences.
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n p11(n) p33(n) p21(n) p42(n) p63(n)
0 1 1 1 1 1
1 0 1 0 1 1
2 1 2 1 1 2
3 2 2 1 2 2
4 3 4 3 3 4
5 4 5 3 4 5
6 6 8 6 6 8
7 8 10 7 8 10
8 12 15 12 12 15
9 16 20 14 16 19
10 23 28 22 22 27
11 30 36 27 29 34
12 42 50 40 40 48
13 54 64 49 52 60
14 73 86 69 69 81
15 94 110 86 90 102
16 124 145 118 118 135
17 158 184 146 151 169
18 206 238 195 195 220
19 260 300 242 248 224
20 334 384 317 317 352
21 419 481 392 400 437
22 531 608 505 505 554
23 662 756 623 632 684
24 832 948 793 793 860
25 1029 1172 973 985 1057

Table 1: First few values of p1,1, p33(n), p21(n), p42(n), and p63(n)

We note that p1,1(n) is sequence A064428 in the On-Line Encyclopedia of Integer Sequeces
(OEIS), p3,3(n) is A260894, p2,1(n) is A027187, and p4,2(n) is A046682. We also note that
none of the references to these sequences in the OEIS refer to our results.

We note that the proof of Theorem 3 relies on the study of Garden of Eden partitions given
by Hopkins and Sellers [8], while Theorem 6 and 7 rely on identities given by Blecksmith,
Brillhart and Gerst [5].
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2 Uncu’s theorem

If M(m,n) denotes the number of partitions of n with crank m, then [4]

∞
∑

n=0

∞
∑

m=−∞

M(m,n)zmqn =
(q; q)∞

(zq; q)∞(z−1q; q)∞
. (12)

Now by [2, p. 19, Eq. (2.2.5)] we have

(q; q)∞
(zq; q)∞(z−1q; q)∞

= (q; q)∞

∞
∑

m=0

zmqm

(q; q)m

∞
∑

n=0

z−nqn

(q; q)n
. (13)

Thus the generating function for partitions with non-negative crank consists of those
terms on the right-hand side of (13), where the exponent on z is non-negative. Hence the
required generating function is

(q; q)∞

∞
∑

n=0

∞
∑

m=n

qm+n

(q; q)m(q; q)n
= (q; q)∞

∞
∑

n=0

∞
∑

m=0

qm+2n

(q; q)m+n(q; q)n

= (q; q)∞

∞
∑

m=0

qm

(q; q)m

∞
∑

n=0

q2n

(q; q)n(qm+1; q)n

= (q; q)∞

∞
∑

m=0

qm

(q; q)m(q2; q)∞(qm+1; q)∞

×
∞
∑

n=0

(−1)nq(
n+1

2 )+mn(q2; q)n
(q; q)n

(by [2, p. 19, Cor. 2.3, a = b = 0, c = qm+1, t = q2])

=
1

(q; q)∞

∞
∑

n=0

(−1)nq(
n+1

2 )(1− qn+1)
∞
∑

m=0

qm(n+1)

=
1

(q; q)∞

∞
∑

n=0

(−1)nq(
n+1

2 ).

3 Background lemmas

Lemma 8.

F2k,k(q) =
1

(q; q)∞

∞
∑

n=0

(−1)nqkn
2

. (14)
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Proof.

1

(q; q)∞

∞
∑

n=0

(−1)nqkn
2

=
1

(q; q)∞

∞
∑

n=0

q4kn
2

(1− q4kn+k)

=
1

(q; q)∞

∞
∑

n=0

qk+3k+5k+···+k(4n−1)(1− qk(4n+1))

=
∞
∑

n=0

qk+3k+5k+···+k(4n−1)

∞
∏

m=1
m 6=k(4n+1)

(1− qm)

,

and thus this last expression is clearly the generating function for p2k,k(n).

Lemma 9.

Fk,k(q) =
1

(q; q)∞

∞
∑

n=0

(−1)nqk(
n+1

2 ). (15)

Proof.

1

(q; q)∞

∞
∑

n=0

(−1)nqk(
n+1

2 ) =
1

(q; q)∞

∞
∑

n=0

qk(
2n+1

2 )(1− qk(2n+1))

=
1

(q; q)∞

∞
∑

n=0

qk+2k+···+2nk(1− qk(2n+1))

=
∞
∑

n=0

qk+2k+···+2nk

∞
∏

m=1
m 6=k(2n+1)

(1− qm)

,

and this last expression is clearly the generating function for pk,k(n).

4 Proof of Theorem 2

Proof.

∞
∑

n=0

p1,1(n)q
n =

1

(q; q)∞

∞
∑

n=0

(−1)nq(
n+1

2 ) (by Lemma 9 with k = 1)

and by Theorem 1, this is the generating function for partitions with non-negative crank.
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5 Proof of Theorem 3

Proof. In [8], Hopkins and Sellers prove that Garden of Eden partitions are equinumerous
with partitions whose rank is ≤ −2. They then quote the work of Dyson [6] to reveal that
this generating function is

1

(q; q)∞

∞
∑

n=1

(−1)n−1q3(
n+1

2 ).

Hence

F3,3(q) =
1

(q; q)∞

∞
∑

n=0

(−1)nq3(
n+1

2 ) =
1

(q; q)∞

(

1−
∞
∑

n=1

(−1)n−1q3(
n+1

2 )

)

and this generates all partitions excluding those with rank ≤ −2, i.e., partitions with rank
≥ −1.

6 Proof of Theorem 4

Proof.

F2,1(q) =
1

(q; q)∞

∞
∑

n=0

(−1)nqn
2

=
1

2(q; q)∞

(

∞
∑

n=−∞

(−1)nqn
2

+ 1

)

=
1

2(q; q)∞

(

(q; q)∞
(−q; q)∞

+ 1

)

=
1

2

(

1

(−q; q)∞
+

1

(q; q)∞

)

=
1

2

(

∞
∑

n=0

(−1)nqn

(q; q)n
+

∞
∑

n=0

qn

(q; q)n

)

=
∞
∑

n=0

q2n

(q; q)2n

=
∑

n≥0

pe(n)q
n.
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7 Proof of Theorem 6

Proof. In the work of Blecksmith, Brillhart and Gerst [5, Theorem 1 (a)], we find

∞
∏

n=1
n 6≡±4,±6,±8,±10 (mod 32)

(1− qn) = 1 +
∞
∑

n=1

(−1)n
(

qn
2

+ q2n
2
)

. (16)

Let us now divide both sides of (16) by (q; q)∞, and we find

∞
∏

n=1
n≡±4,±6,±8,±10 (mod 32)

1

1− qn
= F2,1(q) + F4,2(q)−

1

(q; q)∞
(17)

= F4,2(q)− F2,1(q) (by (7))

= F4,2(q)−
∞
∑

n=0

po(n)q
n, (by Theorem 4 and (7))

and this is equivalent to Theorem 6.

8 Proof of Theorem 7

Proof. Again, we turn to the paper of Blecksmith, Brillhart and Gerst, where we find [5,
Theorem 3 (a)]

∞
∏

n=1
n 6≡±2,±4,±5,±6,±7,±8 (mod 24)

(1− qn) = 1 +
∞
∑

n=1

(−1)n
(

qn
2

+ q3n
2
)

. (18)

We now divide by (q; q)∞ to obtain

∏

n=1
n≡±2,±4,±6,±7,±8 (mod 24)

1

1− qn
= F2,1(q) + F6,3(q)−

1

(q; q)∞
(19)

= F6,3(q)− F2,1(q) (by (7))

= F6,3(q)−
∞
∑

n=0

po(n)q
n, (by Theorem 4 and (7))

and this is equivalent to Theorem 7.

9 Conclusion

We would suggest that this is the tip of the iceberg in the study of mexA,a(π). It is our hope
that there are many interesting results awaiting further inquiry.

Among the more obvious questions are these:
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I. Are there bijective proofs of any of these theorems?

II. Is there a theorem for p2,2(n) comparable to Theorem 2 and 3?

To study p2,2(n), we would need to know more about

F2,2(q) =
1

(q; q)∞

∞
∑

n=0

(−1)nqn
2+n.

Utilizing the weak form of Bailey’s lemma [1, eqs. (3.27) and (3.33) with a = q, αr =
(−1)n] we see that

F2,2(q) =
∑

n≥0

qn
2+nBn(q)

(q; q)2n+1

,

where

Bn(q) =
n
∑

r=0

(−1)r
[

2n+ 1

n− r

]

with the q-binomial coefficient given by
[

m

n

]

=
(q; q)m

(q; q)n(q; q)m−n

.

It appears that Bn(q)

(1) has nonnegative coefficients;

(2) is unimodal; and

(3) enumerates some subset of the partitions into at most n parts each ≤ n+ 1.

We are unable to prove any of these assertions.

III. Are there comparable theorems for other FA,a(q)?

We would note that in terms of classical theta functions

F2k,k(q) =
1

2(q; q)∞
(θ4(0, q

k)− 1).

Thus one can insert F2k,k(q) into classical modular equations such as [10, p. 289, penul-
timate equation]

ψ(q2)θ4(0, q
5) + qψ(q10)θ4(0, q) = (−q; q)∞(−q5;−q5)∞; (20)

where [2, p. 23, Eq. (2.2.13)]

ψ(q) =
∞
∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

.

However, such complex identities do not appear to yield appealing partition identities
comparable to any of Theorems 1 to 7.
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IV. Are there other partition-theoretic objects that are related to instances of pA,a(n)?

With regard to IV., we note that in [3, Sec. 5] it is proved that p1,1(n) is also the number
of concatenated spiral self-avoiding walks with an odd number of turns.
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