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Abstract

This paper introduces an alternative form of the derivation of Spivey’s Bell number
formula, which involves the g-Boson operators a and af. Furthermore, a similar formula
for the case of the (gq,r)-Dowling polynomials is obtained, and is shown to produce a
generalization of the latter.

1 Introduction
Consider the Stirling numbers of the second kind, denoted by {Tj”}, which appear as coeffi-

cients in the expansion of
n - n
t :Z{k}@)k, 1)

k=0
where (t), =t(t —1)(t —2)--- (t — k + 1).The Bell numbers, denoted by B, are defined by

" (n
B,=Y { } 2)
=0 \J
and are known to satisfy the recurrence relation
“/n
B, = By. 3
+1 kZ:O ( k) k (3)
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In 2008, Spivey [13] obtained a remarkable formula which unifies the defining relation in (2)
and the identity (3). The said formula is given by

By = ZZ] { }()B @)

and is popularly known as “Spivey’s Bell number formula”. Equation (4) was proved in [13]
using a combinatorial approach involving partition of sets. Different proofs and extensions
of (4) were later on studied by several authors. For instance, a proof which made use of
generating functions was done by Gould and Quaintance [5] which was then generalized
by Xu [14] using Hsu and Shuie’s [6] generalized Stirling numbers. Belbachir and Mihoubi
[2] presented a proof that involves decomposition of the Bell polynomials into a certain
polynomial basis. Mez§ [12] obtained a generalization of the Spivey’s formula in terms
of the mBell polynomials via combinatorial approach. The notion of dual of (4) was also
presented in the same paper. On the other hand, the work of Katriel [7] involved the use of
the operator X satisfying

DX —gXD =1, (5)

where D is the g-derivative defined by

flqz) — f(x)
r(g—1)

For the sake of clarity and brevity, this method will be referred to as “Katriel’s proof”.

Now, aside from being implicitly implied in Katriel’s proof, none of the previously-
mentioned studies considered establishing g-analogues. It is, henceforth, the main purpose
of this paper to obtain a generalized g-analogue of Spivey’s Bell number formula.

Df(x) = (6)

2 Alternative form of “Katriel’s proof”
We direct our attention to the ¢-Boson operators a and a' satisfying the commutation relation
la,a'], = aa' — ga'a =1 (7)

(see [1]). We deﬁne the Foek space (or Fock states) by the basis {|s);s =0,1,2,...} so that
the relations a |s) = /s |s —1) and af | =+/[s+1],|s+1) form a representatlon that
satisfies (7). The operators a'a and (a")*a*, when actlng on |s > yield

ala|s) = [s]; |s) (8)

and

(ah)*a" [s) = [slqu |s) (9)



respectively, where [s], = qu:11 and [s],r = [slyls — L4ls — 2]4---[s — k + 1],. Hence, the

¢-Stirling numbers of the second kind {Z}q [3] can be defined alternatively as

way =3 {0} e (10)
k=1 q
From (7), it is clear that
[a, (a")*]ge = [a, (a")*]pra’ + ¢*(a")a, '], (11)
and by induction on £, we have
[a, (a")*]g = [Klq(ah)*=. (12)

Since a |0) = 0, then by (12),

a(a")"|0) = la, (a')] |0)
= [lq(a")10).

Moreover, '
oal) 0) = ) ), (13)
for k < ¢ and
a*(ah)" 0) =0, (14)
for k > (. Finally,
ae,(ra') |0) = 2¥e,(zal) |0), (15)

where e,(za') is the g-exponential function defined by

elt) =3 (16)
(=0 [ ]Q'
Applying (15) to (10) yields
(afa)"ey(ta’) 0) = By q(tal)e,(ta®) |0, (17)

where B, ,(ta') denotes the ¢-Bell polynomials defined by

Bugt)=Y {Z} k. (18)
Let = = ta' so that
(ata)"eq () [0) = Bng()eq(x) [0). (19)

3



Before proceeding, note that by definition,
[a, (a")¥] g = a(a")* —¢"(a")"a. (20)

By (12),

(a'a)(a")" = (a")* [k, + " (a'a)). (21)

Now, we have

(alaym = <a*a>"f;{”f‘}q<a*>f‘aj

1
- _zz{?}q(a*w(mq+qﬂ‘<a*a>)”aﬂ
= 20 (oot

Multiplying both sides with e,(z) |0) makes the left-hand side
(a'a)™*™ey(x) |0) = Butmg(2)eq(x) |0), (22)
while the right-hand side becomes

ii{?}q(}j) [ g (al) (ala)req(z) [0) = ii{m}qG) ]k gt

7=0 k=0

Dividing both sides by e,(z) |0) and using (9) gives

Busna() =30 {T} (1)l Buatoishs (23)

7=0 k=0

As ¢ — 1, we obtain a polynomial version of Spivey’s Bell number formula which, in return,
reduces to (4) when we set z = 1.

It is important to emphasize that this is not a new proof, but an alternative form of Ka-
triel’s proof, since the operators a, a' and the operators X, D generate isomorphic algebras.
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3 A generalization of Spivey’s Bell number formula

The main result of this paper is the following identity:

Dyprg(n+ (. ) ZZm Winrg (€, (k)( g + 1) ¥ Do g (b, ) 2]y, (24)

Here, D, ,4(n, x) is a (¢, )-Dowling polynomial defined previously by the author and Katriel
9] as

Dy rq(n, ) Zeran‘ (25)

where Wy, . ,(n, k) is the (¢, 7)-Whitney numbers of the second kind. Several properties of
D,y rq(n, ) can be seen in [8, 9].
To derive (24), we first multiply both sides of (21) by m and then add r(a")* to yield

(ma'a +7)(a")* = (a")*(m[k], + r + mqg"a'a). (26)
Also, multiplying both sides of the defining relation in [9, Equation 16] by e,(ta') |0) and
applying (15) yields

(ma'a +7)"e,(ta’) |0) = kaWmmq(n, k)(at)rake,(tat) |0)

— kaWmmq(n, k)(a%)*t¥e, (tal) |0)
k=0
= Dyrq(n,mtat)e,(ta’) |0).
Now, by (26),

J4
(mata + )™ = 3" mIW, (4 5)(mala+ )" (af Y o?
j=0

V4
- Z ijmmquj)(aT)j(m[j]q +r+ mqjaTayLaj

J=0

= D2 W (6,]) (Z) (' (mljl, + )" g (ol )t

=0 k=0

Applying this expression to the operator identity eq(taT) |0) combining with the previous
equation, using (9), (19) and Wi, 04(k,7) = mF~ ’{ } see [9, Equation 18]), and then

dividing both sides of the resulting identity by e, (ta') ]O} completes the derivation.
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4 Remarks

Since Wi 4(¢,7) { } then by setting x =1, m = 1 and r = 0, we have

Digg(n+¢,1) f: no{ } ( )mg—kqﬂ‘kBk,q, (27)

Jj=

where By, := Bj,4(1). This is a g-analogue of (4) which was first obtained by Katriel [7].
On the other hand, setting z = 1 and then taking the limit of (24) as ¢ — 1 provides a
generalization of Spivey’s Bell number formula in terms of the r-Whitney numbers of the
second kind, denoted by W, .(¢,7), and the r-Dowling numbers, denoted by D,, .(n), (see
[4, 11]), given by

J4 n
Dppr(n+0) Z I W (0, 7) <Z> (mj +7)""Dpo(k). (28)

j= =0

In a recent paper, Mansour et al. [10] obtained the following generalization of Spivey’s
Bell number formula:

Dyafa+bi2) = 33523 'y x(é’) ([ + mlila)" ™ Wya(a,)S,0,0). (29)

= =0

Here, D, ,(n;z) and W, ,(n, k) denote the (p, g)-analogues of the r-Dowling polynomials and
the r~-Whitney numbers of the second kind, respectively. The (p,q)-analogues are natural
generalizations of g-analogues. However, since the manner by which the numbers W, , ,(n, k)
were defined in [9] differs from the work of Mansour et al. [10], the main result of this paper
is not generalized by (29).
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