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Abstract

Jeu de taquin is a well-known operation on standard Young tableaux that may be
used to define an equivalence relation on tableaux of any fixed rectangular shape. Via
the well-studied bijection between two-row standard Young tableaux and non-crossing
matchings, jeu de taquin is known to correspond to rotation of the associated matching
by one strand. In this paper, we adapt jeu de taquin to standard set-valued Young
tableaux — a generalization of standard Young tableaux where cells contain unordered
sets of integers. Our modified jeu de taquin operation is shown to correspond to
to rotation of various classes of non-crossing matchings by one strand. In the case
corresponding to k-equal non-crossing matchings, closed formulas are derived for the
number of jeu de taquin equivalence classes of standard set-valued Young tableaux.

1 Introduction: jeu de taquin of Young tableaux

Let λ = (λ1, . . . , λm) be a non-increasing integer partition of n. A Young diagram (Ferrers
diagram) Y of shape λ is a left-aligned array of cells such that there are precisely λi cells in
the ith row of Y . An assignment of [n] = {1, . . . , n} to the cells Y produces what is known
as a Young tableau of shape λ. A Young tableau T is column-standard if entries increase
from top to bottom down every column, and is row-standard if entries increase from left to
right across each row. If a Young tableau is both column-standard and row-standard, it is
referred to as a standard Young tableau. We establish S(λ) as notation for the set of all
standard Young tableaux of shape λ; for the m-row rectangular shape λ = (n, . . . , n) we use
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the condensed notation S(nm). Comprehensive introductions to Young tableaux have been
given by Fulton [7] and Stanley [17]

For any shape λ, one may define a bijection p : S(λ) → S(λ) that adapts Schützenberger’s
“jeu de taquin” promotion action on posets [15]. For T ∈ S(λ), where λ ⊢ n, we construct
p(T ) as follows:

1. Delete the entry of T at position (1, 1) and renumber the remaining entries of T by
x 7→ x − 1, producing a skew standard Young tableaux to which Schützenberger’s
original operation applies.

2. Proceed through Schützenberger’s algorithm by recursively identifying the smaller of
the two entries directly to the right and directly below the single vacated cell, and
then sliding that smaller entry into the vacated cell (producing another vacated cell
elsewhere).

3. Repeat the process of Step #2 until the single vacated cell is located in a lower-right
corner. Then fill the vacated cell in the lower-right corner of the resulting tableau with
n.

See Figure 1 for an example of p. Note that p has already been applied to various classes of
tableaux by Shimozono [16], Stembridge [19], Rhoades [14], and Petersen, Pylyavskyy, and
Rhoades [12]. For a recent generalization of the promotion operation that is entirely distinct
from the generalization of this paper, see the work of Pechenik on promotion in increasing
tableaux [10, 11].

1 3 4

2 5

6 7
⇒

2 3

1 4

5 6
⇒

1 2 3

4

5 6
⇒

1 2 3

4

5 6
⇒

1 2 3

4 6

5
⇒

1 2 3

4 6

5 7

Figure 1: The map p : S(λ) → S(λ) applied to T ∈ S(λ) with λ = (3, 2, 2).

In a slight abuse of terminology, we refer to p : S(λ) → S(λ) as jeu de taquin. Associated
with this operation is an equivalence relation ∼p whereby T1, T2 ∈ S(λ) satisfy T1 ∼p T2 if
and only if pk(T1) = T2 for some k ∈ Z. In this situation we say that T1 and T2 are jeu

de taquin equivalent. We use S̃(λ) to denote the set of jeu de taquin equivalence classes in
S(λ).

For λ = n2 it is well-known that |S(n2)| = Cn, where Cn = 1
n+1

(
2n
n

)
is the nth Catalan

number. This places S(n2) in bijection with the hundreds of combinatorial interpretations
of Cn compiled by Stanley [18]. Relevant to this discussion is the bijection φ between S(n2)
and the set Mn of non-crossing matchings on 2n points, which associates first-row entries
of T ∈ S(n2) with left endpoints of half-circles in φ(T ) ∈ Mn and second-row entries of T
with right endpoints of half-circles in φ(T ).
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Now consider a pair of tableaux T, p(T ) ∈ S(n2) that are related by a single jeu de taquin.
As noted by Petersen, Pylyavskyy, and Rhoades [12], the associated non-crossing matchings
φ(T ), φ(p(T )) ∈ Mn are related via “rotation” by the leftmost strand in φ(T ) over the top

of the matching. It quickly follows that the jeu de taquin equivalence classes of S̃(n2) are

in bijection with the set M̃n of “circular non-crossing matchings” on 2n points: noncrossing
partitions of [2n] into n blocks of size 2 (2-equal noncrossing partitions), modulo rotation
by multiples of π/n radians when its endpoints are evenly spaced about the unit circle. See
Figure 2 for an example of these phenomena.

1 3 4 6

2 5 7 8

φ↓

1 2 3 4 5 6 7 8

−→p

−→
rotation

1 2 3 5

4 6 7 8

φ↓

1 2 3 4 5 6 7 8

Figure 2: A pair of tableaux T, p(T ) ∈ S(n2) and their associated non-crossing matchings.

On the right is the circular non-crossing matching in M̃4 to which both tableaux correspond.

The jeu de taquin equivalence classes of S̃(n2) may be enumerated via several techniques
that already appear in the literature. The earliest such enumeration was given by Goldbach
and Tijdeman [8], who directly counted the number of circular non-crossing matchings fixed
by an arbitrary rotation and applied Burnside’s lemma to give

|M̃n| =
1

2n


∑

d|n

ϕ(n/d)

(
2d

d

)
−

1

2
Cn +

1

2
C(n−1)/2. (1)

In Eq. (1), ϕ represents Euler’s totient function and the final term on the right is taken to
be zero if the subscript is not an integer.

Working within the more general setting of rational Catalan combinatorics, Bodnar and
Rhoades [3] showed that the aforementioned rotational action on non-crossing matchings
provides an example of the cyclic sieving phenomenon. This allows for a much easier enu-
meration of circular non-crossing matchings fixed by an arbitrary rotation, via the evaluation
of q-Catalan numbers at an appropriate root of unity.

The goal of this paper is to explore a generalization of the jeu de taquin promotion
operator to standard set-valued Young tableaux. In Section 2, we define set-valued jeu de
taquin and look to generalize the phenomenon of Figure 2 to the most general setting in
which there exists a straightforward bijection between noncrossing partitions and standard
set-valued Young tableaux. That phenomenon admits a direct analogue in the case of set-
valued tableaux with shape λ = n2 and row-constant density (Theorem 3). Generalizing
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the phenomenon of Figure 2 to arbitrary tableaux of shape λ = n2 is only possible after
we define a slight modification of our jeu de taquin operator that we refer to as “rotational
jeu de taquin” (Theorem 5). Section 3 is dedicated to the enumeration of jeu de taquin
equivalence classes of set-valued tableaux in the case of row-constant density. This results in
a one-parameter generalization of Eq. (1) that counts circular k-equal noncrossing partitions
for any k ≥ 2 (Theorem 10) as well as an equivalent formula obtained via cyclic sieving
(Theorem 6). It should be noted that, in the case of rational noncrossing partitions, our
constructions are outwardly similar to yet subtly different from the approach of Armstrong,
Rhoades, and Williams [1], which does not involve the associated tableaux.

2 Jeu de taquin of standard set-valued Young tableaux

Let Y be a Young diagram of shape λ. For any collection of positive integers ρ = {ρi,j} such
that

∑
i,j ρi,j = m, a set-valued Young tableau of shape λ and density ρ is a map from [m] to

the cells of Y such that the cell at position (i, j) receives precisely ρi,j integers. A standard
set-valued Young tableau is a set-valued Young tableau with the added conditions that every
integer at position (i, j) is smaller than every integer at positions (i + 1, j) and (i, j + 1).
We use S(λ, ρ) to denote the set of all standard set-valued Young tableaux of shape λ and
density ρ. If

∑
i,j ρi,j = m, we adopt the notation |ρ| = m. See Figure 3 for an illustration

of S(λ, ρ) when λ = (2, 2).

1 2 3 4 5 6
7 8 9 10

1 2 3 4 5 7
6 8 9 10

1 2 3 4 5 8
6 7 9 10

1 2 3 4 6 7
5 8 9 10

1 2 3 4 6 8
5 7 9 10

1 2 3 4 7 8
5 6 9 10

1 2 3 5 6 7
4 8 9 10

1 2 3 5 6 8
4 7 9 10

1 2 3 5 7 8
4 6 9 10

1 2 3 6 7 8
4 5 9 10

Figure 3: The set S(λ, ρ) of standard set-valued Young tableaux with λ = (2, 2) and row-
constant density ρ with ρ1,j = 3, ρ2,j = 2.

Standard set-valued Young tableaux were originally defined by Buch [5] in his work on
the K-theory of Grassmanians, and were later used by Heubach, Li, and Mansour [9] to
provide a new combinatorial interpretation of the k-Catalan numbers. Those results were
extended by the first author [6], who used set-valued tableaux with λ = n2 to give new
combinatorial interpretations of the Raney numbers, the rational Catalan numbers, and the
solution to the (s, t)-tennis ball problem.

The jeu de taquin operation admits a straightforward generalization p : S(λ, ρ) → S(λ, ρ)
to set-valued tableaux of any shape and density. Given T ∈ S(λ, ρ), where |ρ| = m, obtain
p(T ) as follows:

1. Delete the smallest integer at position (1, 1), and renumber remaining entries by x 7→
x− 1.
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2. Recursively identify the sole cell (i, j) in the resulting tableau T ′ ∈ S(λ, ρ′) whose
density ρ′i,j satisfies ρ

′
i,j = ρi,j − 1. Then identify the smallest integer between the cells

at (i, j+1) and (i+1, j), and slide that entry to (i, j). This yields an “under-weighted”
cell at either (i+ 1, j) or (i, j + 1).

3. Repeat Step #2 until obtaining a set-valued tableau whose sole cell satisfying ρ′i,j =
ρi,j−1 lies in a lower-right corner. Then add m to the set of integers at this lower-right
cell.

In analogy with Section 1, we refer to the map p : S(λ,w) → S(λ,w) as set-valued jeu de

taquin. We once again define an equivalence relation ∼p on S(λ,w) whereby T1 ∼p T2 if and
only if pk(T1) = T2 for some k ∈ Z. We say that T1 and T2 are jeu de taquin equivalent if

T1 ∼p T2, and let S̃(λ,w) denote the set of jeu de taquin equivalence classes on S(λ,w).

2.1 Set-valued tableaux and generalized non-crossing matchings

We begin by establishing our general bijection between standard set-valued Young tableaux
of shape λ = n2 and noncrossing partitions. This is possible for all set-valued tableaux
whose densities carry a constant value of ρ2,j = 1 across their second-row, with specific sets
S(λ, ρ) of this type corresponding to noncrossing partitions with different block structures.
The authors realize that much of the formalism below is a recasting of existing terminology
in more convenient/concise language.

So consider a tuple of positive integers ~b = (b1, . . . , bn), where bi ≥ 2 for all 1 ≤ i ≤ n

and b1 + · · · + bn = N . A non-crossing matching of type ~b is a noncrossing partition of [N ]
into n blocks whose respective sizes, when ordered via their largest elements, are b1, . . . , bn.
As in Section 1, we represent our matchings as a collection of bi-stars with endpoints along
the x-axis.

Denote the set of all non-crossing matchings of type ~b by M~b. When it is notationally
convenient, we will reference a particular matching M ∈ M~b via the blocks of its corre-
sponding noncrossing partition, listing the elements of each block in increasing order. For
example, the matching in Figure 4 will be denoted M = {(1, 7, 8, 9), (2, 5, 6), (3, 4), (10, 11)}.

Proposition 1. Take any tuple of positive integers ~b = (b1, . . . , bn). The set M~b of non-

crossing matchings of type ~b is in bijection with S(n2, ρ) for density ρ with ρ1,j = bj − 1 and

ρ2,j = 1 for all j.

Proof. For any T ∈ S(λ,w), we define an injective map φ : S(λ,w) → M~b by working from
left to right through the second row of T . For each entry aj in the second row of T , identify
the bj − 1 largest integers xj,1, . . . , x1,bj−1 in the first row of T that have not already been
associated to a star and which satisfy xj,1 < · · · < xj,bj−1 < aj. Then add a bj-star to φ(T )
whose endpoints lie at xj,1, . . . , xj,bj−1, aj. The fact that T is standard ensures that at least
bj−1 such integers exist. Our method of selecting the xj,i ensures that stars are added “from
the inside out” and hence cannot intersect.
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To construct an injective inverse φ−1 : M~b → S(λ,w), take any M ∈ M~b and identify
the rightmost endpoint of each bi-star. Place those integers in the second row of φ−1(M), in
increasing order from left to right. Then place all remaining elements of [N ] in increasing
order across the first row of φ−1(M), making sure that the cell at position (1, j) contains
bj − 1 integers. As the integer corresponding to the rightmost endpoint of each bj-star is
larger than the integers corresponding to its remaining endpoints, the tableau φ−1(M) is
column-standard.

1 2 3 5 7 8 10
4 6 9 11 ⇔

1 2 3 4 5 6 7 8 9 10 11

Figure 4: A non-crossing matching of weight ~b = (2, 3, 4, 2) and its corresponding standard
set-valued Young tableau.

See Figure 4 for an example of the bijection from Proposition 1. For constant type
~b = (k, . . . , k), Proposition 1 reduces to the bijection involving k-equal matchings that we will
examine in Subsection 2.2. For coprime positive integers a, b and using the result of Drube
[6], Proposition 1 also places matchings of type ~b(a,b) = (⌈ b

a
⌉−⌈0⌉+1, . . . , ⌈ab

a
⌉−⌈ (a−1)b

a
⌉+1)

in bijection with a collection of set-valued tableaux that are enumerated by the rational
Catalan number C(a, b) = 1

a+b

(
a+b
a

)
. See Appendix A for a thorough discussion of how these

“rational non-crossing matchings” differ from the homogeneous (a, b)-noncrossing partitions
of Armstrong, Rhoades, and Williams [1], which are also enumerated by C(a, b).

Before proceeding, note that the bijection of Proposition 1 may be used to easily identify
where the tableau T splits. A standard set-valued Young tableau T is said to split after its
mth column if the set of integers filling its first m columns equals [M ] for some M ∈ N. It
is easy to see that T ∈ S(n2, ρ~b) splits after its mth column if and only if the m leftmost

stars of φ(T ) ∈ Mk
n constitute a non-crossing matching of type ~b′ = (b1, . . . , bm). Even more

specifically:

Proposition 2. Let φ : S(n2, w) → M~b be the bijection of Proposition 1, and take φ(T ) ∈
M~b. If x is the rightmost endpoint of the star whose leftmost endpoint is 1, then x =
b1 + · · ·+ bm for some m ≥ 1 and m is the smallest positive integer such that T splits after

its mth column.

2.2 Jeu de taquin and rotation of equal non-crossing matchings

In this subsection we restrict our attention to non-crossing matchings of constant type ~b =
(k, . . . , k), corresponding to tableaux S(n2, ρ) with row-constant density ρ satisfying ρ1,j =
k− 1, ρ2,j = 1. These are precisely the sets S(n2, ρ) and M~b that Heubach, Li, and Mansour
present as two of their many combinatorial interpretations of the k-Catalan numbers [9]. In
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particular, those authors show that | S(λ, ρ)| = |M~b| = Ck
n = 1

n(k−1)+1

(
kn
n

)
. We henceforth

refer to non-crossing matchings of constant type ~b = (k, . . . , k) as k-equal non-crossing
matchings, and denote the set of all k-equal non-crossing matchings on kn points by Mk

n.

For any (not necessarily constant) type ~b = (b1, . . . , bm), where b1 + · · ·+ bm = N , there
exists a rotation operator r : M~b → M~b in which r(M) is obtained by replacing the leftmost
b1-star (1, c2, . . . , cb1) of M with the b1-star (c2 − 1, . . . , ck − 1, N), and then re-indexing the
endpoints of all remaining stars by x 7→ x − 1. Graphically, the matchings M and r(M)
are related by “swinging” the leftmost strand of the leftmost b1-star in M over the top of
the rest of the matching. In the case of constant type ~b = (k, . . . , k), rotation of M ∈ Mk

n

directly corresponds to jeu de taquin on the associated tableau φ−1(M) ∈ S(n2, ρ) from the
bijection of Proposition 1:

Theorem 3. Fix n ≥ 1, k ≥ 2, and take any row-constant density ρ with ρ1,j = k − 1 and

ρ2,j = 1. If φ : S(n2, ρ) → Mk
n is the bijection from Proposition 1, then φ(p(T )) = r(φ(T ))

for any T ∈ S(n2, ρ).

Proof. Take T ∈ S(n2, ρ), and assume φ(T ) = {(1, a21, . . . , a
k
1), (a

1
2, . . . , a

k
2), . . . , (a

1
n, . . . , a

k
n)}.

We have r(φ(T )) = {(a21 − 1, . . . , ak1 − 1, nk), (a12 − 1, . . . , ak2 − 1), . . . , (a1n − 1, . . . , akn − 1)}.
To characterize φ(p(T )), let b1 < · · · < bn denote the second row entries of T . We have

{ak1, a
k
2, . . . , a

k
n} = {b1, . . . , bn} as sets, yet needn’t have aki = bi for fixed i. Assume ak1 = bα.

Then consider the application of our set-valued jeu de taquin operation to T . If bi < bα,
the definition of φ ensures that there exist at least i(k − 1) + 1 entries x in the first row of
T such that x < bi. This means that the re-indexed second row entry bi − 1 must be larger
than at least one first row entry from a more rightward column of T , and hence that bi − 1
cannot be slid upward at the point in Step #2 of the set-valued jeu de taquin procedure
when it lies directly below the under-weighted cell. Thus bi− 1 lies at position (2, i) of p(T ).

For bα itself, Proposition 2 guarantees that bα = kα and hence that bα is smaller than
every integer at position (1, α + 1) of T . This ensures that the re-indexed second row entry
bα − 1 must be slid upward at the point in Step #2 when it lies directly below the under-
weighted cell. After sliding bα into the first column, the rest of Step #2 involves sliding each
remaining second-row entry by one cell. All of this implies that the second row of p(T ) is
b1 − 1 < · · · < bα−1 − 1 < bα+1 − 1 < · · · < bn − 1 < kn.

It is only left to determine how the first-row entries of p(T ) are partitioned among the
k-stars of φ(p(T )). We work left-to-right through the second row entries of p(T ). For every
i < α, all first row entries of the k-star (c1, . . . , ck−1, bi) of φ(T ) are slid precisely one entry
leftward as we pass from T to p(T ), allowing us to assert that φ(p(T )) contains the k-star
(c1 − 1, . . . , ck−1 − 1, bi − 1). For every i > α, observe that the k-star (c1, . . . , ck−1, bi) of
φ(T ) satisfies cj > kα for all j and hence that the corresponding k-star (c′1, . . . , c

′
k−1, bi − 1)

of φ(p(T )) must satisfy c′j > kα − 1 for all j. The definition of φ then implies that φ(p(T ))
must contain the k-star (c1 − 1, . . . , ck−1 − 1, bi − 1). This leaves k unassigned endpoints
(γ1, . . . , γk−1, nk) for the final k-star of φ(p(T )), where we must have γj ≤ kα−1 for all j and
thus are forced to conclude that γj = aj−1

1 −1, yielding the final k-star (a21−1, . . . , ak1−1, nk).
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It follows that φ(p(T )) = {(a21 − 1, . . . , ak1 − 1, nk), (a12 − 1, . . . , ak2 − 1), . . . , (a1n − 1, . . . , akn −
1)}.

See Figure 5 for an illustration of Theorem 3. One immediate corollary of Theorem 3
is that the jeu de taquin equivalence classes of S̃(n2, ρ) with ρ1,j = k − 1, ρ2,j = 1 are
in bijection with “circular k-equal non-crossing matchings” on kn points. In analogy with
Section 1, by circular k-equal non-crossing matchings we mean Mk

n, modulo rotation by
multiples of 2π/kn radians when the endpoints of matchings are evenly spaced about the
unit circle. We denote the set of circular k-equal non-crossing matchings on kn points by
M̃k

n.

Corollary 4. Take any n ≥ 1, k ≥ 2. Given the row-constant density ρ with ρ1,j = k − 1

and ρ2,j = 1, jeu de taquin equivalence classes of S̃(n2, ρ) are in bijection with the set M̃k
n

of circular non-crossing k-point matchings on kn points.

1 2 3 5 6 7

4 8 9

φ↓

1 2 3 4 5 6 7 8 9

−→p

−→
r

1 2 4 5 6 8

3 7 9

φ↓

1 2 3 4 5 6 7 8 9

Figure 5: A pair of set-valued tableaux related via a single jeu de taquin and the associated
3-equal non-crossing matchings. On the right is the element of M̃k

n to which both tableaux
correspond.

2.3 Jeu de taquin and rotation of generalized non-crossing match-

ings

Now consider non-crossing matchings of arbitrary type ~b. The difficulty in generalizing
Theorem 3 to non-constant ~b derives from the fact that the bijection of Proposition 1 is
dependent upon the left-to-right ordering of blocks in the non-crossing matchings. As such,
repeated application of the rotation operator will eventually permute the ordering of the
blocks and require a set-valued tableaux with a different sequence of first-row densities. See
Figure 6 for an example of how Theorem 3 can fail if generalized to non-constant ~b.

Failings such as the one in Figure 6 may be addressed via a slight modification of our
jeu de taquin operator, a modification that specializes to our original operator in the case of
constant type ~b. So take T ∈ S(n2, ρ), where the density ρ satisfies ρ2,j = 1 for all 1 ≤ j ≤ n,
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1 2 4 5

3 6 7

φ↓

1 2 3 4 5 6 7

−→
p

−→r

1 2 3 4

5 6 7

1 2 3 4 5 6 7

−→φ
1 2 3 4 5 6 7

Figure 6: A set-valued tableaux T where φ(p(T )) 6= r(φ(T )), as rotation of φ(T ) changes

the matching’s type from ~b = (3, 2, 2) to ~b′ = (2, 2, 3).

and assume that m is the smallest integer such that T splits after its mth column. Then
define ρ̃ to be the density satisfying ρ̃2,j = 1 for all 1 ≤ j ≤ n, ρ̃1,j = ρ1,j for 1 ≤ j < m,
ρ̃1,j = ρ1,j+1 for m ≤ j < n, and ρ̃1,n = ρ1,m. We informally refer to ρ̃ as the “rotated
density” for T . See the first row of Figure 8 for an illustration of the relationship between ρ
and ρ̃.

We may then define an operator pr : S(n2, ρ) →
⋃

ρ̃ S(n
2, ρ̃) that applies to any set

S(n2, ρ) with a density satisfying ρ2,j = 1 for all j. For any T ∈ S(n2, ρ), pr(T ) is obtained
as follows:

1. Identify the smallest positive integer m such that T splits after its mth column.

2. Perform the full set-valued jeu de taquin operation on T , yielding p(T ) ∈ S(λ, ρ).

3. Re-partition entries in the first row of p(T ) to produce a tableau pr(T ) ∈ S(λ, ρ̃) with
rotated density ρ̃ determined by the integer m from Step #1.

To see that a tableau above remains column-standard as we pass from p(T ) to pr(T )
in Step #3, let c1 < · · · < cn denote the second-row entries of T . The sole entry to slide
upward during Step #2 is the shifted entry cm− 1 that began at position (i, j) = (2,m). All
subsequent second row entries cm+1 − 1, . . . , cn − 1 are slid one cell leftward. When first-row
entries are re-partitioned during Step #3, entries in the first m − 1 columns are unmoved
whereas entries in columns m − 1 through n are moved at most one cell leftward (some
first row entries may move rightward). It follows that all first-row entries of pr(T ) lie above
second-row entries that are at least as large as the entries that appeared below them in p(T ).

We refer to the map pr as rotational set-valued jeu de taquin. See the top row of Figure 7
for an application of pr that isn’t equivalent to our original set-valued jeu de taquin. As seen
in the bottom row of Figure 7, the passage from p(T ) to pr(T ) is precisely the correction
needed for set-valued jeu de taquin to correspond to rotation of the associated matchings.

Theorem 5. Fix n ≥ 1, and take any density ρ such that ρ2,j = 1 for all 1 ≤ j ≤ n.

For any T ∈ S(n2, ρ) with rotated density ρ̃, define ~b = (ρ1,1 + 1, . . . , ρ1,n + 1) and ~b′ =
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1 2 3 5 6 9 10 11 12
4 7 8 13 14 −→ 1 2 4 5 7 8 9 10 11

3 6 12 13 14 −→ 1 2 4 5 7 8 9 10 11
3 6 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

−→

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 7: Rotational set-valued jeu de taquin applied to a tableau T ∈ S(52, ρ) that splits
after its third column, as well as a comparison of φ(T ) with φ(pr(T )).

(ρ̃1,1 + 1, . . . , ρ̃1,n + 1). If φ : S(n2, ρ) → M~b and φ′ : S(n2, ρ̃) → M~b′ are defined as in the

proof of Proposition 1, then φ′(pr(T )) = r(φ(T )).

Proof. The operator pr has been defined so that φ′(pr(T )) and r(φ(T )) both lie in M~b′ . See
Figure 8 for a demonstration of this phenomenon. An equivalent argument to Theorem 3
shows that the blocks of φ′(pr(T )) and r(φ(T )) have the same right endpoints, at identical
locations. As the blocks of φ′(p(r(T )) and r(φ(T )) cannot intersect, all that remains to be
shown is that each of those right endpoints (when ordered from left-to-right) is associated
with a block of equivalent size in both matchings. Yet this follows directly from the fact that
both φ′(pr(T )) and r(φ(T )) are matchings of weight ~b′.

ρ1 · · · ρm−1 ρm ρm+1 · · · ρn
1 · · · 1 1 1 · · · 1

x

B1 B2

−→

−→

ρ1 · · · ρm−1 ρm+1 · · · ρn ρm
1 · · · 1 1 · · · 1 1

x-1

B1 B2

Figure 8: Density ρ and rotated density ρ̃ for a tableau T whose leftmost split occurs after
its mth column. The bottom row demonstrates how rotation of φ(T ) reorders rightmost
endpoints of blocks in a manner consistent with the relationship between ρ and ρ̃. Here
x = ρ1 + · · ·+ ρm +m.
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3 Enumeration of jeu de taquin equivalence classes

In this section we restrict our attention to sets S(n2, ρ) with row-constant density ρ of the
form ρ1,j = k − 1, ρ2,j = 1, and look to provide closed formulas for the number of jeu de

taquin equivalence classes in S̃(n2, ρ). Via Corollary 4 this is equivalent to enumerating M̃k
n

for any n ≥ 1, k ≥ 2, meaning that our formulas should specialize to Eq. (1) in the case of
k = 2.

As M̃k
n may be defined via a cyclic action of Znk onMk

n, we utilize pre-existing machinery
for investigating that action. We present two distinct methods that yield equivalent yet
vastly different looking summations for |M̃k

n|. In Subsection 3.1 we apply the cyclic sieving
phenomenon in a manner than relies upon Bodnar and Rhodes [3]. In Subsection 3.2 we
take a more direct combinatorial approach in the flavor of Goldbach and Tijdeman [8].
Although cyclic sieving yields an enumeration with far less effort, the methodology of the
direct approach reveals more about the combinatorial structure of Mk

n and admits a major
simplification when k is prime. The authors are unsure how the q-Catalan evaluations of
Subsection 3.1 may be reduced to the binomial coefficients of Subsection 3.2.

With both of our methods relying upon Burnside’s lemma, we pause to recap that classic
result. Burnside’s lemma, also known as the Cauchy-Frobenius lemma, applies whenever a
finite group G acts upon a set A. The lemma states that the number of orbits with respect
to the action, namely |A/G|, is equal to the average size of all sets Ag = {a ∈ A|ga = a}.
That is, |A/G| = 1

|G|

∑
g∈G |Ag|.

In our situation let A = Mk
n and G = Znk, with left action of g ∈ Znk on M ∈ Mk

n given
by g applications of the rotation operator, namely g ·M = rg(M). The orbits of this action

are clearly the set of circular non-crossing k-point matchings M̃k
n. In order to determine

|M̃k
n|, it is then our task to determine |Ag| for arbitrary g ∈ Znk. For any g ∈ Znk, we

henceforth refer to an element M ∈ Ag as a k-equal non-crossing matching of order g.
See Table 1 for values of |M̃k

n|, all of which were calculated in Maple 18 via Theorem
10. The k = 2 row of that table predictably corresponds to A002995. All later rows reveal
a surprising correspondence to the numbers of k-gonal cacti having n polygons, as studied
by Bóna, Bousquet, Labelle, and Leroux [4]. In particular, later rows of Table 1 appear as
A054423 (k = 3), A054362 (k = 4), A054365 (k = 5), and A054368 (k = 6). Finding an
explicit bijection between our jeu de taquin equivalence classes and these k-gonal cacti is an
interesting topic for future investigation. Note that, even if an elementary bijection were to
exist, our approach has the advantage that it may be easily generalized to rectangular set-
valued tableaux of distinct densities, yielding sequences that may not correspond to known
statistics on k-gonal cacti.

In all that follows we use standard notation for the q-number [p]q = 1 + q + · · · + qp−1,

the q-factorial [p]q! = [1]q[2]q · · · [p]q, and the q-binomial coefficient
(
a
b

)
q
= [a]q !

[b]q ![a−b]q !
.
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

k = 2 1 1 2 3 6 14 34 95 280 854

k = 3 1 1 2 7 19 86 372 1825 9143 47801

k = 4 1 1 3 11 52 307 1936 13207 93496 683988

k = 5 1 1 3 17 102 811 6626 58385 532251 5011934

k = 6 1 1 4 25 187 1772 17880 191967 2141232 24640989

k = 7 1 1 4 33 300 3412 40770 518043 6830545 92909684

k = 8 1 1 5 43 463 5993 82887 1213879 18471584 289883603

Table 1: |S̃(n2, ρ| = |M̃k
n| for ρ the row-constant density ρ1,j = k − 1, ρ2,j = 1.

3.1 Enumeration via cyclic sieving

As defined by Reiner, Stanton, and White [13], cyclic sieving is a phenomenon that may be
associated with the action of a cyclic group G = 〈c〉 upon a finite set X. For X(q) ∈ N(q)
and ω ∈ C a root of unity of order |G|, the ordered triple (X,G,X(q)) exhibits cyclic sieving
if X(ωd) = |Xcd | = {x ∈ X|cdx = x}.

For relatively prime positive integers a < b and X the set of homogeneous (a, b)-
noncrossing partitions, Bodnar, and Rhodes [3] proved that (X,G,X(q)) exhibited cyclic
sieving when G = Za+b−1 acts on X by rotation and X(q) = Cq(a, b) = 1

[a+b]q

(
a+b
a,b

)
q
is

the q-rational Catalan number. See Appendix A for a fuller discussion of homogeneous
(a, b)-noncrossing partitions, as originally defined by Armstrong, Rhoades, and Williams [1].
Central to our situation is the fact that, as outlined in Armstrong, Rhaodes, and Williams
[1], homogeneous (a, b)-noncrossing partitions specialize to k-equal non-crossing matchings
on kn points in the specific case of (a, b) = (n, (k−1)n+1). This mirrors the straightforward
identity that C(n, (k − 1)n+ 1) = 1

kn+1

(
kn+1
n

)
= Ck

n.

It follows that (Mk
n,Znk, X(q)) exhibits the cyclic sieving phenomenon with respect to

the rotational action of Znk on Mk
n when X(q) = 1

[kn+1]q

(
kn+1
n

)
q
is the q-analogue of the

k-Catalan number. This allows us to conclude that |Ag| = X(ωg) for any g ∈ Znk, where

ω = e
2πi
nk is the primitive (nk)th root of unity. A direct application of Burnside’s lemma then

yields

Theorem 6. Fix k ≥ 2, n ≥ 1, and let ρ be the row-constant density with ρ1,j = k − 1 and

ρ2,j = 1 for all j. Then

|S̃(n2, ρ)| = |M̃k
n| =

1

nk

nk−1∑

g=0

X(ωg).

Here ϕ is Euler’s phi function, X(q) = 1
[kn+1]q

(
kn+1
n

)
q
, and ω = e

2πi
nk .
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3.2 Enumeration via sub-matchings

For our direct approach, begin by noting that |Ag| = 0 if gcd(g, nk) = 1. It is also immediate
that |A0| = |Mk

n| = Ck
n. For non-zero g with gcd(g, nk) = d > 1, a matching M ∈ Ag must

decompose into nk/d “sub-matchings” on d points, each of which follows an identical pattern
in how it divides its endpoints among k-stars. Notice that these sub-matchings need not
define non-crossing k-point matchings on d points when considered individually, as they may
contain “outgoing” strands from k-stars whose endpoints are divided between multiple sub-
matchings. We refer to the process by which sub-matchings are pieced together to create
M ∈ Ag as horizontal concatenation, and write qj(M) = m if j copies of m horizontally
concatenate to produce M . See Figure 9 for several sub-matchings and their corresponding
k-point matchings.

⇒

⇒
Figure 9: Non-crossing 3-point matchings M1,M2 ∈ M3

7 of order 7, constructed from their
sub-matchings q3(M1), q3(M2). Notice that r(M1) = M2, implying that their associated
set-valued tableaux are jeu de taquin equivalent.

Our strategy is to place Ag in bijection with certain sets of sub-matchings on d points,
using the map qnk/d. This map qnk/d is injective for any g ∈ Znk, as distinct matchings
must feature distinct patterns in their sub-matchings. The difficulty is then in describing
Im(qnk/d), as not all potential sub-matchings may be horizontally concatenated when one
allows for outgoing strands.

So consider the nk/d sub-matchings of M ∈ Ag as if they were ordered cyclically. As our
matchings are non-crossing, it is not possible for a k-star of M to have identically placed
endpoints in more than two sub-matchings unless it has endpoints in all nk/d sub-matchings.
Furthermore, M can contain at most one “topmost” k-star with identically placed endpoints
in all nk/d sub-matchings. These observations allow us to place all outgoing strands into two
basic categories. “Unpaired” outgoing strands belong to the k-star of M whose k endpoints
are equivalently partitioned within every sub-matching. “Paired” outgoing strands belong to
k-stars of M whose endpoints are split between precisely two sub-matchings, with the “left-
bound” and “right-bound” strands of each pair connecting to distinctly positioned endpoints

13



within their respective sub-matchings.1

See the top matching of Figure 9 for an example of sub-matchings with paired and
unpaired strands. When depicting sub-matchings, unpaired strands will always be drawn as
vertical rays.

It is immediate that any sub-matching in Im(qnk/d) must feature the same number of
left-bound and right-bound outgoing strands. Delaying a consideration of unpaired strands,
let mk(d, x) denote the set of non-crossing k-point sub-matchings on d points that contain
precisely x unpaired outgoing strands as well as identical numbers of right-bound and left-
bound strands.

Lemma 7. Fix k ≥ 2, d ≥ 1, and x ≥ 0. Then

|mk(d, x)| =





(
d

(d− x)/k

)
, if k | (d− x);

0, if k ∤ (d− x).

Proof. As any m ∈ mk(d, x) contains d − x endpoints that aren’t associated with unpaired
strands, |mk(d, x)| = 0 if k | (d−x). When k | (d−x), we define a bijection ψ : mk(d, x) → S
with the set S of ordered d-tuples in {R,L} that contain precisely (d− x)/k copies of R.

For any m ∈ mk(d, x), identify the rightmost endpoint of each k-star that doesn’t include
an unpaired strand, assuming that k-stars involving left-bound (resp. right-bound) outgoing
strands include more leftward (resp. rightward) endpoints. There will always be (d − x)/k
such rightmost endpoints. Then define the d-tuple ψ(M) by associating our our rightmost
endpoints with R coordinates and all other endpoints with L coordinates.

The map ψ is clearly injective. To show ψ is bijective we define an injective map ψ−1 :
S → mk(d, x). So take any d-tuple ~v ∈ S and consider its coordinates as if they were ordered
cyclically. We construct ψ−1(~v) one k-star at a time, from the “innermost” k-stars outward.
As ~v contains at most d/k copies of R, there will be at least one length-k sub-string of the
form LL · · ·LR. Identify the substring of this form whose R entry lies farthest to the right,
and place a k-star in ψ−1(~v) whose endpoints lie at the coordinates in that sub-string. Notice
that if our distinguished sub-string “wraps around” the end of ~v, the resulting k-star will
include paired outgoing strands. Recursively apply the process above for the substring of ~v
whose endpoints have not yet been assigned to a k-star. This will eventually leave x total L
coordinates, which we associate with the endpoints of unpaired outgoing strands.

It is easy to see that mk(d, 0) ⊆ Im(qnk/d) for all g ∈ Znk with gcd(g, nk) = d > 1, as
horizontal concatenation merely involves an identification of right-bound outgoing strands
with left-bound outgoing strands. It is only left to determine when mk(d, x) ⊆ Im(qnk/d) in
the case of x > 0:

Lemma 8. Fix k ≥ 2 and non-zero g ∈ Znk with gcd(g, nk) = d > 1. Then mk(d, x) ⊆
Im(qnk/d) if and only if either

1The apparent ambiguity in the case of nk/d = 2 is eliminated by our requirement that any fixed k-star
associated with paired strands cannot have identically placed endpoints within each sub-matching.
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1. x = 0, or

2. x = d
n
and nk

d
is a non-trivial divisor of gcd(k, n− 1).

Proof. Assume nk
d
> 1 and that a sub-matching m ∈ mk(d, x) with qnk/d(M) = m has

unpaired outgoing strands. We have already established that all unpaired strands, across
all sub-matchings of M , must belong to the same k-star. With k total unpaired strands
for nk

d
sub-matchings, it follows that nk

d
| k and that m contains precisely x = d

n
unpaired

strands. This leaves d− d
n
endpoints that are not unpaired outgoing strands, further requiring

that k | (d − d
n
) and hence that nk

d
| (n − 1). Whenever nk

d
| gcd(k, n − 1), nk

d
copies of

m ∈ mk(d, d
n
) may always be horizontally concatenated to produce a matching M . To do

this, simply identify right-bound strands with left-bound strands in the unique non-crossing
manner, and then identify all unpaired strands with a single topmost k-star.

In the horizontal concatenation of m ∈ mk(d, d
n
) from the proof of Lemma 8, observe

that the “topmost” k-star composed of unpaired outgoing strands need not lie at the “top”
of M ∈ Ag. If m also has paired outgoing strands, left-bound strands from the leftmost sub-
matching will wrap around the topmost k-star on their way to the rightmost sub-matching.
We are now ready to characterize Im(qnk/d) and calculate |M̃k

n|:

Lemma 9. Fix k ≥ 2 and non-zero g ∈ Znk with gcd(g, nk) = d > 1. Then |Ag| =(
d

d/k

)
+

(
d

(d− d
n
)/k

)
, where binomial coefficients involving non-integers are taken to be

zero.

Proof. Lemma 8 and the observation that mk(d, x) = ∅ if k ∤ (d− x) allow us to assert that

Im(qnk/d) =

{
mk(d, 0), if nk

d
∤ gcd(k, n− 1);

mk(d, 0) +mk(d, d
n
), if nk

d
| gcd(k, n− 1).

(2)

Since qnk/d is an injection, applying Lemma 7 to Eq. (2) gives

|Ag| =





(
d

d/k

)
, if nk

d
∤ gcd(k, n− 1);

(
d

d/k

)
+

(
d

(d− d
n
)/k

)
, if nk

d
| gcd(k, n− 1).

(3)

In Eq. (3) and in all subsequent equations, binomial coefficients are taken to be zero if their
bottom entry is not an integer.

As k, n, d are non-zero integers such that nk
d
∈ Z, we know that nk

d
| k if and only if n | d.

This implies that, if nk
d

∤ k, then (d − d
n
) /∈ Z and hence that (d − d

n
)/k /∈ Z. Similarly, if

nk
d
∤ (n− 1) we may conclude that nk ∤ (dn−d) and hence that k ∤ (d− d

n
). Combining these

observations, we may conclude that k ∤ (d− d
n
) whenever nk

d
∤ gcd(k, n− 1). This allows us

to add the missing second binomial coefficient (necessarily zero) to the first case of Eq. (3)
and drop all conditional statements.
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Theorem 10. Fix k ≥ 2, n ≥ 1, and let ρ be the row-constant density with ρ1,j = k− 1 and

ρ2,j = 1 for all j. Then

|S̃(n2, ρ)| = |M̃k
n| =

1

nk

∑

d|nk

ϕ(nk/d)

((
d

d/k

)
+

(
d

(d− d
n
)/k

))
− Ck

n.

Here ϕ is Euler’s phi function and binomial coefficients involving non-integers are zero.

Proof. By Burnside’s lemma applied to A = Mk
n and G = Znk we have

|M̃k
n| =

1

nk
|A0|+

1

nk

∑

g 6=0

|Ag| =
1

nk
Ck

n +
1

nk

∑

g 6=0

|Ag|. (4)

We have already argued that |Ag| = 0 if gcd(g, nk) = 1. For any d | nk with d > 1, basic
number theory states that there are precisely ϕ(nk

d
) elements g ∈ Znk such that gcd(g, nk) =

d. Ranging over all non-zero divisors d of nk allows us to rewrite Eq. (4) as

|M̃k
n| =

1

nk
Ck

n +
1

nk

∑

d|nk,d 6=nk

ϕ(nk/d)|Ad|. (5)

Applying Lemma 9, note that the d = nk case gives ϕ(nk/d)
((

d
d/k

)
+
(

d
(d− d

n
)/k

))
=

ϕ(1)
((

nk
n

)
+
(

nk
n−1

))
= (1)

(
nk+1
n

)
= (nk + 1)Ck

n. Forcing the d = nk case into our sum gives

|M̃k
n| =

1

nk
Ck

n +
1

nk

∑

d|nk

ϕ(nk/d)

((
d

d/k

)
+

(
d

(d− d
n
)/k

))
−
nk + 1

nk
Ck

n. (6)

One specific advantage of Theorem 10 over Theorem 6 is that the summation of Theo-
rem 10 may be significantly simplified when k is prime. Notice that Corollary 11 recovers
Goldbach and Tijdeman’s original result of Eq. (1) when k = 2.

Corollary 11. Fix k ≥ 2 and let p be prime. Then

|M̃p
n| =


 1

np

∑

d|n

ϕ(n/d)

(
pd

d

)
−

p− 1

p
Cp

n +
p− 1

p
Cp

(n−1)/p.

Here ϕ is Euler’s phi function and p-Catalan numbers with non-integer subscripts are zero.

Proof. Theorem 10 immediately gives

|M̃p
n| =

1

np

∑

d|np,d 6=np

ϕ(np/d)

((
d

d/p

)
+

(
d

(d− d
n
)/p

))
+

1

np
Cp

n. (7)
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Whenever p ∤ d,
(

d
d/p

)
= 0. In this case we also have (d − d

n
)/p ∈ Z only if n | d, which

requires d = n since p is prime. It follows that
(

d
(d− d

n
)/p

)
6= 0 only if

(
d

(d− d
n
)/p

)
=

(
n

(n−1)/p

)
and

p | (d− 1). Alternatively, when p | d we may assert that d = pm for some m with m | n. For
p | d, also note that

(
d

(d− d
n
)/p

)
=

(
pm

(m−m
n

)
6= 0 only when n | m and hence when m = n, a case

that is excluded from our summation. Applying these observations to Eq. (7) gives

|M̃p
n| =


 1

np

∑

m|n,m 6=n

ϕ(n/m)

(
pm

m

)
+

1

np
ϕ(p)

(
n

(n− 1)/p

)
+

1

np
Cp

n. (8)

Noting that 1
np
ϕ(p)

(
n

(n−1)/p

)
= p−1

np

(
n

(n−1)/p

)
= n(p−1)

np
Cp

(n−1)/p, and forcing the n = m case

into the summation as ϕ(1)
(
pn
n

)
= ((p−1)n+1)Cp

n, we have the (easily simplified) expression

|M̃p
n| =


 1

np

∑

m|n

ϕ(n/m)

(
pm

m

)
−

(p− 1)n+ 1

np
Cp

n +
n(p− 1)

np
Cp

(n−1)/p +
1

np
Cp

n. (9)
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A On rational non-crossing matchings

As noted in Subsection 2.3, Proposition 1 provides a new combinatorial interpretation for
the rational Catalan number C(a, b) as the number non-crossing matchings of type ~b(a,b) =

(⌈ b
a
⌉−⌈0⌉+1, . . . , ⌈ab

a
⌉−⌈ (a−1)b

a
⌉+1). Already appearing in the work of Armstrong, Rhoades,

andWilliams [1] is a distinct combinatorial interpretation of C(a, b) via a class of non-crossing
matchings referred to as homogeneous (a, b)-noncrossing partitions. We use this appendix
to thoroughly emphasize the differences between these two interpretations.

For relatively prime positive integers a and b, an (a, b)-Dyck path is an integer lattice
path from (0, 0) to (b, a) that stays weakly below the line y = a

b
x. It was originally shown

by Bizley [2] that the number of such (a, b)-Dyck paths is enumerated by C(a, b). Beginning
with an (a, b)-Dyck path, Armstrong, Rhoades, and Williams use a “laser construction” to
divide the path’s non-terminal lattice points into blocks that partition a+b−1. Lines of slope
a
b
are drawn southwest from the top of each north step, and all lattice points within each

resulting region (with the exception of the point at the top of each laser) are associated with
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one block.2 Note that, even for fixed (a, b), the blocks in their resulting partitions needn’t be
consistently sized. For example, homogeneous (5, 8)-noncrossing partitions include elements
with block structure {4, 2, 2, 2, 2} and {3, 3, 2, 2, 2} (see Figure 7 of [1]).

Alternatively, our matchings of type ~b(a,b) represent partitions of a+ b and feature blocks
whose sizes and ordering are fixed by one’s choice of (a, b). For example, all of our non-

crossing matchings of weight~b(5,8) feature a block structure of {3, 3, 2, 3, 2}, with those blocks
appearing in the stated order when sequenced from left-to-right via their rightmost elements.

Although we omit a formal proof here, one could construct our non-crossing matchings
of weight ~b(a,b) by passing from the associated set-valued tableau to the corresponding lattice
path and then applying a modified version of the laser construction. This modified laser
construction uses the same lasers, but then identifies the origin point of each laser with
the block that lies under that laser. This convention is consistent with the fact that our
partitions involve the final point of the (a, b)-Dyck path while the partitions of Armstrong,
Rhoades, and Williams do not. See Figure 10 for a comparison of these two approaches.

1 2 3 4 6 7 9 10
5 8 11 12 13 ⇔

1 2 3 4

5 6 7

8 9 10

11

12

13 ր

ց

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12

Figure 10: A standard set-valued Young tableaux of density ~b(5,8), the corresponding (5, 8)-
Dyck path (with lasers in red), and a comparison of the matchings that result from our
methodology (TOP) and the methods of Armstrong, Rhoades, and Williams (BOTTOM).

For the context of this paper, our technique is preferable because there does not appear
to be a straightforward way to directly associate a homogeneous (a, b)-noncrossing partition
with a set-valued tableau (at least not without passing through a partition’s associated (a, b)-
Dyck path). This fact makes it difficult to consistently define a notion of jeu de taquin on
set-valued tableaux in a way that corresponds to rotation on (a, b)-noncrossing partitions.

2Armstrong, Rhoades, and Williams [1] work with the equivalent set of paths that lie above y = a

b
x. This

means that their original presentation involves sending lasers northeast from the bottom of each north step.
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