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Abstract

We present short proofs for Frisch’s identity and Klamkin’s identity. Furthermore,

we deduce variants of Frisch’s and Klamkin’s identities involving infinite series.

1 Introduction

In their recent paper [4], Gould and Quaintance gave new proofs of Frisch’s identity

n
∑

k=0

(−1)k
(

n

k

)(

b+ k

c

)

−1

=
c

n+ c

(

n+ b

b− c

)

−1

(b ≥ c > 0) (1)

and Klamkin’s identity
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As usual we put
(

x

0

)

= 1. For suitable real numbers x, y, the binomial coefficient
(

x

y

)

is to be

read in terms of the gamma function, i.e.,
(

x+y

y

)

= Γ (x+ y + 1) / (Γ (x+ 1) Γ (y + 1)). The

proofs in [4] are based on the well-known formula of Gauss for the hypergeometric function

2F1 (a, b; c; 1).
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In 1969, Ragnar Frisch (1895–1973) was awarded the first Nobel Prize in Economic
Sciences. Identity (1) appeared in Frisch’s 1926 dissertation [2]. It was cited and proved
in the 2nd edition 1927 of the book [5, pp. 337–338] by Netto. A further proof of Frisch’s
identity (1), a two-page calculation involving an application of Melzak’s formula, can be
found in the new book [6, Section 7.2].

In [4] the authors report that identity (2) in its original form [4, Eq. (1)] with x = n+ a
was stated by Murray S. Klamkin in a letter to Henry W. Gould on May 16, 1966. It is
tabulated as Formula (4.2) in Gould’s collection [3]. Identity (4.6) in [3] is a special case of
this.

The purpose of this note are elementary short proofs without application of hypergeo-
metric functions. They are based on the use of the Euler beta function

B (x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt =
Γ (x) Γ (y)

Γ (x+ y)
(x, y > 0) .

Furthermore, we present variants of Frisch’s and of Klamkin’s identities involving infinite
series.

2 Proof of Frisch’s and Klamkin’s formulas

By direct calculation, we obtain, for n = 0, 1, 2, . . . and b ≥ c > 0,
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which is Frisch’s identity (1). For suitable x 6= −1, we have
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which proves Klamkin’s identity (2).
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3 Variants of Frisch’s and Klamkin’s identities

Since
(
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k

)

= 0, for integers k > n ≥ 0, the left-hand sides in both identities (1), (2) can be
written as infinite sums. Formally replacing n with −n in those equations and using the
obvious binomial identity
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We shall show that both equations are valid also for positive integers n, if the parameters
a, b, c are chosen in an appropriate manner.

First we deduce the variant of Frisch’s identity.

Theorem 1. For b ≥ c > n ≥ 1,
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The infinite series in Eq. (3) is convergent since
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∼
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as k → ∞ (see, e.g., [1, (6.1.46)]) and c > n.

Proof of Theorem 1. By using the well-known power series expansion
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instead of the binomial formula, it follows in the same manner as in the preceding section
that
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Rewritten in terms of binomial coefficients the latter identity takes the form
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Replacing x with b− c+ 1 and y with c, we obtain
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Now Eq. (3) follows since
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This completes the proof.

Remark 2. An alternative approach is the observation

∞
∑

k=0

(

n+ k − 1

k

)(

b+ k

c

)

−1

=

(

b

c

)

−1

2F1 (1 + b− c, n; b+ 1; 1) .

This formula immediately implies Eq. (3) since, by Gauss’s formula [1, (15.1.20)],

2F1 (1 + b− c, n; b+ 1; 1) =
Γ (c− n) Γ (b+ 1)

Γ (c) Γ (b− n+ 1)
(c > n, b > −1) .

We close with the variant of Klamkin’s identity.

Theorem 3. Let −a /∈ N and −b /∈ N. For −a− 1 > n ≥ 1 and a− b+ 1 /∈ N,

∞
∑

k=0

(−1)k
(

n+ k − 1

k

)(

a

b+ k

)

−1

=
a+ 1

a+ n+ 1

(

a+ n

b

)

−1

. (4)

The method of proof using the beta integral does not work in the case of Theorem 3
because the arising sum becomes divergent. Therefore, we use the Gauss formula as in the
preceding remark.

Proof of Theorem 3. Noting that
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with a certain constant η > 1. This shows the convergence of the infinite series in Eq. (4).
Finally, we observe
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for a+ 1 + n < 0 and a− b+ 1 /∈ N. Using

2F1 (n, b+ 1; b− a; 1) =
Γ (−a− n− 1) Γ (b− a)

Γ (b− a− n) Γ (−a− 1)
=

Γ (a− b+ n+ 1) Γ (a+ 2)

Γ (a− b+ 1) Γ (a+ 2 + n)

the desired formula Eq. (4) follows after a short calculation.
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