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Abstract

We present short proofs for Frisch’s identity and Klamkin’s identity. Furthermore,
we deduce variants of Frisch’s and Klamkin’s identities involving infinite series.

1 Introduction
In their recent paper [4], Gould and Quaintance gave new proofs of Frisch’s identity
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and Klamkin’s identity
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As usual we put (g) = 1. For suitable real numbers x, y, the binomial coefficient (gc) is to be

read in terms of the gamma function, i.e., (

") =T (z+y+1)/(C(z+1)T (y+1)). The

proofs in [4] are based on the well-known formula of Gauss for the hypergeometric function
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In 1969, Ragnar Frisch (1895-1973) was awarded the first Nobel Prize in Economic
Sciences. Identity (1) appeared in Frisch’s 1926 dissertation [2]. It was cited and proved
in the 2nd edition 1927 of the book [5, pp. 337-338] by Netto. A further proof of Frisch’s
identity (1), a two-page calculation involving an application of Melzak’s formula, can be
found in the new book [6, Section 7.2].

In [4] the authors report that identity (2) in its original form [4, Eq. (1)] with z =n+a
was stated by Murray S. Klamkin in a letter to Henry W. Gould on May 16, 1966. It is
tabulated as Formula (4.2) in Gould’s collection [3]. Identity (4.6) in [3] is a special case of
this.

The purpose of this note are elementary short proofs without application of hypergeo-
metric functions. They are based on the use of the Euler beta function
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Furthermore, we present variants of Frisch’s and of Klamkin’s identities involving infinite
series.

2 Proof of Frisch’s and Klamkin’s formulas

By direct calculation, we obtain, for n =0,1,2,... and b > ¢ > 0,
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which is Frisch’s identity (1). For suitable z # —1, we have
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which proves Klamkin’s identity (2).



3 Variants of Frisch’s and Klamkin’s identities

Since (}) =0, for integers k > n > 0, the left-hand sides in both identities (1), (2) can be
written as infinite sums. Formally replacing n with —n in those equations and using the

obvious binomial identity
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We shall show that both equations are valid also for positive integers n, if the parameters
a, b, c are chosen in an appropriate manner.
First we deduce the variant of Frisch’s identity.

Theorem 1. Forb>c>n > 1,
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The infinite series in Eq. (3) is convergent since
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as k — oo (see, e.g., [1, (6.1.46)]) and ¢ > n.

Proof of Theorem 1. By using the well-known power series expansion
> /n+k—1 .

Z( A )zk=<1—z> (11 < 1)
k=0

instead of the binomial formula, it follows in the same manner as in the preceding section
that
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Rewritten in terms of binomial coefficients the latter identity takes the form
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Replacing x with b — ¢ + 1 and y with ¢, we obtain
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Now Eq. (3) follows since
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This completes the proof. O
Remark 2. An alternative approach is the observation
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This formula immediately implies Eq. (3) since, by Gauss’s formula [1, (15.1.20)],
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We close with the variant of Klamkin’s identity.
Theorem 3. Let —a ¢ N and —b ¢ N. For —a—1>n>1anda—b+1¢N,
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The method of proof using the beta integral does not work in the case of Theorem 3
because the arising sum becomes divergent. Therefore, we use the Gauss formula as in the
preceding remark.

Proof of Theorem 3. Noting that
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we have
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with a certain constant 7 > 1. This shows the convergence of the infinite series in Eq. (4).
Finally, we observe
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the desired formula Eq. (4) follows after a short calculation. ]
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