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Abstract

We give another proof of the Lucas-Lehmer test by using a singular cubic curve. We

also illustrate a practical way to choose a starting term for the Lucas-Lehmer-Riesel

test by trial and error. Moreover, we provide a nondeterministic test for determining

the primality of integers of the form N = hpn − 1 for any odd prime p. We achieve

these by using the group structure on a singular cubic curve induced from the group

law of elliptic curves.

1 Introduction

The largest primes known are given by expressions of the type N = 2n − 1 since there is an
efficient, deterministic primality test for such integers.

Theorem 1 (Lucas-Lehmer). Let S0 = 4. If we define Sk = S2
k−1−2 for all k ≥ 1 recursively,

then the integer N = 2n − 1 is prime if and only if Sn−2 ≡ 0 (mod N).

There are already several proofs of this fact in the literature [3, 4, 6, 8, 11, 12]. In
this paper, we give another proof by using a singular cubic curve. Secondly, we illustrate
a practical way to choose S0 by trial and error for the Lucas-Lehmer-Riesel test, which is
concerned with the integers of the form N = h2n − 1. Finally, we give a nondeterministic
test for determining the primality of integers of the form N = hpn − 1 for an odd prime p.
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2 Main results

Consider the projective curve
C : y2 = 4x3 + x2.

Let K be an arbitrary field with char(K) 6= 2. The curve C is a singular cubic curve defined
over K that has a node at the origin. There are two distinct tangent lines at the origin,
namely y = x and y = −x. The cubic curve C and these tangent lines are illustrated in
Figure 1.

Figure 1: Cubic curve C : y2 = 4x3 + x2.

The non-singular part of C with coordinates from K is denoted by Cns(K). The group
law of elliptic curves makes Cns(K) into an abelian group. Moreover, we have the following
characterization for this group.

Proposition 2. The map ψ : Cns(K) → K∗ given by the formula ψ(x, y) = y−x

y+x
is a group

isomorphism.

Proof. See [13, Prop. III.2.5] and [13, Exer. 3.5].

There is a connection between the map x 7→ x2 − 2 and the duplication map on Cns(K).
To see this connection, we follow [5] and consider

φ(z) =
ez

(1− ez)2

and its derivative

φ′(z) =
ez(ez + 1)

(1− ez)3
.

It is easily verified that the cubic curve C : y2 = 4x3 + x2 is parametrized by x = φ(z)
and y = φ′(z). Note that ψ((φ(z), φ′(z))) = ez under the isomorphism of Proposition 2. It
follows that [n](φ(z), φ′(z)) = (φ(nz), φ′(nz)) since (ez)n = enz.
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The family of Dickson polynomials, denoted Dn(x), is a normalization of Chebyshev
polynomials that is used in the theory of finite fields [7]. For each integer n, the polynomial
Dn(x) is uniquely defined by the equation Dn(y+y

−1) = yn+y−n where y is an indeterminate.
The first few examples of these polynomials are D1(x) = x,D2(x) = x2 − 2 and D3(x) =
x3 − 3x. Note that φ(z) = 1/(ez + e−z − 2). Now, it is clear that

Dn

(

1

φ(z)
+ 2

)

= Dn(e
z + e−z) = enz + e−nz =

1

φ(nz)
+ 2.

For any integer n ≥ 1, define fn(x) := 1/(Dn(1/x+ 2)− 2). The rational function fn(x)
satisfies the functional equation fn(φ(z)) = φ(nz) by the computation above. Let πx be the
projection to the first coordinate. Set L(x) = 1/x + 2. We write P1(K) = K ∪ {∞}. We
have the following commutative diagram:

Cns(K) Cns(K)

P1(K) P1(K)

P1(K) P1(K)

πx

[n]

fn
πx

L Dn

L

For the case n = 2, we have

[2](x, y) =

(

x2

4x+ 1
,
x3(2x+ 1)

y(4x+ 1)

)

.

The rational map f2 associated with the duplication map on Cns(K) is given by f2(x) =
x2/(4x+ 1). Recall that it satisfies the relation f2(x) = 1/(D2(1/x+ 2)− 2) where D2(x) =
x2 − 2.

There is a unique point of Cns(K) of order two, namely (−1/4, 0). Note that there are
two points of order four, namely (−1/2, i/2) and (−1/2,−i/2). To see this, we can use
f4(x) = f2(f2(x)) = x4/((2x+ 1)2(4x+ 1)).

The following fact is the key argument to our alternative proof of Theorem 1.

Lemma 3. Let p be an odd prime and let P = (x, y) be a point of Cns(Fp2). If x ∈ Fp, then
the order of P , denoted o(P ), satisfies the following:

1. o(P ) divides p− 1 if y ∈ Fp, and

2. o(P ) divides p+ 1 if y 6∈ Fp.

Proof. If both coordinates of P are in Fp, then ψ(x, y) =
y−x

y+x
∈ F∗

p. We have ψ(x, y)p−1 = 1

and we conclude that o(P ) divides p− 1 by Proposition 2.
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Now suppose that x ∈ Fp but y 6∈ Fp. We have yp = −y because y2 = 4x3 + x2. Observe
that

ψ(x, y)p+1 =

(

y − x

y + x

)p (
y − x

y + x

)

=

(−y − x

−y + x

)(

y − x

y + x

)

= 1.

We conclude that o(P ) divides p+ 1 by Proposition 2.

A natural generalization of the Lucas-Lehmer test, namely the Lucas-Lehmer-Riesel test,
is concerned with integers of the form N = h2n−1 for odd integers h. The recurrence relation
is the same for this generalized test. However, the starting value S0 varies depending on both
h and n. Historically, the proof of this theorem was obtained in several steps:

1. If h = 1, and if n ≡ 3 (mod 4) then pick S0 = 3. [8]

2. If h = 1, and if n ≡ 1 (mod 2) then choose S0 = 4. [6]

3. If h = 3, and if n ≡ 0, 3 (mod 4), then choose S0 = 5778. [6]

4. If h ≡ 1, 5 (mod 6), and if 3 ∤ N , then choose S0 = wh + w−h where w = 2 +
√
3. [9]

5. Otherwise, h is a multiple of 3 and we follow [10] to choose S0.

Unfortunately, there may not be any canonical value for S0 even though the h value is
fixed [2]. On the other hand, it is easy to choose S0 by trial and error in practice by using
the Jacobi symbol. For this purpose, we give the following method, which is inspired by [12].

Theorem 4. Given N = h2n−1, with n > 1, h odd and 0 < h < 2n+1−1, let D be a positive
integer such that the Jacobi symbol satisfies

(

D
N

)

= −1 and
(

D−1
N

)

= 1. Define a sequence by

S0 = Dh

(

2(D + 1)

D − 1

)

and Sk = D2(Sk−1)

for k ≥ 1. Then N is prime if and only if N divides Sn−2.

Proof. Suppose that N is prime. Then the Jacobi symbol reduces to the Legendre symbol.
If t = L−1(2(D+1)

D−1
) = (D − 1)/4, then 4t + 1 = D (mod N). Consider the point P =

(t, t
√
D) ∈ Cns(FN2). The order of P is a divisor of N + 1 = h2n by Lemma 3. We claim

that P 6= [2]Q for any Q = (x, y) with x ∈ FN . Assume otherwise, i.e., f2(x) = t for some
x ∈ FN . It follows that x2/(4x + 1) = x4/y2 = (D − 1)/4 and therefore y2 = 4x4/(D − 1).
This gives y ∈ FN because D − 1 is a square modulo N . However, this is a contradiction
because P = [2]Q implies that P has both coordinates in FN . Thus, the point [h]P has order
precisely 2n. Finally, the point [2n−2][h]P is of order 4. There are two such points, namely
(−1/2,±i/2). In either case the x-coordinate is −1/2. Thus f2n−2(fh(t)) = −1/2 and as a
result D2n−2(Dh(s)) = L(−1/2) = 0. This finishes the proof of necessity.

Suppose that N is composite. Let p be a prime factor of N with Jacobi symbol
(

D
p

)

= −1.

In Cns(Fp2), we have [p+1]P = ∞ by Lemma 3. Therefore [p+1][h]P = ∞ as well. On the
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other hand, assume that D2n−2(S0) ≡ 0 (mod N). It follows that [h2n−2]P = (−1/2,±i/2)
and therefore [2n][h]P = ∞ in Cns(Fp2). If the order of [h]P was a proper divisor of 2n, then
the equality [2n−2]P = (−1/2,±i/2) would not hold. We conclude that the order of [h]P
is precisely 2n and therefore 2n divides p + 1. Thus p + 1 = 2nk for some integer k ≥ 1.
From this point on, we follow [12]. We have h2n − 1 = N = (2nk − 1)ℓ for some integer ℓ.
Reducing everything modulo 2n, it is easily seen that ℓ = 2nm+1 for some integer m. Since
N 6= p, it is obvious that m ≥ 1. If k = m = 1, then h = 2n, which is a contradiction. Hence
k ≥ 2 or m ≥ 2, and therefore h ≥ 2n+1 − 1.

Remark 5. This proof constitutes an alternative proof for the Lucas-Lehmer test if we fix
h = 1 and D = 3. In that case N = 2n − 1 ≡ 7 (mod 24) for any integer n ≥ 3. Clearly
(

3
N

)

= −1 and
(

2
N

)

= 1. Moreover S0 = D1(4) = 4.

We also note that Lehmer’s choice S0 = 5778 for the case h = 3 and n ≡ 0, 3 (mod 4)
is obtained by choosing D = 5/4. It follows that 2(D + 1)/(D − 1) = 18 and therefore
S0 = D3(18) = 5778. Another choice could be D = 5, which would give S0 = 18 according
to the above theorem.

Now let us consider Riesel’s choice S0 = Dh(4) for the case h ≡ 1, 5 (mod 6), and 3 ∤ N .
This is obtained by choosing D = 3 in the above theorem. The facts

(

3
N

)

= −1 and
(

2
N

)

= 1
for N = h2n − 1 can be verified easily by using the properties of the Jacobi symbol.

Now we give a test for determining the primality of integers of the form N = hpn − 1 for
an odd prime p. Unlike the previous theorem, it is not deterministic after S0 is chosen. This
theorem is inspired by the results of Williams, which are concerned with the primes p = 3, 5
and 7 [14, 15].

Theorem 6. Let p be a prime and let N = hpn − 1 be an odd integer, with n > 1 and
gcd(h, p) = 1. Let D be a positive integer such that the Jacobi symbol satisfies

(

D
N

)

= −1
and

(

D−1
N

)

= 1. Define the generalized Lucas sequence by

S0 = Dh

(

2(D + 1)

D − 1

)

and Sk = Dp(Sk−1)

for k ≥ 1. This sequence has the following properties:

1. If Sk 6≡ 2 (mod N) for all k ≤ n, then N is composite.

2. If Sk ≡ 2 (mod N) for some positive minimal integer k ≤ n and p2k > N then N is
prime.

Proof. Suppose that N is prime. As in the proof of the previous theorem, let P = (t, t
√
D)

with t = L−1(2(D+1)
D−1

) = (D−1)/4. The order of P ∈ Cns(FN2) is a divisor of N +1 = hpn by

Lemma 3. It follows that the order of [h]P is a divisor of pn. Then we must have [pk]P = ∞
for some k ≤ n. This finishes the proof of the first part. Now, suppose that N is composite.
Let q be a prime factor of N with the Jacobi symbol

(

D
q

)

= −1. In Cns(Fq2), we have

[q+1]P = ∞ by Lemma 3. Therefore [q+1][h]P = ∞, too. On the other hand, assume that
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Dpk(S0) ≡ 2 (mod N) for some minimal positive integer k. It follows that the order of [h]P
is pk. We conclude that pk divides q + 1, i.e., q + 1 = pkℓ for some integer positive integer ℓ.
We have hpn − 1 = N = (pkℓ− 1)m for some integer m. Reducing everything modulo pk, it
is easily seen that m = pka + 1 for some integer a. Since N 6= p, it is obvious that a ≥ 1.
Hence ℓ ≥ 1 or a ≥ 1, and therefore p2k ≤ N .

We remark that the inequality p2k > N in the second part of the above theorem can
be improved as in [15]. We will leave it as it is for simplicity since this test is far from
being deterministic in either case. On the other hand it is a common practice in algorithmic
number theory to use a random element of a cyclic group since its order is expected to be
large most of the time.

In order to make the above theorem deterministic, after S0 is chosen, we need to prove
that the congruence Dp(x) ≡ S0 (mod N) has no solution if N is prime. It would then
imply that P has order precisely pn. In that case, we could replace the second part of the
above theorem as: “Otherwise, Sn ≡ 2 (mod N) and N is prime if pn > h”. This would
give us a necessary and sufficient test if pn > h. More precisely, we would be able to say
that N = hpn − 1 is prime if and only if Sn ≡ 2 (mod N). This idea has already been
accomplished by Berrizbeitia and Berry for p = 3 by using the cubic reciprocity law [1]. We
hope that the isomorphism of Proposition 2 together with the higher degree reciprocity laws
may shed some light in the future for the cases p ≥ 5.
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