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Abstract

In this paper, we determine all base-10 repdigits expressible as sums of four Fi-
bonacci or Lucas numbers.
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1 Introduction

The Fibonacci sequence (F,), and the Lucas sequences (L,), are given, respectively, by
FO = O,Fl = 17Fn+2 = Fn+1 +Fn for n > 0

and
LO = 2,L1 = 1,Ln+2 = Ln+1 —|—Ln for n Z 0.

Luca [2] answered the question of which repdigits can be written as sums of three Fibonacci
numbers by following a general method (see [3]). Luca [2] showed that all nonnegative integer
solutions (mjq, ma, mg,n) of the equation

10" -1

N:Fm1+Fm2+Fm3:d< )withde{l,...,9}

have
N €{0,1,2,3,4,5,6,7,8,9,11,22,44,55,66, 77,99, 111, 555,666, 11111}.

Luca, Normenyo, and Togbe [6, 7] obtained analogous results for Pell numbers and Lucas
numbers.

Luca [2] conjectured that the method he employed could be used to compute all solutions
of the equation

10" — 1
d( 5 >:Fm1+Fm2+Fm3+Fm4

with d € {1,...,9} and my > my > mg > my. Luca et al. [8] investigated this idea for Pell
numbers. Luca et al. [8] showed that, all nonnegative integer solutions (mq, ma, ms,n) of
the equation

10" -1

NZPm1+Pm2+Pm3+Pm4:d< ) with d € {1,...,9}

have
N €4{0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,77,88,99, 111, 222, 444, 888,999}.

In this paper, we compute all repdigits that can be expressed as sums of four Fibonacci or
Lucas numbers. We prove Theorem 1 and Theorem 2 below.

Theorem 1. All nonnegative integer solutions (mq, ms, mg, my, n) of the equation

10" —1

~—

N:Fm1+Fm2+Fm3+Fm4:d( )withde{l,...,9} (1

have

N €{0,1,2,3,4,5,6,7,8,9, 11,22, 33,44, 55,66, 77,99, 111, 222, 333, 555, 666, 777,
999, 1111,2222, 11111, 666661}



Theorem 2. All nonnegative integer solutions (mq, ms, mg, my, n) of the equation

10" -1

~—

N:Lm1+Lm2+Lm3+Lm4:d< )withde{l,...,9} (2

have

N € {4,5,6,7,8,9, 11,22, 33,44, 55,66, 77, 88,99, 111, 222, 333, 555, 666, 999, 2222,
4444,11111, 88888}

Here is the organization of this paper. In the next section, we recall the useful results to
prove our two main results. We use them in Section 3 to prove Theorem 1. In Section 4, for
the sake of completeness, we apply the same method for the entire proof of Theorem 2.

2 Preliminaries

In this section, we recall some results that are useful for the proof of Theorem 1 and Theorem
2. Let K be an algebraic number field of degree D over Q, let ay,...,a, € K\ {0} and let
by,...,b, € Z. Set

B = max{|b],...,|ba|}

and
A=alioabn— 1,

Let Aq,..., A, be real numbers with
max{Dh(w;),|loga;|,0.16} < A;, 1<i<n,
where h(n) is the logarithmic height of an algebraic number n which is given by the formula

d(n)

1 .
h(n) = o log [ao| + > _log (max{|n®|, 1})
i=1
where d(n) is the degree of  over Q and
d(n) 4
FX) =a ] T (X =) € z[x]
i=1

the minimal polynomial of 1 of degree d(n) over Z.

Lemma 3. ([1, Theorem 9.4]) Assume that A # 0. We then have
log |A| > =3 x 30" x (n+1)>°D*(1 4+ log D)(1 + lognB)A, - - - A,. (3)
Furthermore, if K is real, we have

log |A| > —1.4 x 30"" x n* D?*(1 + log D)(1 + log B)A; - - - A,,. (4)
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We now discuss a computational method for reducing upper bounds for solutions of
Diophantine equations.
Let 91,7, 8 € R be given, and let z1, x5 € Z be unknowns. Let

A:ﬁ—i‘l’ﬂ% +l’2192. (5)

Let ¢, § be positive constants. Set X = max{|z1], |z2|}. Let X, be a (large) positive constant.

Assume that
Al < ¢ exp(—6- V), (6)

X < X,. (7)

When 5 =0 1in (5), we get
A= $1191 + .’Ig’ﬂg.

Put ¢ = —1;/195. Let the continued fraction expansion of ¥ be given by
ap, a1, as, . . ],

and let the kth convergent of ¥ be py/q, for k= 0,1,2,.... We may assume without loss of
generality that || < |¥s] and that z; > 0. We have the following results.

Lemma 4. ([9, Lemma 3.1]) (i) If (6) and (7) hold for xy, x5 with X > X*, then (—x9,x1) =
(pg, qr) for an index k that satisfies

log (1 + Xo\/g)

B<—1+ = Yo. (8)
log (—1+2‘/5>
Moreover, the partial quotient a1 satisfies
9 o
Qg1 > -2+ —| 2| eXp( Qk) (9)
Cqk
(i) If for some k with q, > X*, we have
v )
py1 > [92] exp(0gx) Qk), (10)
CA
then (6) holds for (—x9,x1) = (P, Q)
Lemma 5. (/9, Lemma 3.2]) Let
A= Ogi%}){’o 1
If (6) and (7) hold for xy, xo and f =0, then
1 A+2)X
0 |9



When 9195 # 0 in (5), put 9 = —t; /95 and ¢ = /195. Then we have

A
19—2 = ¢ — .Tlﬁ + Z9.
Let p/q be a convergent of ¥ with ¢ > Xj. For a real number x we define ||z|| = min{|z —

n|,n € Z} be the distance from z to the nearest integer. We have the following result.
Lemma 6. (/9, Lemma 3.3]) Suppose that
2X,

| qv [|>
q

Then, the solutions of (6) and (7) satisfy
1 q*c )
Y <-log| —— ).
5 g(wxo
3 Proof of Theorem 1

It is well known that the Fibonacci numbers are given by

Fn = 1 (@™ —p™) for m >0, where (a, )= <

NG 2 2

In equation (1) we suppose that m; > ms > m3 > my. A search with Maple in the range
0 < my <599 yielded only the solutions shown in the statement of Theorem 1.

Let us suppose that solutions of equation (1) exist for m; > 600. For m; > 600, we have
that

145 1—\/5>

10" -1

F600§Fm1SFm1+Fm2+Fm3+Fm4=d< )SlO”—l,

and so low(l 4 F
125§M§n
log 10

That is, n > 125. Now,
10" —1

10"t <d

RS

):Fm1+Fm2+Fm3+Fm4



since \f < a?7. This means that 10"~! < o™ *27 and thus

log 10
log

4.78(n—1) < (n—1) <my + 2.7.

Consequently,
n < 4.78n — 7.48 < mq,
as n > 125. Therefore, 125 < n < m;.
We can put equation (1) in the form
— [ o2 — [m2 o3 — /M3 ams — [fma dx 10"
g am— T o™ g o™= g B
5 /5 /5 5 g

We examine (12) in four different ways as follows.
Step 1: We express (12) in the form

m d x 10"
« (1 + O[m2_m1 + O[m?’_ml T O/?M—TIM) o —

ol a

(12)

d
§ ]_ (/Bml /Bmg +/8m3 +/8m4)

V5 9 NG
(13)
It follows that
m d x 10"
o (1 4 oMM 4 QMM 4 am4—m1) o X
V5 9
d
< g T = UBI™ +1B1™ +161™ +161™),
\/_
leading to
o™t dx 10™ at
14+ "™ ™M 4 T oMM — < —. 14
Multiplying both sides of inequality (14) by < +am2_m1£ﬁ;$1 =, We obtain
a4fm1

1+ am2—m1  qma—mi 4 gma—m )

dv/5 )

1—a ™10"
« (9(0("“_7”4 4+ qM2—ma f gm3—ma | 1)

and so

<atm, (15)

dv/5 >

1 —a ™10
§ <9(am1‘m4 a4 qme T )

(16)

dv/'b
Ty i=1—a ™10 V5 .
9(am1—m4 4+ m2—ma | qma—ma | 1)

Suppose that I'y = 0. Then we have that

me 10" x dV/5

™ 4a™ 4 a™ + o™ = ——



Conjugating in Q (\/5) yields

10" x d\/5

B+ B BT+ B = ———

Thus,

10 x /5 10" x dv/5 e
5 < 3 = [B™ + ™+ BT ST

< [BI™ +[B[™ + 18" + [B]™
< 4.

This implies that M < 4, which is false. Hence, it follows that I'; # 0.

In order to apply Lemma 3 to I'y, we set

dv/'5

g(am1—m4 + QMm2—ma + QM3 —ma + 1)7

ap =a, ay =10, ag=

bl = —My, b2:n7 b3: 17

where aq, a9, a3 € @(\/5) and by, by, b3 € Z. Thus, the degree D of Q (\/5) is 2 and
B = max{my,n,1} < m;. The minimal polynomial of o over Z is #* — z — 1, and so
d(a)) = 2 and ag(«) = 1. Tt follows that

1
h(a) = 5 log av.

Also, the minimal polynomial of v/5 over Z is 2> — 5. Thus,
1
h (\/3) =5 log 5.
We have
max{2h(ay), |loga;],0.16} =logar < 0.49 =: A,

max{2h(az), |log as|,0.16} = 21log 10 < 4.61 =: A,.

Set
C; =23 x10" > 1.4 x30° x 3*° x D?* x (1 +log D) x A; x As.

Next, we compute As. We find that,

dv/'5
a3 = \/_ <\/g,

g(aml—m4 4+ qMm2—ma | m3—ma | 1)
and
1 9(ammma g 4o gmeTma 4 1) 36

NG =5

mi—maq




Hence, |log as| < 3+ (my — my)log a. Also, we have that

h(as) < h(dV5) + h(9) + h(a™ ™™ 4 gM27™ms 4 gM3=me | )
< h(9V5) + h(9) +log 2 + h(a™ ™ (a™ 7™ 4 a2 4 1))
< h(9) + h(\/g) + h(9) + 2log 2 + h(a™ ™) + h(a™2T (™M T2 4 1))
< h(V/5) 4+ 2h(9) 4 3log 2 + h(a™ ™) 4+ h(a™27™3) 4 h(a™M2)
< h(V/5) + 2h(9) 4 3log 2 + (ms — ma)h(a) + (ma — ms)h(a) + (my — ms)h(a)
1

=3 —log 5+ 2h(9) + 3log 2 + %(ml —my) log a.
Hence, 2h(a3) < 15 + (my — my) log a. Therefore, we get

max{2h(as), | log as|,0.16} < 15+ (my — my) loga =: As.
By applying Lemma 3 to I'; given by (16), and using (15) we have that
exp(—(15 + (my — my)loga)Ci(1 +logm,)) < a*~™.

Thus,
myloga < 4loga + (154 (my — my) log ) Cy (1 + logmy). (17)

Step 2: We have that

a™ d x 10" d 1
1 ma—mi mz—m1\ __ __Z m1 ma m3 ma o ma) (18
e (Lpamm ) - 2 e CARaea-b ). (18)
Consequently, we get
o™ dx 10" d 1
1 + amz—m1 + amg—m1 _ S — 4+ mi1 + m2 + m3 + my + O!m4 ,
N )= =5 | gt FUAm 1B+ 18 + 18] )
and so 410 s
o™ x 10" o™
14 ™™™ f oM™ — . 19
We multiply both sides of inequality (19) by ; +am2\f§f‘;r;1m3_ml to get
ma—mi1+5
1—a ™10" av5 a ,
Q(lefms + qm2—ms | 1) 1 4+ qm2—m1 4 gms—mi
which gives us
dv/'5
1—a 10" V5 < MaTmEs, (20)
9(0/711—7713 + qm2—m3 | 1)

8



Put

dv/5
Iy :=1—a™10" . 21
2 « <g(am1m3 + amgfmg + 1)) ( )
Suppose that I'y = 0. Then, we get
1 n
aml + amz + am3 — OX—M
9
Taking the conjugate of this in Q(v/5), we get
10™ x dv/5
™+ T A f = V5

Consequently, we obtain

10'%5 x /5 - 10" x d\/5
9 - 9

which means that w < 3. This is false. We conclude that I'y # 0.
To apply Lemma 3 to I'y given by (21), we set

dv/5

9(ami—ms 4 qm2—ms 4 1)’

= |6™ + 57 4 g < |B™ 4+ 6™ + (8] <3,

] = o, O(2:10, 3 = blz—mg, bQZTL, bgzl,

where oy, ag, a3 € Q (\/3) and by, by, by € Z. We have B = max{mgs, n, 1} < m;. We proceed
to compute Az by first observing that

dv/b
3 = \/_ <\/g

9(ami—ms 4 qm2—ms 4 1)

and
1 9(a™ M3 4 M2 4 1) 27

— < ==
o e _\/goz

Hence, |log as| < 3 + (my1 — m3)log . Additionally, we get

mi—ms3

h(as) < h(dV/5) + h(9) + log 2 + h(a™> ™3 (o™~ ™2 4 1))
< %log 5+ 2h(9) +2log 2+ h(a™*7"3) 4+ h(a™ ")
< %log 54 2h(9) + 210g 2 + (ma — ma)h(a) + (m1 — ms)h(a)
= %logf) + 2h(9) + 2log 2 + %(ml — mg) log a.
Hence, 2h(a3) < 14 + (mq — mg3) log a. As a result, we find that
max{2h(as), | logas],0.16} < 14 + (m; — m3)loga =: As.

9



By applying Lemma 3 to T'y given by (21) and using (20), we deduce that
exp(—(14 + (my — m3)log a)C1(1 + logmy)) < ™™+,
Thus, we get
(my —my)loga < 5loga + (14 + (my — m3) log a)Cy (1 + logmy). (22)

Step 3: We begin with (12) written in the form

a™t dx 10" d 1
1 + amQ*ml _ — + . mi + m2 _|_ m3 _|_ mg am?) _ Oém4 . 23
75 ) -5 RV ACHR R ) (23)
Equation (23) leads us to
a™t dx 10" d
1_|_am2—m1 - - - mi + mo + ms3 + m4+am3+am4
NG ( ) 9 \/—(lﬁl 18] + 8™ + (B8] )
4 2am3
YBYE
— (V5+ )
<7 (
from which we obtain
a™ d x 10" amsto
1+ ™) — . 24
Multiplying both sides of inequality (24) by Wn% gives us
m3—m1-+5
1—a ™10 av5 <2 ,
9(am—m2 4 1) 1+ qme2—m
which yields
dv/5
1 — ™20 m37m1+5' 2
a 0 (9(am1—m2+1)> <« (25)
Put
dv/5
I's:=1—a 210" . 26

Suppose that I's = 0. Then

ot 4 gz — 107X dv/5
9 )
giving us
10" x dv/5
miy m2
p"+ B 5

10



by conjugating in Q (\/5) It follows that

10'% x /5 _ 10" x dv/5
9 = 9

which is false. Hence, I's # 0. Using the notations in Lemma 3, we put

dV/5
9(ami—m2 4 1)’

= 6™+ 7 < B+ 8™ < 2,

bl = —Mna, b2:n7 b3: 17

ap =, ay =10, ag=

where oy, a9, a3 € Q (\/5) and by, by, b3 € Z. We have B = max{mg,n,1} < m;. Now, we
deduce that

mip—ma

d mimme ] 1
V5 < V5 and aglzg(a - )S—Sa
9(ami—mz 4 1) dv/5 V5

So |log as| < 3 + (my — mg) log . Furthermore,
h(ag) < h(dV5) + (9) +log2 + h(a™ ")
< h(VB) + 2h(9) 4+ log 2 + (my — ma)h(e)

3 —

= % log 5 + 2h(9) 4 log 2 + %(ml — mey) log .
Thus, 2h(as) < 12+ (m; — mg)log a and so
max{2h(as), |logas|,0.16} < 12 + (m; — ma)loga =: As.
Applying Lemma 3 to I's given by (26), and using (25) we produce
exp(—(12 + (my — ms) log a)C1(1 4+ logm,)) < o™ ™+3,
from which we obtain

(my —mg)loga < b5loga + (12 4 (my — ms) log a)Cy (1 4 logmy). (27)

Step 4: Using equation (12) in the form
o™ dx 10" d 1
_ = —— 4+ — m1+ m2+ m3+ m4—0ém2—0[m3—04m4, 28
NS G2 (B BB )(28)
we get
o™ dx 10" d 1
- < 4+ —=(B8]" + 8™ +|B]™ + [B]™ + ™ + ™ + o™
7 9 9 \/5(15\ 18] + |B]™ + [B] )
<1+ 1 + 3 qme
— 4+ —«a
V5 V5
1
< —=(VB+T)a™,

11



which means that

mi d 10" mo—+5
am™ o d X 0 « ' (29)
VA RV
Multiplying both sides of (29) by v5a ™ yields
d/5
1—a ™10 <—‘9/_) < @M, (30)
Put
d/5
Iy =1—a"™10" (%) : (31)
Suppose that I'y = 0. Then
my d\/5 x 10"
— 5 ’
which implies that
gm dvVb x 10"
9
Consequently,
5x 101 dy/5 x 10"
9 9
which is impossible. Hence, I'y # 0. In order to apply Lemma 3 to I'y given by (31), we take
5d
a; = Q, @2:10, 043:\/_77 blz_mb b2:n7 b3:17

where a1, an, a3 € Q (\/5) and by, by, by € Z. To compute As, we observe that

d
9 dv5 V5
so |log as| < 1.4. In addition, we have
1
h(as) < h(dV5) + h(9) < 51085 + 21(9).

As a result, we have that 2h(as) < 10.4. We see that
max{2h(as), |log as|,0.16} < 10.4 =: As.

By applying Lemma 3 to I'y given by (31) and using (30), we obtain
d
1 —a ™10 (%) ‘ < Mm2mmats

12

exp(—10.401(1 + log ml)) <




This means that
(my —mg)loga < 5loga+ 10.4C, (1 + logm,) < 10.5C (1 + logmy).
Putting together (32) and (27) yields

(my —mgs)loga < 5loga+ (12 + 10.5C (1 4 logmy))Cy (1 + log my)
< 5loga + 10.6CF(1 + logm,)?
< 10.7C3(1 4+ logm, )>.

That is
(m1 —ms)loga < 10.7CF(1 + logmy)?.
Combining (33) and (22), we obtain

(m1 — my)loga < 5loga + (14 + 10.7CF (1 4 log my )?) C1 (1 + log my)
< 5loga + 10.8C3(1 + logm, )?
< 10.9C; (1 + logm,)?.

That is
(my —my)loga < 10.9C3 (1 4 logm,)®.
We now combine (34) and (17) to obtain
myloga < 4loga + (15 + 10.9C3 (1 4 logm1)*)C1(1 + logm,)

< 4loga + 11.0C{ (1 + logm, )*
< 11.10}(1 + logmy)*

<11.1(2.3 x 102)* (1 + log my)*.

That is
myloga < 11.1(2.3 x 10"2)* (1 + log my )*.

Inequality (35) gives rise to the inequality m; < 2.3 x 10%. Now, we lower the bound.

Let

d
Ay = —mylog o+ nlog 10 + log (%) )

13

(32)

(33)

(35)

(36)



Equation (28) leads us to

o™  dx 10" o™ B dv/5
— = 1 —a ™10 [ —
N NG 9

a™ Ay
= —e
e =)
d ﬁml
= —§ 7 — Fo, — Foy — Fo,
600
< L 1B
9" V5
<0,

as my > 600. Thus, A; > 0 and so from (30) we obtain
1 —a ™10" <%5)

dv/'5
log (T\/_> + mq(—loga) +nlog 10 < o’ (m—m2)

Oémgfm1+5.

0< A <eM—1=

This means that

< o’ exp(—0.48(my — my)),

which leads to
AL < @®texp(—0.48(my — my)), (37)

with X = max{my,n} =m; < 2.3 x 10°. We also have that

Ay log(dv/5/9) log «
= -m
log 10 log 10 "og 10
Thus, we take
log(dv/5/9
c=a’l §=048 X,=23x10", ¢ = M, — My — M,
log 10
log

=—— U, =-1 Y9 = log 10, log(dv'5/9
log 10° 1 0g &, 2 = 10g /8 Og( \/_/ )

The smallest value of ¢ such that ¢ > Xy is ¢ = ¢25. We find that ¢ = ¢98 satisfies the
hypothesis of Lemma 6 for d = 1,...,9. Applying Lemma 6, we get m; — my < 310, and
hence msy > 290.

14



Taking 1 <d <9 and 0 < m; —msy < 310, we let

dv/5
Ay = —myloga + nlog 10 + log (9(aml_m2 n 1)> (38)
We see from equation (23) that
aml _ d Bm1 Bmz
1L+amm) (1 —eh2) = —— + — F5— F.
e R
1 600 290
J 1l 1)
9 Vb V5
< 0,
making use of m; > 600 and my > 290. Hence, Ay > 0, and so from (25) we see that
d/5
0<Ay<e—1=|1-a™10" Vo < QMmeTmd,
9(ami—m2 + 1)
Thus, we have
dv/'5
log (9(@m1{; + 1)) +may(—loga) + nlog 10 < @/~ +?
< a’exp(—0.48(m; — ms)),
which gives us
|As| < @' exp(—0.48(my — ms3)), (39)

where X = max{ms,n} < m; < 2.3 x 10°%. We also have that

Ay 1 ( dv/5 ) log «

— ] _
log10 1og10 om0 )~ M™iogio "

Thus, we consider

1 d
c=a’ §=048, X,=2.3x 10", ¢:—10g< v5 )

log 10 9(ami—mz 4 1)
log a dv/5
Y = — =—— Y =-1 ¥y = log 10 =1 .
mp — ms, log 10° 1 oga, Vs 0g10, S og (9(am1—mg + 1))

We find that ¢ = ¢392 satisfies the hypothesis of Lemma 6 ford =1,...,9and 0 < m;—msy <
310. Applying Lemma 6, we get m; — mg < 328. Hence, mg > 272.
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Taking 1 < d <9, 0 <mg —m3g <m; —mg < 328, we let

dv/5 )

9<amrm3 + qm2—ms | 1)

A3 = —mglog o + nlog 10 + log ( (40)

Equation (18) ensures that

o™t

(B™ + 5™+ ™) — Fy

(T4 am ™ 4™ ™) (1—eM) = —

S

(|B|600+ |B|290+ |B|272)

where we use m; > 600, my > 290, and mg > 272. Hence, A3 > 0, and so from (20) we see
that

0<Ay<ed—1= < @M,

dv/5 )

1—a 10"
v (9(am1m3 + qm2—ms 4 1)

Hence, we have

d
log <9< \/5 ) + m3<_ log Oé) + nlog 10 < Oém4*m1+5

QM —ms | gMm2—m3 | 1)

< o’ exp(—0.48(my — my)),

leading to
|As] < @®' exp(—0.48(my — my)), (41)

where X = max{ms,n} < m; < 2.3 x 10°. Furthermore, we obtain

As 1 | d\/5 o log a .
9( 1) ’ '

log 10 - log 10 ©8 QmMITMs M2 | log 10

Thus, we take

1 dv/5
=a%t §=048, X,=2.3x10% = 1
C o, ) 0 X 3 w log 10 og 9(Ozm1_m3+04m2_m3+1) )
|
Y:ml—m4, :ﬂ, 191:—10g0é7 ’192:10g].0,
log 10

dv/5 )

=1
ﬁ 0og (9((]1m1_m3 + qMm2—ms ]_)
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We find that ¢ = ¢35 satisfies the hypothesis of Lemma 6 for 1 < d <9, 0 < my —mg <
my — mz < 328. Applying Lemma 6, we get m; — my < 335, and hence my > 265.
Taking 1 <d <9,0<m3—my <mg—my <my —my < 335, we let

Ay = —myloga + nlog 10 + log (9(am1—m4 m amf_\{j TP 1)> . (42)
Using equation (13), we have that
o (L4 am ™ 4 qmem 4 g™ (1 — M) = 4 + 1 (8™ + M2 4 5T 4+ g
V5 9 V5
< _% i % (18190 + 8120 + |82 + |8])
<0

making use of m; > 600, my > 290, m3 > 272 and my4 > 265. Hence, A4 > 0, and so from
(15) we see that

dv/b
0<Ay<eM—T=|l—a™10" V5 < at-m,
9(Oém17m4 4+ qme2—ma | gMma—ma | 1)
Hence, we have
dv/5

: —1 log 10 < a*™™

0g (9(am1m4 + qM2—ma | qm3—ma | 1)) + m4( 0og Oé) + nlog o )
which implies that

|A4] < o™ exp(—0.48m,), (43)

where X = max{my,n} < m; < 2.3 x 10%. In addition,

A 1 1
4 1g<9( dv/5 > og n

= (0] — My
log10  log10 QMITIM - qme T 3T 4 ) log 10

Thus,
c=a", §=048, X;=23x10", Y =my

1 dv/5 log
’l/} = log ) = 1
log 10 9(qymi—ma 4 qm2—ma 4 gma=ma 4 1) log 10

dv/5 )

9(0/”1_’”4 4+ qM2—ma | gm3—ma | 1)

Y = —loga, ¥y =logl0, = log (

We find that ¢ = g14; satisfies the hypothesis of Lemma 6 for 1 < d < 9,0 < m3 —my <
mo —my < my —my < 335. Applying Lemma 6, we get m; < 392, which contradicts the
assumption that m; > 600. This proves the result.
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4 Proof of Theorem 2

Although this is similar to the proof of the previous theorem, we give the details for the
convenience of the reader. We use the fact that

1 1—
L,=am+p"™ holds for al m >0, where («a,f)= ( - \/5’ \/5) :

2 2

In equation (2), we suppose that m; > mg > m3 > my. A search with Maple in the range
0 < my <599 yielded only the solutions shown in the statement of Theorem 2.
Let us suppose that solutions of equation (2) exist for m; > 600. We observe that

10" -1

L600§Lm1SLm1+Lm2+Lm3+Lm4—d< >§10"—1.

This leads us to
10g(1 + LGOO)

125 <
- log 10 ="

and so n > 125. We further observe that

10" -1
9

1071—1 S d ( ) - Lm1 + Lmz + ng + Lm4 S 4 (ozml + |6|m1> < Oém1+4'33.

Hence, we obtain
log 10

4.78(n—1) < (n—1) g o

< mq + 433,
which gives us
n < 4.78n — 9.11 < my,

for n > 125. Therefore, 125 < n < my.
We can put equation (2) in the form

d x 10" d
o™ + Bm1 + a2 + Bm2 + a™ms + Bma + o™ + Bm4 _ Xg — _5' (44)
Equation(44) is treated in four different ways in the steps that follow.
Step 1: We express (44) in the form
d x 10" d
0 (1o o g gy - D gy g g g gy (a5)
It follows that
dx10"| d

Oéml (1 _|_ amz—ml _|_ C\ng_ml + am4—m1> _

5| < g T UBI™ 18I+ |8 + 18,
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leading to
d x 10"

Q™M (14 M @M ) 5 o, (46)
Multiplication of both sides of (46) by e +3;7;im1 ey gives us

d Oé3.357m1
1—a ™10 < ,
g(aml—m4 + M2—ma 4 qm3—ma | 1) 1 4+ am2—m1 4 gma—mi1 | gMma—mi

from which we get

< ¥, (47)

1—a ™10" d
9(am1—m4 + QM2—ma + QM3 —ma + 1)

d
szl—aﬂmm”< ). (48)

9(@m1*m4 4+ m2—ma 4 qma—ma | 1)

Suppose that I'; = 0. Then, we have that

10" x d
a™ 4+ ™ g™ g™ = 9>< ‘
Conjugating in Q (\/3) yields
10" x d
B+ B 4 B 4 = —

Thus,

10" 10" x d
<

g S g =BT A BT BB S UBI™ 1B+ 1B+ B < 4.

This implies that % < 4, which is false. Hence, it follows that I'y # 0.
In the notation of Lemma 3, we set

d

g(am1—m4 + QMm2—ma + QM3 —ma + 1)7

ar =a, ay =10, ag=

bl = —My, b2:n7 b3: 17

where oy, ag, a3 € Q (\/5) and by, by, by € Z. We get B = max{my,n,1} < m;. The minimal
polynomial of o over Z is * — x — 1, and so d(a) = 2 and ag(«) = 1. It is known that

1
h(a) = 5 log av.
We have
max{2h(ay), |loga;],0.16} =logar < 0.49 =: A,
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max{2h(az), |log as|,0.16} = 21log 10 < 4.61 =: A,.

Set
Cp =24 x10" > 1.4 x30° x 3*° x D* x (1 +log D) x A; x As.

Next, we compute As. We find that,

d
9<am1—m4 4+ qm2—ma 4 gma—ma | 1)

a3 = <1,

a?jl:g(al 14 2d4_|_@3 4+1)§360¢m17m4,

hence, |logas| < 44 (my —my) log a. Also, we have that

h(Ozg) < h(d) —+ h(g) + ]0g2 + h(ams—m4(am1—m3 4 qMmems 1))
< 2Rh(9) + 2log2 + h(a™ ™) 4+ h(a™* 3 (@™ T2 + 1))
< 2h(9) 4 3log2 + h(a™7™) + h(a™* 7)) + h(a™ ™)
< 2h(9) + 3log 2 + (m3 — my)h(a) + (my — m3)h(a) + (my — ms)h(a)
(9)

1
=2h(9) +3log2 + -

5 (my —my)log a.

Hence, 2h(a3) < 13 + (my — my) log a. Therefore, we get
max{2h(as), | logas|,0.16} < 13 + (m; — my)loga =: As.
By applying Lemma 3 to I'; given by (48), and using (47) we have that
exp(—(13 + (m1 — my) loga)Cy(1 4+ logm,)) < o357,

Thus,
myloga < 3.35loga+ (13 + (my — my) log a)Cy (1 + logmy). (49)

Step 2: Writing equation (44) as

om (1@ pamsm) - DT o G (gmg g g gy g, (50)
we get
o (14 @ gy - D 8 g gpm g g 4 (g,
and so
a™ (14 @M 4 gmaTm) d ><91o" < QM (51)
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a” "M

By multiplying both sides of inequality (51) by TTamimiams—mr We obtain

d am4—m1+3.73
1 —a ™10" <
9(aml—m3 + qm2—ms 4 1) 1+ qme—m1 4 gms—mi

which leads to

’

d
1 —a ™10"
g(amrmg + qm2—m3 4 |

))‘ < am4—m1+3.73. (52)

d
I'y:=1—a ™10" . 53
2 @ (9(am1m3 + qm2—ms 1)> ( )

Suppose that I'y = 0. Then, we get

m 10" x d
a™ 4 o™+ o™ = :
9
Taking the conjugate of this in Q(v/5), we get
10" x d
B g g = — 5

which implies that
10125 10" x d
<
9 - 9

Thus, 10;25 < 3, which is false. We conclude that I's # 0.

To apply Lemma 3 to I'y given by (53), we set

d
9(ami—ms 4 qm2—ms 4 1)’

= 87 72 4 57 < |81 418" + [ <3

ap =, ag =10, az= by = —ms3, by =n, by=1,

where aq, an, a3 € Q (\/5) and by, by, by € Z. Also, we obtain B = max{ms,n,1} < m;. We
proceed to compute As by first observing that

d
g(amrma + qMm2—m3 | 1)

0632 <].,

and 0 |
mi1—ms3 mo—ms3
it = M),

Hence, |logas| < 4 4 (my — mg)log a. Additionally, we get
h(as) < h(d) + h(9) +log2 + h(a™ ™ (a™ ™2 + 1))
< 2h(9) 4+ 2log2 + h(a™7™3) + h(a™™2)
< 2h(9) + 2log 2 + (mg — m3)h(a) + (my — may)h(a)

1
=2h(9) +2log2 + §(m1 —mg3) log a.
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Hence, 2h(as) < 12 + (m; — m3)log . As a result, we find that
max{2h(as), | logas|,0.16} < 12 + (m; — m3)loga =: As.
By applying Lemma 3 to I'y given by (53) and using (52), we deduce that
exp(—(12 + (m1 — ms)loga)Cy (1 +logm;)) < ™™ +378,
Thus, we get
(my —my)loga < 3.73log v + (12 + (my — mg) log a)Cy(1 + logmy). (54)
Step 3: Writing (44) as

om (14 amem) = DO o gy g g g gy (@ o), (59)
gives us
om (1t amem) = D < S gm g g (17 418 o™ 4™ < Ta™,
which leads to
o™ (1 + ozmQ_ml) - d ><910” < qmat405, (56)

Multiplying both sides of (56) by % gives us

d am3—m1+4.05
1—a ™10" <
-0 ()| < Famemr

which yields

< OéTnngnlJr4.05. (57)

d
1—a 10"
‘ h (9<am1—m2 = 1))

d
s :=1—a ™10" . 58
s—1-a (9 e 1)> (58)

Put

Suppose that I's = 0. Then
10" xd

9 Y

o™+ ™
giving us
10" x d

my ma
g+ p 5

by conjugating in Q (\/5) We see that

10 10" x d
<
9 - 9

= [B™ + g < B + 8™ < 2,
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which is false. Hence, I's # 0. Using the notations in Lemma 3, we put

d
9(ami—m2 4 1)’

] = «, 052:1(), 3 = b1:—m2, bgzn, 63:1,

where oy, aq, a3 € Q (\/5) and by, be, b3 € Z. We get B = max{ma,n,1} < my. It is easily
seen that

d
9(ami—m2 + 1)

9(a™ ™2 41
<1 and 043_1 = (o +1) < 18a™ ™2,

d

3 =

So |log as| < 3 4 (my — my)log a. Additionally, we have

h(as) < h(d) + h(9) 4+ log2 + h(a™™™?)
< 2h(9) 4+ log 2 + (my — ma)h(«)

1
= 2h(9) + log2 + §(m1 — mgy) log a.

Thus, 2h(as) < 11+ (m; — my)log  and so
max{2h(as), |logasl,0.16} < 11 + (m; — ma)loga =: As.
Applying Lemma 3 to I's given by (58), and using (57) we produce
exp(—(11 + (m1 — my)loga)C1 (1 +logm;)) < @™~ +405,
from which we obtain
(my —mg3)loga < 4.05log a + (11 4 (my — mo) log a)Cy (1 + log my). (59)
Step 4: Writing equation (44) as

dx 10" d
A = = g = (BT BT BT M) — (@7 e a™), (60)

we get

d x 10™
9

d
< 9 + 8™+ 8™ 4 |8 + |5+ @+ ™+ Q™ < 8a™,

m1

«

which means that
d x 10"

9
Multiplying both sides of (61) by ™ yields

a™

< m2tA33, (61)

d
‘1 —a”™M1" <§> < @m2mmAdss, (62)
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Put y
I'y:=1—a™10" (5) )

_d><1()”
— 5

Suppose that I'y = 0. Then

a™

and by conjugation
d x 10"

mi )
p 9

Consequently,
10125 - d x 10"

9 - 9

=™ <1,

(63)

which is impossible. Hence, I'y # 0. In order to apply Lemma 3 to I'y given by (63), we take

ap = @, 042:10, a3:§7 blz_mb b2:n7 b3:17

where oy, an, a3 € Q (\/3) and by, by, b3 € Z. To compute A3, we observe that

d

a3:§§1 and aglz

so |log as| < 2.2. In addition, we have
h(as) < h(d) + h(9) < 2h(9).
This gives us 2h(a3) < 8.79. And so we have
max{2h(as), |log as|,0.16} < 8.79 =: As.

By applying Lemma 3 to 'y given by (63) and using (62), we obtain
—m n d mo—m1+4.33
exp(—8.79C (1 +logmy)) < |1 —a™ ™10 9)| <@ 2RSS

This means that

(my1 —me)loga < 4.331log o + 8.79C (1 + log my) < 8.80C (1 + log my).

Putting together (64) and (59) yields

(mq —mgs)loga < 4.05loga + (11 + 8.80C: (1 + logm4))Ci (1 + logmy)
= 4.05log a + 11C1 (1 4 logmy) + 8.80C; (1 + log my )?
< 8.81CH(1 + logm,)?,
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since 4.05log a + 11C (1 + logmy) < 0.01C%(1 + logm;)?. Hence,
(my —ms3)loga < 8.81C%(1 4 logmy)?. (65)
Combining (65) and (54), we obtain

(m1 — my)loga < 3.73log a + (12 + 8.81CF (1 4 log my)?) C1(1 + log my)
= 3.73log o + 12C1 (1 + logmy) + 8.81C3(1 4 logm4)?
< 8.82C57 (1 + logmy )*.

since 3.73log a + 12C (1 + logmy) < 0.01C3(1 + logm;)3. Thus,
(my —my)loga < 8.820%(1 4 logm,)®. (66)
We now combine (66) and (49) to obtain

myloga < 3.35log o + (13 + 8.82C3 (1 + logmy)*)Cy (1 + logmy)
=3.35log o + 13C1 (1 + logm;) + 8.82C(1 + logmy)*
< 8.83C}(1 + logm,)*

< 8.83(24 % 10')" (1 + logmy ).
That is )
my log v < 8.83 (2.4 x 10")" (1 + log my)™. (67)

Inequality (67) gives rise to the inequality m; < 2.2 x 10°°. Now, we need to lower the
bound.
Let

d
Ay = —myloga + nlog 10 + log (§> : (68)

Making use of equation (60), we have that

oM dx 10" —a™ (1 —a™10" (C_l)> — o™ (1 . e/\l)

9 9
d
= _§ _ﬁml - ng - ng - Lm4
1
< _ 600
<-—5+18

< 0,

as my > 600. Thus, A; > 0 and so from (62) we obtain

d
0< A < eAl — 1= ‘1 — q Mo (§> ’ < M2 +4.33
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This means that
d
log <§> + my(—loga) + nlog 10 < a*FBa~m=m2) < o434 oxp(—0.48(my — my)),

which leads to
AL < a*** exp(—0.48(m; — my)), (69)

where X = max{my,n} =m; < 2.2 x 10°°. We also have that

Ay log(d/9) log o

log10  log10 " log 10

+n.

Hence, we set

log(d/9
co oM 5048, Xo=22x 107, o= 8O
log 10
log
= logglO’ Uy = —loga, VY9 =1logl0, [ =log(d/9).

When d = 9, 8 = 0. Substituting Xy = 2.2 x 10%Y into inequality (8) yields 0 < k < 284.
In the notation of Lemma 5 we find that A = ay33 = 770, from the continued fraction
expansion of llg’ggf'a. Applying Lemma 5, we get m; — my < 301. We now consider the case
B # 0. The smallest value of ¢ such that ¢ > Xg is ¢ = ¢q125. We find that ¢ = ¢197 satisfies
the hypothesis of Lemma 6 for d = 1,...,8. Applying Lemma 6, we get m; —mo < 309. We
see that my —mo < 309 for d =1,...,9 and hence my > 291.

Taking 1 < d <9 and 0 < m; —my < 309, we let

d
ANy = —mylog o + nlog 10 + log (9<amlm2 n 1)) ) (70)

We use equation (55) to arrive at

d
a™(1+a™ ™) (1—e) = —5 A" =" = L= L

1
< =5+ | + |
<0,

making use of m; > 600 and ms > 291. Hence, Ay > 0, and so from (57) we see that

ms3—m1+4.05

0<A2<6A2—1:‘1—a_m210”( d ) <«

9(ami—m2 + 1)

Thus, we have

ms3—m1+4.05

d
log (g(am1m2 n 1)) + mo(—loga) + nlog 10 < «

< a*% exp(—0.48(m; — m3)),
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which gives us
|Ay| < @ exp(—0.48(m; — m3)), (71)

where X = max{my,n} < m; < 2.2 x 10°%. In addition, we have

As 1 d log a
= log — M +n
log10  log10 9(aqmi—m2 4 1) log 10

So, we take
c=a" §=048, X,=22x10% z/;:#log d
) . 3 0 . ) IOg 10 9(Oém1_m2 + 1) )
log a d
Y — — =2 =1 =log 10 =1 .
mq ms, log 107 7*91 og &, 192 og ) B 0og (9(0&m1m2 + 1))

We find that ¢ = ¢392 satisfies the hypothesis of Lemma 6 ford =1,...,9and 0 < m;—msy <
309. Applying Lemma 6, we get m; — mg < 327. Hence, mg > 273.
Taking 1 <d <9,0 <mg —mg < my; —mg < 327, we let

d
As = —mgloga + nlog 10 + log (9<aml_m3 T 1)) ) (72)

Equation (50) allows us to write

d
@ (Lame @) (1 - eh) = =g = (8™ 4 57 5™) — Ly
1
§ _§ + |ﬁ|600 4 |ﬁ|291 4 |ﬁ|273
< 0,

where we use m; > 600, my > 291, and mg > 273. Hence, A3 > 0, and so from (52) we see
that

d
0<As< M —1=11—a™10" < qMa—m+3.T3
9<am1—m3 + qm2—ms 1)
Hence, we have
lo d +m (_ lo a) + nlog 10 < am4fm1+3.73
&\ 0(am s £ amime 1y ) T el log 8

< a*™exp(—0.48(m; —my)),

leading to
|As| < @™ exp(—0.48(my — my)), (73)
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where X = max{mgz,n} < m; < 2.2 x 10°°. Furthermore, we obtain

As 1 | d log .
= (0] —m n
log10  log10 8\ 9(ami—ma + qma—ma 1 1) 3log 10

Thus, we take
c=a*™ §=048, Xy =22x10" Y =my —my,

1 d 1
V= log , ﬁ:—oga, Y = —loga,
log 10 9(ami—ms 4 qm2—ms 4 1) log 10

d
¥y = log 10 =1 :
2 og 1Y, /8 08 (g(armms + qme2—m3 L 1))

We find that ¢ = ¢35 satisfies the hypothesis of Lemma 6 for 1 < d <9, 0 < my —mg <
m1 —mg < 327. Applying Lemma 6, we get m; — my < 371, and hence my4 > 229.
Taking 1 <d <9,0<mg—my <mg—my <m; —my <371, we let

d
Ay = —myloga + nlog 10 + log (g(aml_m4 PRy 1)> . (74)

Using equation (45), we get

a™ (1 LM M Oém4*m1) (1 o €A4) —

_ (BWH _|_Bm2 _|_Bm3 _|_Bm4)

+ (1815 + 18P + 181" + |8*)

9
1
< _Z
- 9

0

A\

making use of m; > 600, my > 291, m3 > 273 and my4 > 229. Hence, A4 > 0, and so from
(47) we see that

d
0< A4 < €A4 —1=11—a ™10" < 043'35_777'1,
9<am1—m4 4+ qm2—ma 4 qm3—ma | 1)
Hence, we have
log d + my(—log a) + nlog 10 < o>3>~™
9<am1—m4 4+ qm2—ma 4 qm3—ma | 1) ;
which implies that
|A4] < a3 exp(—0.48m,), (75)

where X = max{my,n} < m; < 2.2 x 10, In addition,

Ay 1 d log «
= log — My + n.
log10  log10 9(ami—ma 4 qma=ma 4 gms=ma 4 1) log 10
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Thus,
c=0ao*% §=048, X;=22x10", Y =m,,

1 d log
= ———log ) =T
log 10 % \ 9(ami = & qme—ma + qms—ma 1 1) log 10
d
% = —1 P9 = log 10 =1 .
1 og o, 2 og ) /B og (9<O{m1_m4 4+ qm2—ma 4 gma—ma 1))

We find that g = g145 satisfies the hypothesis of Lemma 6 for 1 < d < 9,0 < mg3 —my <
mo —my < my —my < 371. Applying Lemma 6, we get m; < 403, which contradicts the
assumption that m; > 600. This proves the result.
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