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Abstract

In this paper, we propose the generalized triangles called s-triangles for s given
positive integer, as a bi-indexed sequence of nonnegative numbers {as(n, k)}0≤k≤ns

satisfying as(n, k) = 0 for k < 0. We extend some results of Wang and Yeh, and
show that if the s-triangle is LC-positive (resp., doubly LC-positive) then it preserves
(resp., it doubly preserves) the log-concavity of the sequences. Applications related to
bisnomial coefficients are given.
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1 Introduction

A sequence of nonnegative numbers (xk)k is log-concave (LC for short) if xi−1xi+1 ≤ x2
i for

all i > 0, which is equivalent to xi−1xj+1 ≤ xixj for all j ≥ i ≥ 1; see [11]. Log-concave
sequences arise often in combinatorics, algebra, geometry, analysis, probability and statistics
and have been extensively investigated; see Stanley [26] and Brenti [11] for details.

For two polynomials with real coefficients A(q) and B(q), we write A(q) ≥q B(q) if the
difference A(q)−B(q) has only nonnegative coefficients. A polynomial sequence (An(q))n≥0

is called q-log-concave (as introduced by Sagan [23]) if

An−1(q)An+1(q) ≤q An(q)
2

for n ≥ 1.
It is easy to see that if the sequence (An(q))n≥0 is q-log-concave, then for each fixed

nonnegative number q, the sequence (fn(q))n≥0 is log-concave. The q-log-concavity of poly-
nomials have been extensively studied; see Butler [14], Krattenthaler [18], Leroux [19] and
Sagan [23, 24], for instance.

Let {as(n, k)}0≤k≤ns be a s-triangle of nonnegative numbers with s ≥ 1. We illustrate a
4-triangle as follows:

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 ⋆
1 ⋆ ⋆ ⋆ ⋆ ⋆
2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
4 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Table 1. The 4-triangle.

A nice example of such s-triangles is the triangle given by the ordinary multinomials or
bisnomial coefficients [9]: let s ≥ 1 and n ≥ 0 be two integers, and k = 0, 1, . . . , sn, the
bisnomial number

(

n
k

)

s
is defined as the k-th coefficient in the expansion

(1 + x+ x2 + · · ·+ xs)n =
∑

k≥0

(

n

k

)

s

xk. (1)

Below we list some related identities for the bisnomial coefficients. For more details see
[9] and references therein.

• Expression of bisnomial coefficients in terms of binomial coefficients,

(

n

k

)

s

=
∑

j1+j2+···+js=k

(

n

j1

)(

j1
j2

)

· · ·

(

js−1

js

)

. (2)
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• The symmetry relation
(

n

k

)

s

=

(

n

sn− k

)

s

. (3)

• The longitudinal recurrence relation

(

n

k

)

s

=
s
∑

j=0

(

n− 1

k − j

)

s

. (4)

These coefficients, as for usual binomial coefficients, are defined as in the Pascal triangle
known as the “s-Pascal triangle”. One can find the first values of the s-Pascal triangle in the
On-Line Encyclopedia of Integer Sequences (OEIS) [25] as A027907 for s = 2, as A008287
for s = 3, and as A035343 for s = 4.

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1 1 1
2 1 2 3 2 1
3 1 3 6 7 6 3 1
4 1 4 10 16 19 16 10 4 1
5 1 5 15 30 45 51 45 30 15 5 1
6 1 6 21 50 90 126 141 126 90 50 21 6 1
7 1 7 28 77 161 266 357 393 357 266 161 77 . . .
8 1 8 36 112 266 504 784 1016 1107 1016 784 504 . . .

Table 2. Triangle of trinomial coefficients: s = 2.

Brondarenko [12] gives a combinatorial interpretation of the bisnomial coefficient
(

n
k

)

s
as the number of different ways of distributing “k” balls among “n” cells where each cell
contains at most “s” balls. Using this combinatorial argument, one can easily establish the
following relation

(

n

k

)

s

=
∑

n1+2n2+···+sns=k

(

n

n0, n1, . . . , ns−1

)

.

These coefficients are also naturally linked to generalized Fibonacci sequence: the “multi-
bonacci” sequence, given for s ≥ 1, by

{

Φ0 = Φ1 = · · · = Φs−1 = 0, Φs = 1,

Φn = Φn−1 + Φn−2 + · · ·+ Φn−s−1 (n ≥ 1) .

We have the following identity [9]

Φn+1 =
∑

k

(

n− k

k

)

s

.
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The case s = 1 provides a nice identity for Fibonacci numbers (sequence A000045):

Fn+1 =
∑

k

(

n− k

k

)

.

One of the extensions of binomial coefficients are q-binomial coefficients. Several works
and applications were done in this area. For Fibonacci sequences, see Carlitz [15] and Cigler
[16]. For Lucas sequences, see Belbachir and Benmezai [7]. For a variant of q-bisnomials, see
Belbachir and Benmezai [6] or our paper [5], and for a recent application to the determinant,
see Arikan and Kiliç [4].

Let us consider the following two linear transformations of sequences:

tn =
ns
∑

k=0

as(n, k)xk, (n ≥ 0), (5)

zn =
ns
∑

k=0

as(n, k)xkysn−k, (n ≥ 0). (6)

We say that the linear transformation (5) (resp., (6)) has the PLC (resp., double PLC)
property if it preserves log-concavity of sequences, i.e., the log-concavity of (xn) (resp., (xn)
and (yn)) implies that of (tn) (resp., (zn)). The corresponding s-triangle {as(n, k)} is also
called PLC (resp., double PLC).

This is a good way to obtain log-concavity by linear transformations or some operators.
For instance, Menon [21] demonstrated that log-concavity is preserved under the ordinary
convolution. Walkup in [27], and later, Wang and Yeh [28] also proved that log-concavity is
preserved under the binomial convolution. It is also established that the q-binomial convolu-
tion preserves log-concavity; see [30]. In [1, 2, 3], we established the preserving log-convexity
and log-concavity properties, respectively, for the bisnomial coefficients and the p, q-binomial
coefficients.

In this paper, we generalize the aforementioned results for the generalized triangles like
the s-Pascal triangle. In § 2, we give the necessary conditions to establish the PLC (resp.,
double PLC) property of the generalized triangles {as(n, k)}. In § 3, some examples of the
both properties are given include the s-Pascal triangle.

2 LC-positivity and preservation of log-concavity

In this section, we give a relation between LC-positivity (resp., double LC-positivity) and
the PLC property (resp., the double PLC property) for generalized triangles. We start with
the concept of LC-positivity introduced by Wang and Yeh [28].

Definition 1. Let s ≥ 1 and n ≥ 0 be two integers. For 0 ≤ r ≤ sn, define the polynomial

As,r(n; q) :=
ns
∑

k=r

as(n, k)q
k.
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We say that the s-triangle {as(n, k)} has the LC-positive property if for each r ≥ 0, the
sequence of polynomials (As,r(n; q))n≥r is q-log-concave in n.

Definition 2. Let s ≥ 1 and n ≥ 0 be two integers. For 0 ≤ k ≤ sn, define the reciprocal
triangle {a∗s(n, k)} of {as(n, k)} by

a∗s(n, k) = as(n, sn− k)

and for 0 ≤ r ≤ sn, the polynomial

A∗
s,r(n; q) :=

ns
∑

k=r

a∗s(n, k)q
k.

We say that the s-triangle {as(n, k)} has the double LC-positive property if for each r ≥ 0,
the sequence of polynomials (As,r(n; q))n≥r and

(

A∗
s,r(n; q)

)

n≥r
are q-log-concave in n.

We shall need the following lemma due to Wang and Yeh [28].

Lemma 3. Let h ∈ N. Suppose that two sequences a0, . . . , ah and X0, . . . , Xh of real numbers
satisfy the following two conditions:

1
∑h

k=r ak ≥ 0 (0 ≤ r ≤ h);

2 0 ≤ X0 ≤ · · · ≤ Xh.

Then
h
∑

k=0

akXk ≥ X0

h
∑

k=0

ak ≥ 0.

Let {as(n, k)}0≤k≤ns be a s-triangle of nonnegative numbers and (xk)k≥0 be a log-concave
sequence. Let (zn)n≥0 be the sequence defined by (5) and let us consider the difference

△n :=

(

ns
∑

k=0

as(n, k)xk

)2

−

(

ns−s
∑

k=0

as(n− 1, k)xk

)(

ns+s
∑

k=0

as(n+ 1, k)xk

)

. (7)

Then △n is a quadratic form in ns+ s+ 1 variables x0, x1, . . . , xns+s.
Let St be the sum of terms xkxt−k in △n. For 0 ≤ k ≤ ⌊t/2⌋ with 0 ≤ t ≤ 2ns, let

as,k(n, t) be the coefficient of the term xkxt−k in △n. Then

△n =
2ns
∑

t=0

St with St =

⌊t/2⌋
∑

k=0

as,k(n, t)xkxt−k. (8)

Thus, it suffices to show that St ≥ 0 (0 ≤ t ≤ 2ns). We have the following inequalities
x0xt ≤ x1xt−1 ≤ x2xt−2 ≤ · · · . Hence by Lemma 3, it suffices to establish that

As,r(n, t) :=

⌊t/2⌋
∑

k=r

as,k(n, t) ≥ 0, (0 ≤ r ≤ ⌊t/2⌋) . (9)
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Using relation (7), for k < t/2, we obtain

as,k(n, t) = 2as(n, k)as(n, t− k)− as(n− 1, k)as(n+ 1, t− k)

− as(n+ 1, k)as(n− 1, t− k), (10)

and for t even and k = t/2, we have

as,k(n, t) = as(n, k)
2 − as(n− 1, k)as(n+ 1, k). (11)

Let us remark that As,r(n, t) is precisely the coefficient of qt in the polynomial A2
s,r(n; q)−

As,r(n− 1; q)As,r(n+ 1; q), i.e.,

A2
s,r(n; q)−As,r(n− 1; q)As,r(n+ 1; q) =

2ns
∑

t=2r

As,r(n, t)q
t. (12)

Hence, the following characterization of positivity holds:

Lemma 4. The s-triangle {as(n, k)}0≤k≤ns is LC-positive if and only if As,r(n, t) ≥ 0 for all
2r ≤ t ≤ 2ns.

Now, from the discussion above, we obtain the following:

Theorem 5. The LC-positive s-triangles are PLC.

The relation between double LC-positivity and the double PLC property is given by the
following proposition.

Proposition 6. Given a s-triangle {as(n, k)}0≤k≤ns of nonnegative numbers and two log-
concave sequences (xk)k≥0 and (yk)k≥0.

Define three s-triangles {bs(n, k)}, {cs(n, k)} and {ds(n, k)} by

bs(n, k) = as(n, k)xk, cs(n, k) = as(n, k)yns−k, ds(n, k) = as(n, k)xkyns−k.

For 2r ≤ t ≤ 2ns, define Bs,r(n, t), Cs,r(n, t) and Ds,r(n, t) similar to As,r(n, t) in (12).

1. If the s-triangle {as(n, k)} is LC-positive, then the s-triangle {bs(n, k)} is LC-positive
and Bs,r(n, t) ≥ As,r(n, t)xrxt−r.

2. If the s-triangle {as(n, k)} is double LC-positive, then the s-triangle {cs(n, k)} is LC-
positive and Cs,r(n, t) ≥ As,r(n, t)yns−t+ryns−r for t ≤ ns+ r.

3. If the s-triangle {as(n, k)} is double LC-positive, then the s-triangle {ds(n, k)} is LC-
positive and Ds,r(n, t) ≥ As,r(n, t)xrxt−ryns−t+ryns−r for t ≤ ns+ r.

Proof.
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1. Let 0 ≤ t ≤ 2ns. It is easy to see by definition that bs,k(n, t) = as,k(n, t)xkxt−k for
0 ≤ k ≤ ⌊t/2⌋. Hence for 0 ≤ r ≤ ⌊t/2⌋

Bs,r(n, t) :=

⌊t/2⌋
∑

k=r

bs,k(n, t) =

⌊t/2⌋
∑

k=r

as,k(n, t)xkxt−k,

Now {as(n, k)} is LC-positive and x0xt ≤ x1xt−1 ≤ · · · by the log-concavity of (xk).
From Lemma 3 it follows that

Bs,r(n, t) ≥ xrxt−r

⌊t/2⌋
∑

k=r

as,k(n, t) = As,r(n, t)xrxt−r ≥ 0,

So the s-triangle {bs(n, k)} is LC-positive.

2. Let 2r ≤ t ≤ 2ns. We need to prove Cs,r(n, t) ≥ 0. For brevity, we do this only for the
case t odd since the same technique is still valid for the case where t is even.

Let t = 2l + 1 for 0 ≤ k ≤ l. Then we define

αk = as(n, k)as(n, t− k),

βk = as(n− 1, k)as(n+ 1, t− k),

γk = as(n+ 1, k)as(n− 1, t− k),

Yk = cns−t+kyns−k.

Then
as,k(n, t) = 2αk − βk − γk,

and
cs,k(n, t) = 2αkYk − βkYk+s − γkYk−s

by definition. It follows that

Cs,r(n, t) =
l
∑

k=r

(2αkYk − βkYk+s − γkYk−s)

=
l
∑

k=r

(2αk − βk−s − γk+s)Yk +
s
∑

j=1

βr−jYr+s−j

−
s
∑

j=1

γr+j−1Yr−s+j−1 −
s
∑

j=1

βl−j+1Yl+s−j+1 +
s
∑

j=1

γl+jYl−s+j,
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where we use the fact that Yl+s−j+1 = Yl−s+j and βl−j+1 = γl+j for j = 1, s. Note that
(Yk) is nondecreasing by the log-concavity of (yk) and

2αk − βk−s − γk+s = 2a⋆s(n, ns− k)a⋆s(n, np− t+ k)

− a⋆s(n− 1, ns− k)a⋆(n+ 1, ns− t+ k)

− a⋆s(n+ 1, np− k)a⋆s(n− 1, ns− t+ k)

= a⋆s,ns−t+k(n, 2ns− t).

Hence by the LC-positivity of {a⋆s(n, k)}, we have

Cs,r(n, t) =

⌊(2ns−t)/2⌋
∑

j=ns−t+r

a⋆s,j(n, 2ns− t)Yj−ns+t +
s
∑

j=1

βr−jYr+s−j

−
s
∑

j=1

γr+j−1Yr−s+j−1

≥ Yr

⌊(2ns−t)/2⌋
∑

j=ns−t+r

a⋆s,j(n, 2ns− t) + Yr

s
∑

j=1

βr−j − Yr−s

s
∑

j=1

γr+j−1

= Yr

s
∑

k=r

(2αk − βk−s − γk+s) + Yr

s
∑

j=1

βr−j − Yr−s

s
∑

j=1

γr+j−1

= Yr

s
∑

k=r

(2αk − βk − γk) + (Yr − Yr−s)
s
∑

j=1

γr+j−1

= As,r(n, t)Yr + (Yr − Yr−s)
s
∑

j=1

γr+j−1.

Thus Cs,r(n, t) ≥ As,r(n, t)yns−t+ryns−r.

3. We have ds(n, k) = as(n, k)xkyns−k = cs(n, k)xk and

Ds,r(n, t) =

⌊t/2⌋
∑

k=r

ds,k(n, t) =

⌊t/2⌋
∑

k=r

cs,k(n, t)xkxt−k,

by 1 and 2, so

Ds,r(n, t) ≥ Cs,r(n, t)xrxt−r ≥ As,r(n, t)xrxt−ryns−t+ryns−r.

Now we establish the second result.
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Theorem 7. The double LC-positive s-triangles are double PLC.

Proof. Let the s-triangle {as(n, k)} be doubly LC-positive. Suppose that both (xk) and (yk)
are log-concave. Then the s-triangle {as(n, k)xkyns−k} is LC-positive by Proposition 6 (3)
and is therefore PLC by Theorem 5. Thus the row-sum sequence

zn =
ns
∑

k=0

as(n, k)xkyns−k, n = 0, 1, 2, . . .

is log-concave. In other words, the s-triangle {as(n, k)} is double PLC.

By Lemma 4, {as(n, k)} is LC-positive if and only if the inequality
∑⌊t/2⌋

k=r as,k(n, t) ≥ 0
for all 2r ≤ t ≤ 2ns, so the following corollary is immediate.

Corollary 8. Suppose that the following two conditions hold:

A There exists an index m = m(n, t) such that ak(n, t) < 0 for k < m and as,k(n, t) ≥ 0 for
k ≥ m;

B The sequence (As,0(n; q))n≥0 is q-log-concave.

Then the s-triangle {as(n, k)} is LC-positive and therefore PLC.

Corollary 9. Suppose that s-triangle {as(n, k)} satisfies Conditions (A) and (B) in Corol-
lary 8 and {a∗s(n, k)} satisfies Condition (A). Then {as(n, k)} is doubly LC-positive and
therefore double PLC.

Proof. It suffices to show that
(

A⋆
s,0(n; q)

)

is q-log-concave. We have

A⋆
s,0(n; q) =

ns
∑

k=0

as(n, ns− k)qk =
ns
∑

k=0

as(n, k)q
ns−k = qnsAs,0(n; q

−1)

It follows that

A⋆2
s,0(n; q)−A⋆

s,0(n−1; q)A⋆
s,0(n+1; q) = q2ns

(

A2
s,0(n; q

−1)−As,0(n− 1; q−1)As,0(n+ 1; q−1)
)

which has nonnegative coefficients by the q-log-concavity of (As,0(n; q)).

3 Application to linear operators of finite order

In this section, for selected examples of s-triangles we show their LC-positivity leading to
the PLC property.
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Let S denote the set of sequences (uk)k∈Z of nonnegative numbers. Given (s + 1) non-
negative numbers λ0, λ1, . . . , λs, define the linear operator L = L[λ0, λ1, . . . , λs], on S by

L(uk) =
s
∑

j=0

λjuk−j (k ∈ Z).

For n ≥ 2, define Ln := L(Ln−1) by induction. It is convenient to view L0 as the identity
operator. Let (uk)k∈Z be a log-concave sequence.

Lemma 10. If the sequence (λ0, λ1, . . . , λs) is log-concave, then so is the sequence (Ln(uk))k∈Z.

Proof. In fact

(L(uk))
2 − L(uk−1)L(uk+1) =

(

s
∑

j=0

λjuk−j

)2

−

s
∑

j=0

λjuk−j−1

s
∑

j=0

λjuk−j+1

=
s
∑

j=0

λ2
j(u

2
k−j − uk−j−1uk−j+1) +

∑

0≤l<j≤s

λjλl(uk−juk−l − uk−j−1uk−l+1)

+
∑

0≤l<j≤s

λjλluk−juk−l −
∑

0≤l<j≤0

λjλluk−j+1uk−l−1

= T1 + T2 + T3,

with

T1 =
s
∑

j=0

λ2
j(u

2
k−j − uk−j−1uk−j+1),

T2 =
∑

0≤l<j≤s

λjλl(uk−juk−l − uk−j−1uk−l+1)

and

T3 = −
∑

1≤l+1<j≤s

λjλl(uk−j+1uk−l−1 − uk−juk−l).
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It follows that

(L(uk))
2 − L(uk−1)L(uk+1) =

s−1
∑

j=1

(

λ2
j − λj−1λj+1

)

×
(

u2
k−j − uk−j−1uk−j+1

)

+ λ2
0

(

u2
k − uk−1uk+1

)

+ λ2
s

(

u2
k−s − uk−s−1uk−s+1

)

+
∑

2≤l+2<j≤s−1

(λlλj − λl−1λj+1)× (uk−juk−l − uk−j−1uk−l+1)

+
s−1
∑

l=0

λlλl+1 (uk−l−1uk−l − uk−l−2uk−l+1)

+
s−2
∑

l=0

λlλl+2 (uk−l−2uk−l − uk−l−3uk−l+1)

≥ 0.

By induction, the polynomial sequence (Ln(uk))k∈Z is also log-concave for n ≥ 0.

This brings us to the following theorem.

Theorem 11. Given (s+ 1) nonnegative numbers λ0, λ1, . . . , λs and a log-concave sequence
(uk)k∈Z, define

as(n, k) = Ln(uk), (0 ≤ k ≤ ns) .

If (λ0, λ1, . . . , λs) is log-concave. Then the s-triangle {as(n, k)} is doubly LC-positive and
therefore double PLC.

Proof. Denote ak = Ln−1(uk) for k ∈ Z and As,r(n − 1; q) =
∑ns−s

k=r akq
k. If (λ0, λ1, . . . , λs)

is log-concave, then by Lemma 10 so is the sequence (ak)k∈Z. We have

As,r(n; q) = λ0

ns
∑

k=r

akq
k + λ1

ns
∑

k=r

ak−1q
k + · · ·+ λs

ns
∑

k=r

ak−sq
k

= As,r(n− 1; q)
s
∑

j=0

λjq
j +

s
∑

j=1

λj

j
∑

l=1

ar−lq
r+j−l

+
s−1
∑

j=0

λj

s−j
∑

l=1

ans−s+lq
ns−s+l+j,
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thus

As,r(n; q)
2 −As,r(n− 1; q)As,r(n+ 1; q) =

s
∑

j=1

j
∑

l=1

s
∑

f=0

λjλf

(

ns
∑

k=r

[ar−lak−f − ar−f−lak]q
k+r+j−l

+
ns
∑

k=ns−s+1

ar−f−lakq
k+r+j−l

)

+
s−1
∑

j=0

s−j
∑

l=1

s
∑

f=0

λjλf

(

ns
∑

k=r

(ans−s+lak−f − ans+l−fak−s) q
k+ns−s+l+j

+
r+s−1
∑

k=r

ans+l−fakq
k+ns−s+l+j

)

,

which has nonnegative coefficients by the log-concavity of the sequence (ak). Hence the
s-triangle {as(n, k)}0≤k≤ns is LC-positive.

On the other hand, let u⋆
k = u−k for k ∈ Z. Then the sequence (u⋆

k)k∈Z is log-concave
and a⋆s(n, k) = Ln[λ](u⋆

k). Thus the s-triangle {a⋆s(n, k)}0≤k≤ns is also LC-positive, and the
s-triangle {as(n, k)}0≤k≤ns is therefore doubly LC-positive.

Corollary 12. Let a and b be two nonnegative integers with a ≥ b. If the sequences (xk)
and (yk) are log-concave, then so is the sequence

zn =
ns
∑

k=0

(

a+ n

b+ k

)

s

xkysn−k, (n ≥ 0).

Proof. Using relation (4), we have
(

a+n
b+k

)

s
=
∑s

j=0

(

a+n−1
b+k−j

)

s
, and taking uk =

(

a
b+k

)

s
with

λj = 1, (1 ≤ j ≤ s) in Theorem 11, we obtain the result.

When s = 1, we obtain the result of Y. Wang [29, Corollary 3.4]. Taking a = b = 0 in
Corollary 12, we obtain the following nice result.

Corollary 13. If the sequences (xk) and (yk) are log-concave, then so is

zn =
ns
∑

k=0

(

n

k

)

s

xkysn−k (n ≥ 0).

The following theorem is in a sense dual to Theorem 11.

Theorem 14. Let λ0, λ1, . . . , λs, (s + 1) nonnegative numbers and {as(n, k)} an s-triangle
of nonnegative numbers. Suppose that each row of {as(n, k)} is log-concave and satisfies the
following recurrence relation

as(n, k) =
s
∑

j=0

λjas(n+ 1, k + j), (0 ≤ k ≤ ns). (13)

12



Then the s-triangle {as(n, k)} is LC-positive and therefore double PLC.

Proof. Denote as(n + 1, k) = vk (0 ≤ k ≤ ns + s). Then the sequence (vk) is log-concave
and As,r(n+ 1; q) =

∑ns+s
k=r vkq

k. By the recurrence relation (13) we have

As,r(n; q) = As,r(n+ 1; q)
s
∑

j=0

λjq
−j −

s−1
∑

j=0

s−j
∑

l=1

λjvns+j+lq
ns+l −

s
∑

j=1

j−1
∑

l=0

λjvr+lq
r+l−j.

It follows that

A2
s,r(n; q)−As,r(n− 1; q)As,r(n+ 1; q)

= As,r(n; q)

(

As,r(n+ 1; q)
s
∑

j=0

λjq
−j −

s−1
∑

j=0

s−j
∑

l=1

λjvns+j+lq
ns+l

−
s
∑

j=1

j−1
∑

l=0

λjvr+lq
r+l−j

)

−As,r(n+ 1; q)

(

As,r(n; q)
s
∑

j=0

λjq
−j −

s−1
∑

j=0

s−j
∑

l=1

s
∑

f=0

λjλfvns−s+j+l+fq
ns−s+l

−
s
∑

j=1

j−1
∑

l=0

s
∑

f=0

λjλfvr+l+fq
r+l−j

)

= S1 + S2 + S3,

with

S3 =
s−1
∑

j=0

s
∑

f=0

λjλf

(

s−j
∑

l=1

r+s−1
∑

k=r

vns−s+j+l+fvkq
k+ns−s+l +

j−1
∑

l=0

ns+s
∑

k=ns+1

vr+l+fvkq
k+r+l−j

)

,

and

S1 =
s−1
∑

j=0

s
∑

f=0

s−j
∑

l=1

λjλf

((

ns
∑

k=r+s

+

ns+j
∑

k=ns+1

+
ns+s
∑

k=ns+j+1

)

(vns−s+j+l+fvk

− vns+j+lvk+f−s) q
k+ns−s+l

)

=
s−1
∑

j=0

s
∑

f=0

s−j
∑

l=1

qns−s+lλjλf

(

ns
∑

k=r+s

(vns−s+j+l+fvk − vns+j+lvk+f−s)q
k

+
ns+s
∑

k=ns+j

(vns−s+j+l+fvk − vk+(ns+j+l−k)vns−s+j+l+f−(ns+j+l−k))q
k

)

(14)

13



since

s−1
∑

j=0

s
∑

f=0

s−j
∑

l=1

ns+s
∑

k=ns+j+1

λjλf (vns−s+j+l+fvk − vns+j+lvk+f−s)q
k+ns−s+l

=
s−1
∑

j=0

s
∑

f=0

λjλf

s−j
∑

l=1

((

ns+j+l
∑

k=ns+j+1

+
ns+s
∑

k=ns+j+l

)

(vns−s+j+l+fvk − vns+j+lvk+f−s)q
k+ns−s+l

)

= 0,

by setting, l′ = k−ns−j and k′ = l+j+ns in the second term. The sum (14) has nonnegative
coefficients by log-concavity of (vk)k, and the first term of (14) gives the following: if ns −
s+ j + l + f ≤ k, then

vns−s+j+l+fvk − vns+j+lvk+f−s = vns−s+j+l+fvk − vk+(ns+j+l−k)vns−s+j+l+f−(ns+j+l−k) ≥ 0;

and otherwise,

vns−s+j+l+fvk − vns+j+lvk+f−s = vns−s+j+l+fvk − vns−s+j+f+(s−f)vk−(s−f) ≥ 0.

S2 =
s
∑

f=1

λf

(

ns
∑

k=r+1

λj(vr+fvk − vrvk+f )q
k+r−j

+
s
∑

j=2

λj

(

r+j−1
∑

k=r+1

(vr+fvk − vrvk+f )q
k+r−j

+
ns
∑

k=r+j

(vr+fvk − vrvk+f )q
k+r−j +

j−1
∑

l=1

(

(vr+l+fvr − vr+lvr+f )q
2r+l−j

+
r+l
∑

k=r+1

(vr+l+fvk − vr+lvk+f )q
k+r+l−j +

r+j−1
∑

k=r+l

(vr+l+fvk − vr+lvk+f )q
k+r+l−j

+
ns
∑

k=r+j

(vr+l+fvk − vr+lvk+f )q
k+r+l−j

)))

=
s
∑

f=1

λf

(

ns
∑

k=r+1

λj(vr+fvk − vrvk+f )q
k+r−j +

s
∑

j=2

ns
∑

k=r+j

λj(vr+fvk − vrvk+f )q
k+r−j

+
s
∑

j=2

j−1
∑

l=1

ns
∑

k=r+j

λj(vr+l+fvk − vr+lvk+f )q
k+r+l−j

)

(15)

14



since, by setting k′ = l + r in the second term

s
∑

j=2

s
∑

f=1

λjλf

(

r+j−1
∑

k=r+1

(vr+fvk − vrvk+f )q
k+r−j +

j−1
∑

l=1

(vr+l+fvr − vr+lvr+f )q
2r+l−j

)

= 0,

also, by setting k′ = l + r and l′ = k − r in second term

s
∑

j=2

s
∑

f=1

j−1
∑

l=1

λjλf

((

r+l
∑

k=r+1

+

r+j−1
∑

k=r+l

)

(vr+l+fvk − vr+lvk+f )q
k+r+l−j

)

= 0.

The sum (15) has nonnegative coefficients by the log-concavity of (vk)k. Hence the
polynomial A2

s,r(n; q)−As,r(n−1; q)As,r(n+1; q) has nonnegative coefficients. So the triangle
{as(n, k)} is LC-positive.

Clearly, the reciprocal s-triangle {a∗s(n, k)} possesses the same property as {as(n, k)}
does. Hence {a∗s(n, k)} is also LC-positive. Thus the s-triangle {as(n, k)} is doubly LC-
positive and therefore double PLC.

In Theorem 14, the choice λj = 1 (1 ≤ j ≤ s) and as(n, k) =
(

a−n
b−k

)

s
(0 ≤ k ≤ ns), leads

to the following:

Corollary 15. Let a, b ∈ N with a ≥ b. If the sequences (xk) and (yk) are log-concave, then
so is the sequence

zn =
ns
∑

k=0

(

a− n

b− k

)

s

xkysn−k, (n ≥ 0).

By setting s = 1 in the above result, we obtain the result of Wang [29, Corollary 3.9].
We conclude this paper with the following.

Conjecture 16. The s-triangle
((

n
k

)

s

(

a−n
b−k

)

s

)

k
is double PLC.
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