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Abstract

In 2011, Chen computed the greatest common divisors of consecutive shifted Fi-
bonacci numbers Fn + a and Fn+1 + a for a ∈ {±1,±2}. He also showed that
gcd(Fn + a, Fn+1 + a) is bounded if a 6= ±1. This was later generalized by Spilker,
who also showed that gcd(Fn + a, Fn+1 + a) is periodic if a 6= ±1. In this article, we
compute the greatest common divisor for a = ±3 and we show how the results given
in this article compare to bounds derived by Chen and periods derived by Spilker. We
further give a necessary criterion for an integer d to occur as such a greatest common
divisor.

1 Introduction and results

Let (Fn)n≥1 be the Fibonacci sequence defined by the recursion

Fn = Fn−1 + Fn−2, F1 = F2 = 1. (1)

Using this recursion, Fn can be extended to integer indices, where we have the relation
F−n = (−1)n+1Fn. In this article, we want to investigate greatest common divisors of the
form gcd(Fn + a, Fn+1 + a).
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It is well known, that gcd(Fn+a, Fn+1+a) = 1 for all n if a = 0, i.e., consecutive Fibonacci
numbers are coprime. In 1971, Dudley and Tucker [2] showed that gcd(Fn + a, Fn+1 + a) is
unbounded for a = ±1 by showing that

gcd(F4n+1 + 1, F4n+2 + 1) = L2n, (2)

gcd(F4n+1 − 1, F4n+2 − 1) = F2n, (3)

gcd(F4n+3 − 1, F4n+4 − 1) = L2n+1. (4)

Here (Ln)n≥1 denotes the Lucas sequence defined by Ln = Ln−1 + Ln−2, L1 = 1, L2 = 3.
In 2011, Chen [1] determined gcd(Fn + a, Fn+1 + a) for a ∈ {±1,±2} and proved the

following bound.

Theorem A ([1]). Let n, a ∈ Z. Then

• gcd(F2n−1 + a, F2n + a) ≤ |a2 − 1| if a 6= ±1.

• gcd(F2n + a, F2n+1 + a) ≤ a2 + 1.

Spilker [4] generalized some of Chen’s results. Among other, he showed the following
theorems (in even greater generality than mentioned here).

Theorem B ([4]). For all a ∈ Z, gcd(Fn + a, Fn+1 + a) divides a2 + (−1)n. If a 6= ±1, the
function n 7→ gcd(Fn + a, Fn+1 + a) is simply periodic and a period p ≤ (a4 − 1)2 can be
chosen by

Fp ≡ 0 (mod a4 − 1), Fp+1 ≡ 1 (mod a4 − 1). (5)

Theorem C ([4]). Let a ∈ Z with |a| > 1, k ∈ N and i ∈ {0, 1}.

1. If F2k−i ≡ αi (mod a2 + 1) with 0 ≤ αi < a2 + 1, then

gcd(F4k + a, F4k+1 + a) = gcd(α0 + aα1, aα0 − α1, a
2 + 1), (6)

gcd(F4k−2 + a, F4k−1 + a) = gcd(α0 + (a− 1)α1, aα0 − (a+ 1)α1, a
2 + 1). (7)

2. If F2k−i ≡ βi (mod a2 − 1) with 0 ≤ αi < a2 − 1, then

gcd(F4k−1 + a, F4k + a) = gcd((a+ 1)β1, (a− 1)β0 − aβ1, a
2 − 1), (8)

gcd(F4k−3 + a, F4k−2 + a) = gcd(β0 − (a+ 2)β1, (a− 1)β0 − (a− 1)β1, a
2 − 1). (9)

Spilker also answered the question in which cases the upper bound of Chen is being
attained. To state this, define the entry point of m ∈ N as e(m) := min{i ∈ N : m|Fi} (the
existence of e(m) follows from [5, Theorem 1]).

Theorem D ([4]). Let |a| > 1. The function n 7→ gcd(Fn + a, Fn+1 + a) has the upper bound
m = a2 + 1 as a value if and only if e(m) is odd and a ≡ ±Fe(m)+1 (mod m). The function
n 7→ gcd(Fn + a, Fn+1 + a) has the value m = a2 − 1 on the odd integers if and only if a = 2
or e(m) is even and a ≡ −Fe(m)+1 (mod m).
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In this article, we will use Chen’s method to determine gcd(Fn+ a, Fn+1+ a) for a = ±3.
More precisely, we will show the following theorems.

Theorem 1. We have

1. gcd(F4n−1 + 3, F4n + 3) =

{

8, if n ≡ 2 (mod 3);

1, otherwise.

2. gcd(F4n + 3, F4n+1 + 3) =



















2, if n ≡ 1 (mod 3) and n 6≡ 4 (mod 5);

5, if n 6≡ 1 (mod 3) and n ≡ 4 (mod 5);

10, if n ≡ 1 (mod 3) and n ≡ 4 (mod 5);

1, otherwise.

3. gcd(F4n+1 + 3, F4n+2 + 3) =

{

4, if n ≡ 0 (mod 3);

1, otherwise.

4. gcd(F4n+2 + 3, F4n+3 + 3) =

{

2, if n ≡ 2 (mod 3);

1, otherwise.

Theorem 2. We have

1. gcd(F4n−1 − 3, F4n − 3) =

{

2, if n ≡ 2 (mod 3);

1, otherwise.

2. gcd(F4n − 3, F4n+1 − 3) =

{

2, if n ≡ 1 (mod 3);

1, otherwise.

3. gcd(F4n+1 − 3, F4n+2 − 3) =

{

2, if n ≡ 0 (mod 3);

1, otherwise.

4. gcd(F4n+2 − 3, F4n+3 − 3) =



















2, if n ≡ 2 (mod 3) and n 6≡ 1 (mod 5);

5, if n 6≡ 2 (mod 3) and n ≡ 1 (mod 5);

10, if n ≡ 2 (mod 3) and n ≡ 1 (mod 5);

1, otherwise.

We will further examine the sets

G0(a) := {gcd(F2n+a, F2n+1+a) : n ∈ Z} and G1(a) := {gcd(F2n+1+a, F2n+2+a) : n ∈ Z}.
(10)

Let D(n) denote the set of divisors of n. We already know from Theorem B that G0(a) ⊂
D(a2+1) and G1(a) ⊂ D(a2−1) Theorem D characterizes the cases in which a2+1 ∈ G0(a)
and a2 − 1 ∈ G1(a). We will show the following extension.
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Theorem 3.

1. We have 1 ∈ G0(a) and {1, a+ 1} ⊂ G1(a) for all a.

2. We have 2 ∈ G0(a) if and only if a ≡ 1 (mod 2) and 2 ∈ G1(a) if and only if

a ≡ 1 (mod 4).

3. Let d 6= 1, 2 be a divisor of a2+1. If d ∈ G0(a), then e(d) is odd and a ≡ ±Fe(d)+1 (mod d).

4. Let d 6= 1, 2 be a divisor of a2 − 1 such that a 6≡ ±1 (mod d). If d ∈ G1(a), then e(d)
is even and a ≡ −Fe(d)+1 (mod d).

Before proving Theorems 1, 2, and 3, we will start with some lemmas in the next section.
In Section 5, we will compare our results to those of Spilker and raise some new questions.

2 Preliminaries

We will need a few results about divisibility and greatest common divisors of Fibonacci
numbers. We will state common facts without proof and prove some special identities. In
the following we always assume that n is a (not necessarily positive) integer.

Lemma 4. For all a, b, c ∈ Z we have gcd(a, bc) = gcd(a, gcd(a, b)c).

Lemma 5 ([3]). We have the following identities and rules about divisibility and greatest

common divisors of Fibonacci numbers.

• For all m,n ∈ N we have Fm+n = Fm+1Fn + FmFn−1.

• For all n ∈ N we have Fn+1Fn−1 = F 2
n + (−1)n.

• Fn ≡ 0 (mod 2) ⇔ n ≡ 0 (mod 3).

• Fn ≡ 0 (mod 4) ⇔ n ≡ 0 (mod 6).

• Fn ≡ 0 (mod 5) ⇔ n ≡ 0 (mod 5).

• Fn ≡ 0 (mod 8) ⇔ n ≡ 0 (mod 6).

• For all n ∈ N we have gcd(Fn, Fn+1) = 1.

• For all m,n ∈ N we have gcd(Fm, Fn) = Fgcd(m,n).

Lemma 6. For all n ∈ Z we have

gcd(F2n, 4) =

{

4, if n ≡ 0 (mod 3);

1, otherwise.
(11)
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Proof. Let n = 3m+ k with k ∈ {−1, 0, 1}. Then we get with Lemma 5

gcd(F2n, 4) = gcd(F6m+2k, 4) =

{

4, if k = 0;

1, otherwise.
(12)

Lemma 7. For all n ∈ Z we have

gcd(10, F2n−1 − 2F2n) =

{

2, if n ≡ 2 (mod 3);

1, otherwise.
(13)

Proof. Analogously to above, F2n−1−2F2n is divisible by 2 if and only if 2n−1 ≡ 0 (mod 3),
i.e., if n ≡ 2 (mod 3). Further we have

F2n−1 − 2F2n = −(3F2n−2 + F2n−3) = −(4F2n−3 + 3F2n−4) (14)

and for any residue class of n modulo 5 we can pick one of the three terms above such that
one summand is divisible by 5 while the other is not (for example, if n ≡ 4 (mod 5) then
F2n−3 is divisible by 5 and 3F2n−2 is not divisible by 5 due to Lemma 5). Thus F2n−1 − 2F2n

is not divisible by 5.

Lemma 8. For all n ∈ Z we have

gcd(10, F2n−1 − 3F2n) =



















2, if n ≡ 1 (mod 3) and n 6≡ 4 (mod 5);

5, if n 6≡ 1 (mod 3) and n ≡ 4 (mod 5);

10, if n ≡ 1 (mod 3) and n ≡ 4 (mod 5);

1, otherwise.

(15)

Proof. It suffices to show that 2|F2n−1−3F2n if and only if n ≡ 1 (mod 3) and 5|F2n−1−3F2n

if and only if n ≡ 4 (mod 5). With Lemma 5, F2n−1 − 3F2n = −F2n−2 − 2F2n is divisible by
2 if and only if 2n− 2 ≡ 0 (mod 3), i.e., if n ≡ 1 (mod 3) and F2n−1− 3F2n = −5F2n+F2n+2

is divisible by 5 if and only if 2n+ 2 ≡ 0 (mod 5), i.e., if n ≡ 4 (mod 5).

Lemma 9. For all n ∈ Z we have

gcd(8, 4F2n − F2n−1) =

{

2, if n ≡ 2 (mod 3);

1, otherwise.
(16)

Proof. Let n = 3m+ k with k ∈ {−1, 0, 1}. Then we get with Lemma 5

F2n−1 = F6m+2k−1 ≡

{

2 (mod 4), if k = −1;

1 (mod 2), otherwise,
(17)

and this shows the lemma.
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Lemma 10. For all n ∈ Z we have

gcd(10, F2n−1 + 3F2n) =

{

2, if n ≡ 1 (mod 3);

1, otherwise.
(18)

Proof. Since F2n−1 + 3F2n = F−2n+1 − 3F−2n = F−2n−1 − 2F−2n, this follows from Lemma
7.

Lemma 11. For all n ∈ Z we have

gcd(10, F2n+1 + 3F2n) =



















2, if n ≡ 2 (mod 3) and n 6≡ 1 (mod 5);

5, if n 6≡ 2 (mod 3) and n ≡ 1 (mod 5);

10, if n ≡ 2 (mod 3) and n ≡ 1 (mod 5);

1, otherwise.

(19)

Proof. Since F2n+1 + 3F2n = F−2n−1 − 3F−2n, this follows from Lemma 8.

The following lemma due to Chen is the main part for computing the greatest common
divisors.

Lemma 12 ([1]). For all m, k, a ∈ Z we have

gcd(Fm + a, Fm+1 + a) = gcd(Fm−2k + aF2k−1, Fm−(2k+1) − aF2k). (20)

3 Proof of Theorem 1 and Theorem 2

In this section we will give the proof for Theorems 1 and 2.

Proof of Theorem 1.

1. We use Lemma 12 with m = 4n− 1, k = n, a = 3 to get

gcd(F4n−1 + 3, F4n + 3) = gcd(4F2n−1, F2n−2 − 3F2n) = gcd(4F2n−1, F2n+2) (21)

= gcd(4F2n−1 + 4F2n+2, F2n+2) = gcd(8F2n+1, F2n+2). (22)

Since gcd(F2n+1, F2n+2) = 1, we get with Lemma 5

gcd(F4n−1 + 3, F4n + 3) = gcd(8, F2n+2) = gcd(F6, F2n+2) = Fgcd(6,2n+2), (23)

and since

gcd(6, 2n+ 2) =

{

6, if n ≡ 2 (mod 3);

2, otherwise,
(24)

this proves the first case.
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2. We use Lemma 12 with m = 4n, k = n, a = 3 to get

gcd(F4n + 3, F4n+1 + 3) = gcd(F2n + 3F2n−1, F2n−1 − 3F2n) (25)

= gcd(F2n + 3F2n−1 − 3(F2n−1 − 3F2n), F2n−1 − 3F2n) (26)

= gcd(10F2n, F2n−1 − 3F2n). (27)

With Lemma 4 we get

gcd(F4n + 3, F4n+1 + 3) = gcd(10 · gcd(F2n, F2n−1 − 3F2n), F2n−1 − 3F2n) (28)

= gcd(10, F2n−1 − 3F2n), (29)

thus the claim follows with Lemma 8.

3. We use Lemma 12 with m = 4n+ 1, k = n, a = 3 and Lemma 4 to get

gcd(F4n+1 + 3, F4n+2 + 3) = gcd(F2n+1 + 3F2n−1, 2F2n) (30)

= gcd(F2n + 4F2n−1, 2 · gcd(F2n + 4F2n−1, F2n)) (31)

= gcd(F2n + 4F2n−1, 2 · gcd(4, F2n)). (32)

With Lemma 6 and Lemma 5 we get

gcd(F2n + 4F2n−1, 2 · gcd(4, F2n)) (33)

=

{

gcd(F2n + 4F2n−1, 8) = gcd(4F2n−1, 8) = 4, if n ≡ 0 (mod 3);

gcd(F2n + 4F2n−1, 2) = gcd(F2n, 2) = 1, otherwise.
(34)

4. We use Lemma 12 with m = 4n+ 2, k = n, a = 3 to get

gcd(F4n+2 + 3, F4n+3 + 3) = gcd(F2n+2 + 3F2n−1, F2n+1 − 3F2n) (35)

= gcd(2F2n + 4F2n−1, F2n−1 − 2F2n) (36)

= gcd(10F2n, F2n−1 − 2F2n). (37)

With Lemma 4 we get

gcd(F4n+2 + 3, F4n+3 + 3) = gcd(10 · gcd(F2n, F2n−1 − 2F2n), F2n−1 − 2F2n) (38)

= gcd(10, F2n−1 − 2F2n), (39)

hence the statement follows with Lemma 7.

Proof of Theorem 2.
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1. We use Lemma 12 with m = 4n− 1, k = n, a = −3 to get

gcd(F4n−1 − 3, F4n − 3) = gcd(2F2n−1, F2n−2 + 3F2n) (40)

= gcd(2F2n−1, 4F2n − F2n−1) (41)

= gcd(8F2n, 4F2n − F2n−1). (42)

Using Lemma 4 we get

gcd(F4n−1 − 3, F4n − 3) = gcd(8 · gcd(F2n, 4F2n − F2n−1), 4F2n − F2n−1) (43)

= gcd(8, 4F2n − F2n−1), (44)

thus the claim folows with Lemma 9.

2. We use Lemma 12 with m = 4n, k = n, a = −3 to get

gcd(F4n − 3, F4n+1 − 3) = gcd(F2n − 3F2n−1, F2n−1 +3F2n) = gcd(10F2n, F2n−1 +3F2n).
(45)

Using Lemma 4 gives

gcd(F4n − 3, F4n+1 − 3) = gcd(10 · gcd(F2n, F2n−1 + 3F2n), F2n−1 + 3F2n) (46)

= gcd(10, F2n−1 + 3F2n), (47)

and Lemma 10 gives the result.

3. We use Lemma 12 with m = 4n+ 1, k = n, a = −3 to get

gcd(F4n+1 − 3, F4n+2 − 3) = gcd(F2n+1 − 3F2n−1, 4F2n) (48)

= gcd(F2n−3, 8F2n−1 − 4F2n−3) = gcd(F2n−3, 8F2n−1) (49)

= gcd(F2n−3, 8) = gcd(F2n−3, F6). (50)

Using Lemma 5 gives gcd(F4n+1 − 3, F4n+2 − 3) = Fgcd(6,2n−3), and since

gcd(6, 2n− 3) =

{

3, if n ≡ 0 (mod 3);

1, otherwise,
(51)

we get

gcd(F4n+1 − 3, F4n+2 − 3) = Fgcd(2n−3,6) =

{

F3 = 2, if n ≡ 0 (mod 3);

F1 = 1, otherwise.
(52)

4. We use Lemma 12 with m = 4n+ 2, k = n, a = −3 to get

gcd(F4n+2 − 3, F4n+3 − 3) = gcd(F2n+2 − 3F2n−1, F2n+1 + 3F2n) (53)

= gcd(4F2n − 2F2n+1, F2n+1 + 3F2n) (54)

= gcd(10F2n, F2n+1 + 3F2n). (55)

Using Lemma 4, we get gcd(F4n+2 − 3, F4n+3 − 3) = gcd(10, F2n+1 + 3F2n), hence the
statement follows with Lemma 11.
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4 Proof of Theorem 3

To prove Theorem 3, we first note that

gcd(F0 + a, F1 + a) = gcd(a, a+ 1) = 1, (56)

gcd(F1 + a, F2 + a) = gcd(a+ 1, a+ 1) = a+ 1, (57)

gcd(F3 + a, F4 + a) = gcd(a+ 2, a+ 3) = 1. (58)

This proves the first statement. For the second statement, note that a has to be odd, since
otherwise 2 ∤ a2 ± 1. So suppose that a is odd. Then we have

gcd(F4 + a, F5 + a) = gcd(a+ 3, a+ 5) = 2, (59)

hence 2 ∈ G0(a). We turn our attention to G1(a). First let a ≡ 1 (mod 4). We have
gcd(F7 + a, F8 + a) = gcd(F7 + a, F6)|8 and F7 + a ≡ 2 (mod 4), F8 + a ≡ 2 (mod 4), hence

2 = gcd(F7 + a, F8 + a) ∈ G1(a). (60)

Assume now that a ≡ 3 (mod 4). We will use the formula of the greatest common divisor
given in Theorem C. Let

A1 := (a+1)β1, B1 := (a−1)β0−aβ1, A2 := β0−(a+2)β1, B2 := (a−1)β0−(a−1)β1,
(61)

where β0, β1 are defined as in Theorem C. Since a2 − 1 ≡ 0 (mod 4), we can only have 2 ∈
G1(a) if there is an i ∈ {1, 2} such that both Ai and Bi are even and further Ai ≡ 2 (mod 4)
or Bi ≡ 2 (mod 4).

• Then we have A1 ≡ 0 (mod 4) in any case.

• We have B1 ≡ 2 (mod 4) if and only if 2β0+β1 ≡ 2 (mod 4). Since βi ≡ F2k−i (mod a2−
1), this holds if and only if 2F2k + F2k−1 ≡ 2 (mod 4), i.e., if and only if F2k+2 ≡
2 (mod 4). From Lemma 5, this holds if and only if 2k + 2 ≡ 0 (mod 3) and 2k + 2 6≡
0 (mod 6), which is impossible.

• We have A2 ≡ 2 (mod 4) if and only if β0 − β1 ≡ 2 (mod 4). This is the case precisely
when F2k − F2k−1 = F2k−2 ≡ 2 (mod 4). From Lemma 5, this holds if and only if
2k − 2 ≡ 0 (mod 3) and 2k − 2 6≡ 0 (mod 6), which is impossible.

• Finally, we have B2 ≡ 2 (mod 4) if and only if β0 − β1 ≡ 1 (mod 2), in which case we
also have A2 ≡ 1 (mod 2).

Hence 2 /∈ G1(a) if a ≡ 3 (mod 4).
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For the proof of the fourth statement, we mimic Spilker’s proof of Theorem D. We use
the identity Fm+n = Fm+1Fn + FmFn−1 from Lemma 5 to find, that the integers F1, F2, . . .
are modulo d equivalent to

F1, F2, . . . , Fe(d)−1, 0, (62)

Fe(d)+1F1, Fe(d)+1F2, . . . , Fe(d)+1Fe(d)−1, 0, (63)

F 2
e(d)+1F1, F 2

e(d)+1F2, . . . , F 2
e(d)+1Fe(d)−1, 0, . . . (64)

where F k
n := (Fn)

k. Hence

Fke(d) ≡ 0 (mod d) and Fke(d)+1 ≡ F k
e(d)+1 (mod d) for all k ∈ N. (65)

From Lemma 5, we get

Fe(d)+1 = Fe(d) + Fe(d)−1 ≡ Fe(d)−1 (mod d), (66)

Fe(d)+1Fe(d)−1 = F 2
e(d) + (−1)e(d) ≡ (−1)e(d) (mod d), (67)

hence we further have
F 2
e(d)+1 ≡ (−1)e(d) (mod d). (68)

We begin with the set G0(a). Suppose that d ∈ G0(a), i.e.,

d = gcd(Fn0
+ a, Fn0+1 + a) = gcd(Fn0

+ a, Fn0−1) (69)

for some even integer n0. Then Fn0
+ a ≡ 0 (mod d) and Fn0−1 ≡ 0 (mod d). From [5,

Theorem 3], n0 − 1 is a multiple of e(d), i.e., n0 = ke(d) + 1 for some k ∈ Z. Since n0 is
even, k and e(d) are odd, thus (65) and (68) give

Fn0
= Fke(d)+1 ≡ F k

e(d)+1 ≡ (−1)
k−1

2 Fe(d)+1 (mod d), (70)

hence a ≡ ±Fe(d)+1 (mod d), and this proves the statement for G0(a).
The statement for the set G1(a) can be proved almost analogously. Since here n0 is odd,

ke(d) is even. If k was even, we would get

Fn0
≡ F k

e(d)+1 ≡ ±1 (mod d), (71)

hence a ≡ ±1 (mod d). This contradiction yields that k is odd, thus e(d) is even and we get

a ≡ −Fn0
≡ −F k

e(d)+1 ≡ −
(

(−1)e(d)
)

k−1

2 Fe(d)+1 ≡ −Fe(d)+1 (mod d). (72)
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5 Remarks and future work

In this section we will briefly compare our results to the general results of Spilker [4].
For a = ±2, Theorems B, C, and D state, that gcd(Fn ± 2, Fn+1 ± 2) is a divisor of 5

respectively 3, a period of gcd(Fn ± 2, Fn+1 ± 2) is given by 40, and since

e(3) = 4, F5 = 5 ≡ 2 (mod 3) and e(5) = 5, F6 = 8 ≡ −2 (mod 5), (73)

the values 3 and 5 are attained. The exact values of gcd(Fn ± 2, Fn+1 ± 2) can be found in
[1] and [4], it turns out, that 40 is indeed the smallest period.

For a = ±3, Theorems B, C, and D state, that gcd(Fn ± 3, Fn+1 ± 3) is a divisor of 10
respectively 8, a period of gcd(Fn ± 3, Fn+1 ± 3) is given by 120, and since

e(8) = 6, F7 = 13 ≡ −3 (mod 8) and e(10) = 15, F16 = 987 ≡ −3 (mod 10),
(74)

the values 8 and 10 are attained. Theorem 3 additionally states, that the value 2 is attained
by gcd(Fn0

± 3, Fn0+1 ± 3) for some even n0, while it is attained for some odd n0 only in
the case a = −3. This, together with Theorems 1 and 2, shows that the cases a = ±3 are
the first ones, in which not every divisor of a2 + 1 respectively a2 − 1 occurs as a greatest
common divisor. From the exact values computed in Theorems 1 and 2, we also see that the
smallest period of gcd(Fn ± 3, Fn+1 ± 3) is not 120, but 60.

These observations give rise to some new questions:

Problem 13. Given a ∈ Z with |a| ≥ 2, what is the smallest period of gcd(Fn+a, Fn+1+a)?

Problem 14. Theorem 3 only gives a necessary but not a sufficient condition for a divisor d
of a2 ± 1 to occur as a greatest common divisor. Theorem D gives also a sufficient condition
for d = a2 ± 1 to occur as a greatest common divisor. Are there any sufficient conditions for
d 6= a2 ± 1?

Problem 15. Let a ∈ Z with |a| ≥ 2. Since G0(a) ⊂ D(a2 + 1) and G1(a) ⊂ D(a2 − 1), we
have |G0(a)| ≤ τ(a2 + 1) and |G1(a)| ≤ τ(a2 − 1) (where τ(n) =

∑

d|n 1 denotes the divisor

function). What are the (exact or asymptotic) sizes of G0(a) and G1(a)?

References

[1] K.-W. Chen, Greatest common divisors in shifted Fibonacci sequences, J. Integer Se-

quences 14 (2011), Article 11.4.7.

[2] U. Dudley and B. Tucker, Greatest common divisors in altered Fibonacci sequences,
Fibonacci Quart. 9 (1971), 89–91.

[3] T. Koshy, Fibonacci and Lucas Numbers With Applications, Wiley-Interscience, 2001.

11

https://cs.uwaterloo.ca/journals/JIS/VOL14/Chen/chen70.html


[4] J. Spilker, The gcd of the shifted Fibonacci sequence, in Jürgen Sander, Jörn Steuding,
and Rasa Steuding, eds., From Arithmetic to Zeta-Functions, Springer, 2016, pp. 473–
483.

[5] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525–532.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11A05.
Keywords: shifted Fibonacci sequence, greatest common divisor.

(Concerned with sequence A000045.)

Received January 31 2018; revised version received June 20 2018. Published in Journal of

Integer Sequences, August 22 2018.

Return to Journal of Integer Sequences home page.

12

http://oeis.org/A000045
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction and results
	Preliminaries
	Proof of Theorem 1 and Theorem 2
	Proof of Theorem 3
	Remarks and future work

