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Abstract

We construct an infinite family of congruent number elliptic curves, each with rank

at least two, which are related to integral solutions of m2 = n2 + nl + l2.

1 Introduction

Elliptic curves and their geometric and algebraic structure have been a flourishing field of
research in the past. They find prominent applications in cryptography and played a key
role in the proof of Fermat’s Last Theorem. A salient feature of the algebraic structure of
an elliptic curve is its rank. Among general elliptic curves, congruent number curves of high
rank are of particular interest (see, for example, [2]). More difficult than finding an individual
congruent number curve of high rank is to find infinite families of such curves. Johnstone
and Spearman [7] constructed such a family with rank at least three, which is related to
rational points on the biquadratic curve w2 = t4 + 14t2 + 4. In the present paper, we show
an elementary construction for an infinite family of congruent number curves of rank at least
two that are related to the quadratic diophantine equation m2 = n2 + nl + l2, and which
have three integral points with positive y-coordinate on a straight line. Incidentally, some
members of the family exhibit surprisingly high individual rank, namely rank five (whereas
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the members of the family given by Johnstone and Spearman [7] all have rank three). We
start by recalling some basic results on congruent numbers.

A positive integer A is called a congruent number if A is the area of a right-angled triangle
with three rational sides. So A is congruent if and only if there exists a rational Pythagorean
triple (a, b, c) (i.e., a, b, c ∈ Q, a2 + b2 = c2, and ab 6= 0) such that ab

2
= A. The sequence of

integer congruent numbers starts with

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, . . .

(see, for example, the On-Line Encyclopedia of Integer Sequences [10, A003273]).
It is well-known that A is a congruent number if and only if the cubic curve

CA : y2 = x3 − A2x

has a rational point (x0, y0) with y0 6= 0. The cubic curve CA is called a congruent number
elliptic curve or just congruent number curve. With respect to some congruent number A,
the correspondence between rational points (x, y) with y 6= 0 on the congruent number curve
CA on the one hand, and rational Pythagorean triples (a, b, c) with ab = 2A on the other
hand, is given by

(
a, b, c

)
7→

(

b(b+ c)

2
,
b2(b+ c)

2

)

, (1)

and
(
x, y
)

7→

(

2xA

y
,
x2 − A2

y
,
x2 + A2

y

)

. (2)

For a positive integer A, a triple (a, b, c) of non-zero rational (integral) numbers such that
a2 + b2 = c2 and A =

∣
∣ab
2

∣
∣ is called a rational (integral) Pythagorean A-triple. Notice that

if (a, b, c) is a rational Pythagorean A-triple, then A is a congruent number and |a|, |b|, |c|
are the lengths of the sides of a right-angled triangle with area A. Notice also that we allow
a, b, c to be negative. In particular, for any positive integers m and n with m > n, the triple

(
2mn
︸ ︷︷ ︸

a

, m2 − n2

︸ ︷︷ ︸

b

, m2 + n2

︸ ︷︷ ︸

c

)

is an integral Pythagorean A-triple. In this case, we obtain A = mn(m2 − n2) and by (1)

(a, b, c) 7→
(
m2(m2 − n2)
︸ ︷︷ ︸

x

, m2(m2 − n2)2
︸ ︷︷ ︸

y

)
. (3)

Notice that in this case, the point (x, y) on CA that corresponds to the integral Pythagorean
A-triple (a, b, c) is an integral point.

Concerning the equations
m = n2 + nl + l2 eq(m)
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and
m2 = n2 + nl + l2 eq(m2)

we first prove the following result (for a geometric representation of integral solutions of
x2 + xy + y2 = m2, see Halbeisen and Hungerbühler [5]):

Proposition 1. Let p1 < p2 < · · · < pj be primes, such that pi ≡ 1 (mod 6) for 1 ≤ i ≤ j,
and let

m =

j
∏

i=1

pi.

(a) The number of positive, integral solutions (n, l) of eq(m) with l < n is 2j.

(b) For each integral solution of eq(m), n and l are relatively prime and neither n nor l is
a multiple of pi (for 1 ≤ i ≤ j).

(c) The number of positive, integral solutions (n, l) of eq(m2) with l < n is 3j−1
2

.

(d) Among the 3j−1
2

integral solutions solutions (n, l) of eq(m2) with l < n we find 2j−1

solutions (n, l) such that n and l are relatively prime. In particular, if j = 1 and
p ≡ 1 (mod 6), then the solution in positive integers l < n of

p2 = n2 + nl + l2,

such that n and l are relatively prime, is unique.

Proof.
(a) By Dickson [1, ExercisesXXII.2, p. 80], the number of integral solutions of eq(m) is
6E(m), where E(m) is the excess of the number of divisors 3h+ 1 of m over the number of
divisors of the form 3h+2. By definition of m, E(m) = 2j. Now, with each positive, integral
solution (n, l) of eq(m) with 0 < l < n we obtain the following 12 pairwise different integral
solutions:

(n, l), (l, n), (−n,−l), (−l,−n),

(−n, n+ l), (n+ l,−n), (n,−n− l), (−n− l, n),

(−l, n+ l), (n+ l,−l), (l,−n− l), (−n− l, l).

So, if e(m) denotes the number of positive, integral solutions (n, l) of eq(m) with l < n,
then 6E(m) ≥ 12e(m). On the other hand, every integral solution of m = n2 + nl + l2

corresponds to a unique positive, integral solution (n, l) with l < n, which implies that
6E(m) = 12e(m) and consequently we obtain e(m) = 2j−1.

(b) This follows immediately from the definition of m.
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(c) Again by Dickson [1, ExercisesXXII.2, p. 80], the number of integral solutions of eq(m2)
is 6E(m2), where E(m2) = 3j. Let e(m2) denote the number of positive, integral solutions
(n, l) of m2 = n2+nl+ l2 with l < n. In addition to the 12e(m2) integral solutions of eq(m2),
we have the 6 solutions

(m, 0), (0,m), (−m, 0), (0,−m), (−m,m), (m,−m).

So, 6E(m) = 12e(m) + 6 and consequently we obtain e(m) = 3j−1
2

.

(d) For the sake of simplicity, let us call a positive, integral solution (n, l) of eq(m2) with
l < n a normal solution. Among the normal solutions (n, l) of eq(m2), we distinguish between
the ones with n and l relatively prime, which we call primitive solutions, and the other ones,
which we call composite. For a given m, there is a one-to-one correspondence between
composite solutions of eq(m2) with (n, l) = d > 1 and primitive solutions of eq((m/d)2) via
the correspondence

m2 = n2 + nl + l2 ⇐⇒ (m/d)2 = (n/d)2 + (n/d)(l/d) + (l/d)2 .

The proof is now by induction on j. For j = 1, the statement follows from the definition
of m. Suppose the statement holds when m has j − 1 or less prime factors. Then, let m
have j prime factors. We observe by the above correspondence that the number of composite
solutions to eq(m2) is

∑

r|m
0<r<m

P (r2)

where P (r2) is the number of primitive solutions to r2 = n2+nl+ l2. By the inductive step,
if r is comprised of i prime factors of m then P (r2) = 2i−1. Furthermore, the number of
distinct factors r of m with i prime factors is

(
j

i

)
, and therefore, by the binomial theorem,

the number of composite solutions to eq(m2) is

∑

r|m
0<r<m

P (r2) =

j−1
∑

i=1

(
j

i

)

2i−1 =
1

2

(
(1 + 2)j − 2j − 1

)
=

3j − 1

2
− 2j−1 .

Since the total number of solutions to eq(m2) is 3j−1
2

, by subtracting the number of composite
solutions we finally obtain P (m2) = 2j−1, which completes the proof.

Let us now consider the relationship between positive, integral solutions of m2 = n2 +
nl + l2 and integral Pythagorean triples.

If m,n, l are positive integers such that m2 = n2 + nl + l2, then, for k := n + l, each of
the following three triples

(
2mn
︸ ︷︷ ︸

a1

, m2 − n2

︸ ︷︷ ︸

b1

, m2 + n2

︸ ︷︷ ︸

c1

)
,
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(
2ml
︸︷︷︸

a2

, m2 − l2
︸ ︷︷ ︸

b2

, m2 + l2
︸ ︷︷ ︸

c2

)
,

(
2mk
︸ ︷︷ ︸

a3

, k2 −m2

︸ ︷︷ ︸

b3

, k2 +m2

︸ ︷︷ ︸

c3

)
,

is an integral Pythagorean A-triple for

A = mn(m2 − n2) = ml(m2 − l2) = km(k2 −m2) = klmn

(see Hungerbühler [6]). In particular, with m,n, l and (3) we obtain three distinct integral
points on CA.

As a matter of fact we would like to mention that the three integral points on CA that
correspond to an integral solution of m2 = n2 + nl + l2 lie on a straight line.

Let us now turn back to the curve CA, where A is a congruent number. One can readily
check that the three points (0, 0) and (±A, 0) are the only points on CA of order 2 with
respect to the group law of elliptic curves. Moreover, one can show that these three points,
together with the point at infinity, are the only points of finite order (for an elementary proof
of this result, which is based on a theorem of Fermat; see Halbeisen and Hungerbühler [4]).
This implies that if A is a congruent number and (x0, y0) is a rational point on CA with
y0 6= 0, then the order of (x0, y0) is infinite. So, Mordell’s theorem (which states that the
group of rational points on CA is finitely generated) and the fundamental theorem of finitely
generated abelian groups imply that the group of rational points on a congruent number
curve CA is isomorphic to

Z/2Z× Z/2Z
︸ ︷︷ ︸

torsion group

× Zr,

where r > 0 is the aforementioned rank of CA.

2 Rank at least two

Based on integral solutions of m2 = n2 + nl+ l2, we will show that there are infinitely many
congruent number curves CA with rank at least two—where many of the curves CA have
rank three or four and several curves have even rank five (see Section 3).

The following result, which can be found in Silverman and Tate [9, Chapter III.6.], allows
us to compute the rank—or at least a lower bound of the rank—of certain elliptic curves.
For simplicity, we state the result just for congruent number curves.

Proposition 2. Let b be a non-zero integer and let b̄ := −4b. Furthermore, let

B :=
{
b1 ∈ Z : b1 | b, and b1 is square-free

}

and
B̄ :=

{
b̄1 ∈ Z : b̄1 | b̄, and b̄1 is square-free

}
.
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Finally, let βb and βb̄ be the number of integers b1 ∈ B and b̄1 ∈ B̄, respectively, such that
the corresponding equation

b1M
4 + b

b1
e4 = N2 (4)

b̄1M̄
4 + b̄

b̄1
ē4 = N̄2 (5)

has integral solutions, where e 6= 0, ē 6= 0, and (M, e) = (M̄, ē) = 1.
Then the rank r of the curve y2 = x3 + bx satisfies the equation

2r =
βb · βb̄

4
.

Moreover, if (x, y) is a rational point on the curve y2 = x3 + bx with y 6= 0, then one can
write that point in the form

x =
b1M

2

e2
, y =

b1MN

e3
, (6)

where M, e,N is an integral solution of (4) with N > 0 and (M, e) = 1, and vice versa.
The analogous statement holds for rational points on the curve y2 = x3 + b̄x with respect to
equations of the form (5).

Now we are ready to prove

Theorem 3. Let m,n, l be pairwise relatively prime positive integers, where m =
∏j

i=1 pi is
a product of pairwise distinct primes pi ≡ 1 (mod 6) and m2 = n2 + nl + l2. Furthermore,
let k := n+ l and let A := klmn. Then the rank of the congruent number curve

CA : y2 = x3 − A2x

is at least two.

Proof. Since we have at least one rational point (x, y) on CA with y 6= 0, we know that
the rank r of CA is positive. So, to show that the rank of the curve CA is at least two, it
would be enough to show that β−A2 ≥ 9. For this, we have to show that there are integral
solutions for (4) for at least 9 distinct square-free integers b1 dividing −A2, or equivalently,
we have to find at least 9 rational points on CA, such that the 9 corresponding integers
b1 are pairwise distinct. Even though it would be enough to find integral solutions for (4)
for at least 9 distinct square-free integers b1, we shall give 16 solutions, such that a single
additional solution for (4) would give us a rank of at least three (see Proposition 5).

Notice that because of (6), to compute b1 from a rational point P = (x, y) on CA with
x 6= 0, it is enough to know the x-coordinate of P and then compute x mod Q∗2 (i.e., we
compute x modulo squares of rationals). The x-coordinates of the three integral points we
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get by (1) from the three integral Pythagorean A-triples (a1, b1, c1), (a2, b2, c2), (a3, b3, c3)
generated by m,n, l, k, are

x1 = m2(m2 − n2) = m2kl , x2 = m2(m2 − l2) = m2kn , x3 = k2(k2 −m2) = k2nl ,

and modulo squares, this gives us three values for b1 modulo squares, namely

b1,1 ≡ kl , b1,2 ≡ kn , b1,3 ≡ nl .

Now, exchanging in each of the three integral Pythagorean A-triples the two catheti ai and
bi (for i = 1, 2, 3), we obtain again three distinct integral points on CA, whose x-coordinates
gives us again three values for b1 modulo squares, namely

b1,4 ≡ mn , b1,5 ≡ ml , b1,6 ≡ mk .

Finally, if we replace each hypotenuse cj of these six integral Pythagorean A-triples with −cj,
we obtain again six distinct integral points on CA, whose x-coordinates give us six values for
b1 modulo squares, namely

b1,7 ≡−kl , b1,8 ≡−kn , b1,9 ≡−nl

b1,10 ≡−mn , b1,11 ≡−ml , b1,12 ≡−mk .

In addition to these 12 integral points on CA (and the corresponding b1’s), we have the two
integral points (±A, 0) on CA, which give us two more values for b1 modulo squares, namely

b1,13 ≡ klmn and b1,14 ≡ −klmn.

Now, it remains to show that the square-free parts of the b1,j ’s are pairwise distinct. By
assumption, m is square-free and k, l, n are pairwise relatively prime. Therefore, if for some
i, j with 1 ≤ i < j ≤ 14, b1,i ≡ b1,j (mod Q∗2), at least two of the integers k, l, n are squares,
say n = u2, and l = v2 or k = v2. Then

m2 = u4 + u2v2 + v4 (in the case when l = v2),

or
m2 = u4 − u2v2 + v4 (in the case when k = v2).

If l = v2, this implies that u2 = 1 and v = 0, or u = 0 and v2 = 1, and if k = v2, this implies
that u2 = 1 and v = 0, u = 0 and v2 = 1, or u2 = v2 = 1 (see, for example, Mordell [8, p. 19f ]
or Euler [3, p. 16]). So, at most one of the integers k, l, n is a square, which shows that at
least 14 equations of the form (4)— for different square-free integers b1 dividing A2—have
integral solutions. Notice that so far, because the corresponding points on CA are integral,
we always had |e| = 1.
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Now, we show that there are also solutions for (4) with b1,15 = 1 and b1,16 = −1. Assume
first that there is a solution for (4) with b1,15 = 1 and e = 1, i.e., there are positive integers
M and N such that

M4 − A2 = N2.

Then we also have
A2M4 − A4 = (AN)2,

which shows that M̃ := A, ẽ := M , and Ñ := AN , satisfy

−M̃4 + A2ẽ4 = Ñ2,

and hence, there is a solution for (4) with b1,16 = −1. Notice that since |ẽ| 6= 1, the
corresponding point on CA is not an integral point.

It remains to find a solution for (4) with b1,15 = 1 and e = 1. Since m,n, l, k are pairwise
relatively prime positive integers and k = n + l, exactly one of n, l, k is even, i.e., at least
one of n and l is odd. Without loss of generality, assume that n is odd. Furthermore, by
definition of m, m is odd. Let p := m+n

2
and q := m−n

2
. Then p and q are positive integers.

Now, m = p+ q, n = p− q, and m2 − n2 = 4pq, and since m2 − n2 = kl, we have

A = klmn = 4pq(p+ q)(p− q) .

Notice that since pq(p+ q) is even, we have A ≡ 0 (mod 8). An easy calculation shows that
M := p2 + q2 and N := (p2 − q2)2 − (2pq)2 satisfy

M4 − A2 = N2.

So, there is a solution for (4) with b1,15 = 1 and e = 1, which gives us again an integral point
on CA

This shows that β−A2 ≥ 16 and completes the proof.

As an immediate consequence we get the following

Corollary 4. Let m,n, l be as in Theorem 3 and let q be a non-zero integer. Then the rank
of the curve CAq4 is at least two.

Proof. Notice that if m,n, l are such that m2 = n2 + nl + l2, then, for mq, nq, lq, we have
(mq)2 = (nq)2 + nq · lq + (lq)2, which implies that for Ã = kq · lq ·mq · nq = Aq4, the rank
of the curve CÃ is at least two.

3 Rank at least three

Proposition 5. For A = 341 880, the rank of the curve CA is at least three.
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Proof. For k = 40, l = 7, m = 37, n = 33, we have A = klmn, m2 = n2 + nl + l2, and
k = n+ l. Thus, by Theorem 3, the rank of the curve CA is a least two. Now, for b1,17 = −30,
which is distinct from the square-free values of b1,1, . . . , b1,16, we get that M = 98, e = 1,
N = 33 600 is an integral solution of (4), which implies that the rank of CA is at least three.
In fact, with the help of one can show that the rank of CA is equal to three.

As a final remark concerning the rank of congruent number curves, we would like to
mention that with the help of we found that many of the curves which correspond to
an integral solution of m2 = n2 + nl + l2 have rank 3 or higher. In fact, we found plenty of
curves of rank 3 or 4, as well as the following curves of rank 5:

A = klmn m =
∏

pi l n k = n+ l

237 195 512 400 7 · 127 464 561 1 025
8 813 542 297 560 7 · 13 · 37 232 3 245 3 477
10 280 171 942 040 37 · 67 741 2 024 2 765
81 096 660 783 600 37 · 103 2 139 2 261 4 400
225 722 120 463 840 13 · 19 · 31 505 7 392 7 897
457 485 316 904 280 7 · 31 · 37 895 7 544 8 439

5 117 352 889 729 080 67 · 223 1 551 14 105 15 656
281 692 457 452 791 000 79 · 409 9 064 26 811 35 875

24 666 188 870 481 576 600 13 · 31 · 223 46 169 57 400 103 569

Of special interest might be values of A which are related to an m with few factors,
especially to primes m. Recall that if m is prime, then the integers n, l, n + l such that
m2 = n2 + nl + l2 are unique, and therefore, A(m) := (n+l)lmn is determined bym. Among
the 666 prime numbers m ≤ 11 113 with m ≡ 1 (mod 6), we found the following 30 values
of m such that CA(m) has rank 4:

127, 139, 181, 277, 337, 709, 769, 823, 829, 883, 1051, 1087, 1213,

1747, 1777, 1873, 2137, 2287, 2377, 2467, 2521, 3529, 3877, 3931,

4129, 4999, 5521, 7573, 9601, 10711.

However, we did not find any prime m ≡ 1 (mod 6) such that CA(m) has rank 5.
The preceding observations might indicate that the congruent number curves CA con-

structed in Theorem 3 are candidates for high rank congruent number elliptic curves (for
another approach, see Dujella, Janfada, Salami [2]).
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