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Abstract

Let b > 2 be an integer and g = b— 1. We consider a generalization of the modified
Collatz function: For any positive integer m, the g-Collatz function f; divides m by g,
if m is a multiple of g; otherwise, the g-Collatz function f, is the least integer greater
than or equal to %”. Using this g-Collatz function, we extend the Collatz problem, and
we show that there are nontrivial cycles for some g. Then we show how the function f,
transforms the base-b representation of positive integers, and we study the sequence of
the b-ary representation of integers generated by the function f,, starting with a b-ary
string representing bV for an arbitrary large integer N. We show each b-ary string in
the sequence has a repeating string, and the number of occurrences of each digit in
each shortest repeating string generalizes Jacobsthal numbers.

1 Introduction

Definition 1. [2, 4] For any positive integer m, the Collatz function f, and the modified
Collatz function fo on m are defined as follows:

2
3m + 1, if m is odd,

2

Smal — (3] if m s odd.

fi(m) = and fy(m) :=

m if m is even;
{ (1)

{m if m is even;
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Collatz [2] asked if every positive integer m is mapped to 1 by applying the Collatz
function or the modified Collatz function repeatedly: f(m) = 1 for some integer n, where
1=1or 2.

Conway [3] proved that a generalization of the Collatz problem is undecidable, and there
are several ways to generalize the Collatz function. For example, Conway considered the
following;:

f(m) = a;m + b;,m =i (mod p), (2)

where a; and b; are rational numbers so that f (m) is an integer. Notice that the Collatz
function (1) is the same as (2), when p = 2, ay = %, bp=0,a, =3, and b; = 1.

Throughout this paper, we let g be an integer greater than 1 and b = g + 1 (unless we
specify otherwise), and we consider p = ¢, ag = é, bp =0, a; = b, b = g — i for (2), as
follows:

(3)

- m if m =0 (mod g);
fo(m) =479 o . .
bm+g—1, ifm=i(modg)fori=1,2,...,9—1.

Then, as we modified f; to fz, we modify fg as shown in the following definition, by consid-
ering fo(m), if g divides m; f7(m), otherwise.

Definition 2. For any integer g > 2 and any positive integer m, the g-Collatz function f,
on m is defined as follows:

{%, if m =0 (mod g);

bm+g—i __ rbm
g _’Vg—‘7

fy(m) := (4)

if m=i(modyg)fori=1,2,...,9— 1

Now we extend the Collatz problem. We ask if every positive integer m is eventually
mapped to 1 by repeatedly applying the g-Collatz function: if f'(m) = 1 for some integer
n, and we call it the g-Collatz problem. We can answer this g-Collatz problem immediately
for some ¢ by finding a nontrivial cycle. For example, when g = 3, we can find a nontrivial
cycle in

O9—=T7—10—=-14—-19 =26 =35 =47 =63 =21 =7 = ---.

Table 1 shows the minimum positive integer m such that fg”(m) # 1 for every n and the
minimum integer & > g such that f'(k) = k for some n, where g = 3,4,...,20. When

g3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
m |5 11 7 31 34 588 767 49 35 19 63
k|7 23 23 35 42 642 1348 53 178 79 71

Table 1: Minimum m and k& > g: m /4 1 and k — k by f, repeatedly

g = 5,7,8,13,14,18, and 19, every positive integer up to 2 x 10° is mapped to 1 by Iy
for some n, but we do not know whether every integer beyond 2 x 10 also reaches 1. The



g-Collatz problem for g = 5,7,8,13, 14, 18, and 19 seems hard, just as in the original Collatz
problem.

Do we know which values of g provide a nontrivial cycle for the corresponding g-Collatz
problem? That is, can we find a pattern for g which makes the g-Collatz problem different
from the original Collatz problem? If we can answer this question, we can solve the original
Collatz problem, since the original Collatz problem is the 2-Collatz problem. Hence, we
want to work on a different property of the Collatz function to see if the property can be
extended for all g.

The number of occurrences of each digit in each shortest repeating string in the ternary
Collatz sequence starting with 3V for an arbitrary large N is expressed with Jacobsthal
numbers [1]. We wonder if we can extend this. That is, we want to know if we can generalize
Jacobsthal numbers, to express the number of occurrences of each digit in each shortest
repeating string in the b-ary g-Collatz sequence starting with b" for an arbitrary large N,
for all g. It is easy to do for some g, but not easy for all g.

In this paper, we provide two different generalizations of Jacobsthal numbers: one is
defined for g #Z 2 (mod 4) and the other for g = 2 (mod 8), except g = 2. For g = 6 (mod 8),
we may need to consider infinitely many cases, and we could provide infinitely many new
types of generalizations of Jacobsthal numbers. This is desirable for future work.

Section 2 clarifies the notation in this paper. Section 3 shows how to apply the g-Collatz
function to the base-b representation of positive integers. In Section 4, we study the shortest
repeating string in the sequence of b-ary strings representing f;(bN ) for an arbitrary large
integer NV. In Section 5, we study the number of occurrences of each digit in each shortest
repeating string in the b-ary g-Collatz sequence, when g # 6 (mod 8). Finally, in Section 6,
we define two different types of generalizations of Jacobsthal numbers to express the number
of each digit studied in Section 5.

2 Notation

Every base-b representation of an integer is a finite string in {0,1,2,...,¢}*, which is the
set of all finite strings consisting of digits 0,1,2,...,¢. The set {0,1,2,...,¢}* also includes
the empty string, which contains no digits, denoted by € [5].

The notation for the number of digits in a string is as follows:

Notation 3. [5] For any finite string = and a digit a, let || denote the number of digits in
x, and |z|, denote the number of occurrences of digit a’s in x.

Lemma 4. For any string x in {0,1,2,...,g}",

g
EEDI
i=0

For example, [01011] = 5, [01011], = 2, [01011]; = 3, and 5 = 2 + 3.
The following operation shows how to create a new string from given ones [5]:
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Definition 5. For any strings x and y and any positive integer n, the concatenation of
x and y, denoted by xy, is the string obtained by joining x and y end-to-end, and x™
denotes the concatenation of n x’s. That is, if * = ajay - - - ay and y = b1by - - - by for some
ai,bi < {0,1,2,...,g},

TY = Q102 - -~ Qg biby - - - by, and 2" = xx - -z (n times).
For a convention, ¥ is defined to be e.

Lemma 6. For any strings x and y and a nonnegative integer n, |vy| = |z| + |y| and
" = nlz].

For example, 101 00 = 10100, (10)*> = 101010, and 1 = 1 (10)°. Then, [101 00| =
1101| + [00] =3+ 2 =5, [(10)3| = 3|10| = 3-2 =5, and |e| = |(10)°] = 0.

Since the base-b representation of an integer is a string in {0,1,2,...,g}*, we call the
base-b representation of an integer as a b-ary string throughout this paper. When we have
to distinguish an integer and its b-ary string, we use the following notation.

Notation 7. For any integer m with its base-b representation =, we write m = [z], or
(m)y = x.

For example, 5 = [12]3 and (5);3 = 12. Then, ([z],), = x for any b-ary string = and
[((m)p]p = m for any integer m.

Throughout this paper, we use the convention that m is an integer and =z is its b-ary
string. When we apply the g-Collatz function f;, we often phrase this in terms of how f,
transforms x to another b-ary string, and we do not mention m.

Notation 8. For a b-ary string x, we let f,(x) denote the b-ary representation of f,([z]s).
That is, fo(z) = (fo([2]s))e-

To apply the g-Collatz function on a b-ary string, it is important to know whether a given
b-ary string represents a multiple of g or not. For any integer m, we let m mod g denote
the least nonnegative residue of m modulo g, and s,(m) denote the digit sum of the base-b
representation of m. That is, m mod ¢ is the remainder when m is divided by g, and if
(m)y = arag - - - ap_1ay,

It is well-known that s,(m) is congruent to m modulo g. Hence,
m mod g = s,(m) (mod g). (5)

For a convention, we define the notation for the sum of digits in =, and the remainder when
[z], is divided by g, for any b-ary string .



Definition 9. For any b-ary string x, we let s(x) and r(x) denote as follows:

S(z) = sp([z]p), %f T # € and r(x) = [z], mod g, %f T #¢€
0, if v =, 0, ifr=ce.
Lemma 10. For any b-ary string z, r(z) = s(z) (mod g).
To simplify arguments, we sometimes use the following notation.

Notation 11. For any integers a and b, let a =, b denote a = b (mod g).

3 Generalized Collatz functions

For any nonzero digit a € {0,1,2,...,g}, the product g - a can be represented by a b-ary
string of length 2, whose digit sum is g.

Lemma 12. For any a € {1,2,...,g}, the product g -a = [a — 1,b — al, and the sum
se(g-a)=g.

Proof. Sinceg=b—1,g-a=(a—1)-b+(b—a),sos(g-a)=a—1+b—a=g. O
Lemma 13. For any digits a; and ag in {0,1,2,..., g} with a1 < g, if [ayagly = g-q+ 1 for
0<r<uyg,

_Ja, ifa1+a0<g;andr_ ao + ¢, ifa0+q<b;
CL1+1, ifa1+a029, ao—i-q—b, Z'fCLQ—i‘QZb.

Proof. 1f [a1ap], < g, the digit a; = 0 so it is obvious that ¢ = 0 and r = aq. Hence, assume
la1aglp > g. Then, by Lemma 12, g-¢=(¢—1)-b+b—q, so
r=laaly—9g-q= (a1 —q+1)-b+a —b+q.

Since a; < g, the number [aya0], < [g0], = g-bso ¢ <b—1. Then, ap—b+q <ay—1<g—1.
Hence, if a9 — b+ g > 0, the remainder r = ay —b+qand a; —q¢+1=0,s0 ¢ =a; + 1.
Then, agp — b+ (ay +1) > 0,80 a1 +ag > b—1=g. If a9+ ¢ —b < 0, the remainder
r=a—b+qg+b=ay+qand a; —q=0, so ¢ =a,. Hence, g and r are as desired. O

Lemma 14. For any digit a;’s in {0,1,2,..., g}, if [aras - - - ax], =0 (mod g),

[(11@2 s ak}b
g

) /
= [ayay - - - a4y,
where a) =1 if a; = g; 0 otherwise, and for i > 1,

o r(ajag -+ a;_1), if a; < g—r(ajas---a;_1);
! r(ajag---a;—1) +1, ifa; > g—r(aas---a;_q).



Proof. 1t is obvious for a}. For any i > 1, let r; = r(ajas---a;—1). Then, r; is a digit < g,
and a is the quotient when [r;a;], is divided by g. Hence, a, = r; if r; + a; < g; ;i + 1
otherwise, by Lemma 13. That is, a; = r; if a; < g — r;; 7; + 1 otherwise. m

The following lemma shows how f_g defined in (3) transforms a b-ary string representing
a non-multiple of g to a b-ary string representing a multiple of g.

Lemma 15. For any b-ary string x, if [z], # 0 (mod g), f,(x) = f,(xa), where a = g—r(x).
Proof. Since [z], # 0 (mod g), the number f,([z],) = b[z], + g — 7(z) = [20], + a = [zd],
by (3). Then, [za], =, s(za) = s(z) +a =, r(z) + a = 0 (mod g¢). Hence, by Definition 2,

follz]y) = £ = [ ([za)y). 0

g

For example, when b = 10 and =z = 9107222, g = 9 and r(z) = 5. Hence,a =9 —-5=4
S0 fo(x) = 9107222 4 s0 fo(z) = £5(91072224).

For a b-ary string « representing a multiple of g, the g-Collatz function f; divides [z], by
g. Hence, by combining Lemma 14 and 15, we find how the g-Collatz function f, transforms
a b-ary string to a b-ary string.

Theorem 16. For any digits a;’s in {0,1,2,..., g},

ayal---a, if larag -+ - aily, = 0 (mod g);
flarag- ) = § G0 T lna e a =0 (nod g)
ayay - anay,, if [aag - agly Z 0 (mod g),
where a} = 1 if ay = g; 0 otherwise, aj,, = r(aiaz---a) + 1, and fori=2,3,...k,
o — r(aiay -+ a;_1), ifa; < g—r(aray---a;1);
’ r(aiag---a;i1)+ 1, ifa; >g—r(aay---a;_1).

Proof. Let x = ajay---ax. When [z], = 0 (mod g), it is obvious by Lemma 14. Hence,
assume [z], # 0 (mod g¢). By Lemma 15, f,(z) = f,(za), where a = g — r(x). Since
[zal, = 0 (mod g), the number f,([z],) = %. Therefore, a/’s are obtained by Lemma 14.
Especially, aj,, = r(x) + 1, since a = g — r(z). O

In this paper, when a head digit is transformed to digit 0, we keep the new head digit 0,
so that | fy(x)| = either |z| or |x[+1 for any string =. For example, when b = 10, f5(36099) =
04011 and f9(36095) = 040106 so that [04011| = |36099| and |040106| = |36095| + 1.

Corollary 17. For any digits a;’s in {0,1,2,...,g}, if folaras---ay) = ajay---aia for
some digits a, and o, allowing o’ = ¢, the digit a, # g — a;

Proof. 1f a; < g — r(ajay---a;—1), the digit o, = r(aas---a;—1) < g — a;. If a; >
g — r(ajas -+ -a;_1), the number r(ajas---a;—1) > g — a;, so a, = r(ajaz---a;—1) +1 >
r(ajag---a;_1) > g — a;. O



alr(xy=0 1 2 3 g—3 g—2 g—1
a=20 0 1 2 3 g—3 g—2 g—1
1 0 1 2 3 g—3 g—2 g
2 01 2 3 g—3 g—1 g
3 01 2 3 g—2 g—1 g
g—3 01 2 4 g—2 g—1 ¢
g—2 01 3 4 g—2 g—1 ¢
g—1 0 2 3 4 g—2 g—1 g

g 1 2 3 4 g—2 g—1 g

Table 2: The image ' of a in fy(zay) = 2'a’y’

Table 2 shows how f, transforms digit a to digit o’ satisfying f,(zay) = 2'a’y’ for any
b-ary strings z, «’, y, and y’ with || = |2/|. Notice that each image digit o’ of digit a depends
on r(x), and there are g distinct images of each digit a.

Note 18. For any b-ary strings x1, oa, y1, and yo and any digit a, let 2, =5, v}, and 3} be
b-ary strings and a} and a, be digits satistying f,(z1ay1) = 2ajy; and f,(z2ay2) = zhaby)
with |z = |2]] and |zo| = |2}]. Then, o} = df, iff r(z;) = r(xs).

Now consider the g-Collatz function f, on a concatenation of b-ary strings.

Lemma 19. For any b-ary strings y and z with [y], =0 (mod g),

fg(yz) = fg(y)fg(z)'

Proof. Since s(y) =, [ylp = 0 (mod g), the number [yz], =, s(yz) = s(y) + s(z) =, s(z) =

2], (mod g). Hence, if [2], = 0 (mod g), [f,(y2)], = % and

e = (L) ()] <[(1) o] b o b0tk b

If [z], # 0 (mod g), the string f,(z) = f,(za), where a = g — r(z) by Lemma 15. Since
[yz]p = [2]p (mod g), the remainder r(yz) = r(z). Hence, a = g —r(yz), so f,(yz) = f,(yza).

Since [zal, = 0 (mod g), the string fy(yz) = fy(yza) = fo(y)fy(za) = f4(y) [4(2). O
Theorem 20. For any b-ary strings y;’s and z, if [y;], = 0 (mod g) for all i,

foya - y2) = fo(yi) fo(ya) - -+ fo(yr) fo(2)- (6)
Proof. Since [y;], =0 (mod g) for all 4, by Lemma 19, f,(yiye - - yxz) = fo(y1) fo(y2 - - yr2).
Continuing this, (6) is obtained. O



In order to study a lengthy b-ary g-Collatz sequence with repeating digits in the following
section, we present the following corollaries and theorem.

Corollary 21. For any b-ary string x and z and for any positive integer k, if ged([z]p, g) = d,

flehe) = (i) gyt o),

ale

Proof. Since k = 4 L%’“J +k mod £, the string 2* = (x%)L%J ghmed 3 Since [z4], =, s(x

) —
gos(x) = Sl =g9- % = 0 (mod g), we can apply Theorem 20. O
Theorem 22. For any b-ary string x and digits a;’s, if v = ayaz - - - ay and ged([x]p, g) = 1,
the b-ary string fqo(29) = ajay - -~ ay, for some digits a;’s, where

{a;maim\—l—k? s aa/(g—l)\xH-k} = {a < {07 L2,... ’g}|a 7é g9 - ak}‘
forany k=1,2,...|x|.

Proof. Since [29), =, s(z?) = ¢ - s(z) = 0 (mod g), the number |f,(29)| = |29 = g|z|.
Hence, fy(29) = aja;y---ay, for some digits aj’s. Let a1k be the (ilz| 4+ k)-th digit
in the string z9. Then, for any ¢ and j with 0 < i # j < g — 1, the digit au4x =
Qjlaj+k DUt T(a1az - ypper) # rlaras - ajpx). (1L so, r(z') = r(a?). Then, i- [z], =,
i-s(z) =s(x') =, 8(2?) =37 [z]p =7 r(z) (mod g), so (i —j) - [z], = 0 (mod g), which
is impossible, since ged([z]p,9) = 1 and 0 < i # j < g — 1.) Hence, a;m% # a;.‘ka by
Note 18, so |{a§€,aix|+k, . ,a’(g_1)|x‘+k}| = g. Since aj, ., # g — ax by Corollary 17, the
set {a;,a"ka, o ,a’(g_l)lm|+k} collects every possible image of a; by f,. That is, the set
{a}, aika, o ’a/(g—l)lek} contains every digit in {0,1,2,..., g} except g — ay. ]

Corollary 23. For any b-ary string x and digit a € {0,,1,2,..., g}, if ged([x]p, 9) = 1,
[fg(@)a = |2| = [#]g—a- (7)

Proof. Theorem 22 shows that every digit a’ in the string x is transformed to ¢ distinct digits
in f,(x?), and each new digit a in f,(29) cannot be equal to g — a’. That is, every digit a in
fg(x?) is obtained by transforming digit a’ in =, where a’ # g — a, and there is no other way
to obtain digit a in f,(29). Hence,

g

fo@a= D |ole =D |ele = [2ly—a = 2] = |2[g—a-

a'#g—a a'=

Corollary 24. For any b-ary string x, if ged([x]p, g9) = 1,

[z], + 5 (mod g), ifg is even and |x| is odd;

[fg(xg)]b = {

[x]p (mod g), otherwise.



Proof. By Corollary 23,

g g

[fg(xg)]b =g S(fg(xg)) = Za|fg(x9)|a = Za(|x| - |x|g—a)

a=0 a=0

g g
=, |z| ZCL+ Z(g — a)|z]y—q
a=0 a=0

_glg+1)
== lal+s(@)

_ glg+1)
=g =5 |zl + [z

If g+ 1 or |z| is even, the number £ g+1 |z| =0 (mod g), so [fy(x9)], = [z], (mod g). If g+1
and |z| are odd, g is even and |z| = 2k: + 1 for some integer k. Hence,

9
2

9(g+1)

5 Z(g+1)(2k+1) =,

x| =

MIQ

g g
2k + = = gk =, Z.
+2 gK + 95
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4 b-ary g-Collatz sequences

Consider a sequence of b-ary strings generated by the g-Collatz function f,, starting with a
b-ary string 10V for any arbitrary large positive integer N. For example, when g = 3, b = 4.
Then, the first few strings in the 4-ary 3-Collatz sequence starting with the string 1 0°° are
as follows:

1 0% = 1000000000000000000000000000000000000000000000000000000000000;

f3(10%) =01111111111111111111111111111111111111111111111111111111111112;

f2(10%) = 001301301301301301301301301301301301301301301301301301301301303;
f3(10%0) = 0002113231002113231002113231002113231002113231002113231002113233;
f4(1°05%) = 0000302210112013321223131033000302210112013321223131033000302211.

Since digit 0 repeats in the initial string 10V, there exists a substring repeats in fg"(l()N ),
ignoring the head digit and a tail string. For example, when g = 3, the substrings 013 and
002113231 repeat in the 4-ary strings f3(1 09°) and f3(1 09°), respectively.

Definition 25. Let N be an arbitrary large integer. For any positive integer n and any
g-Collatz function f,, the nth repeating string ug, is defined as the shortest string in the
b-ary string f;(lON) such that

F7(10Y) = Outgn) Lo )¢

for some b-ary string t.



For example, us, for n =1,2,3,4 is as follows:

ug = 1;
U3zo = 0137
uzq = 000302210112013321223131033.

Since r(10Y) = 1 for any g > 2, the string f,(10") = 01V2. Hence, u, = 1 for any
g > 2. Then, by Theorem 16, uz = f,(19) = 012...(g — 3)(g — 2)g. For example, ug for
g=2,3,...,9 is as follows.

g2 3 4 5 6 7 8 9
ugp |02 013 0124 01235 012346 0123457 01234568 012345679

Then, |ugs| = g, and [ug), = 1 (mod g) if g is odd; 1+ % (mod g) if g is even, by Corollary 24.
Hence, ged([ugss, g) = 1 for odd g. For even g, we consider two cases: g = 4k or 4k + 2 for
some integer k. If g = 4k, the number [ug], =, 1+ % = 1+ 2k. Since ged(1 +2k, k) = 1 and
ged(1+2k,4) = 1, ged(1 + 2k, 4k) = 1. If g = 4k + 2, the number [ug], =, 1+ 5 = 2(k+1).
Since ged(k + 1,2k + 1) =1, ged(2(k + 1), 2(2k + 1)) = 2. Hence,

1, if g # 2 (mod 4);

ged([ugalp, 9) = {2 if g =2 (mod 4).

9

Therefore, by Corollary 21, the string ugs = fo(uj,) if g #Z 2 (mod 4); (ug,) otherwise. For
example, ugz for g = 3,4,5,6 is as follows.

g | 3 4 5 6
ugs | 002113231 0014340322421131 0014211253224043351545031  001405446153223631

Observation 26. For any integer g > 2,

Ug = 1; lugi| = 1;

Ugy = 012--- (g — 3)(g — 2)g; luga| = g;

s {fg(uggQ), if g # 2 (mod 4); gs] = glugs| = gj, if g # 2 (mod 4);
fo(ul), if g =2 (mod 4), Huge| = %, if g =2 (mod 4).

To calculate the string uy4, we need to know ged([ugsly, g). Since |uge| = g, the number
|uge| is even, if g is even. That is, there is no such case that g is even and |ug| is odd.
If g # 2 (mod 4), ged([ugely, 9) = 1. Hence, [fy(ugy)]s = [ugly (mod g) by Corollary 24.
Therefore,

ged([ugsly, 9) = 1, if g # 2 (mod 4). (8)

10



Consider ¢ = 2 (mod 4). Since uy3 = fg(ui), let a’s be digits satisfying ug =
ayas -+ a',, and Theorem 16 provides the following: For any m = 0,1,2,...,4 — 1 and

any digit a = 0,1,2,...,9 — 2,

o _ r(u;”2012 (a—=2)(a—1)), ifa<g-— r(u;”2012 c(a—=1));
matatl r(ui012---(a—2)(a—1)) +1, ifa>g—r(iol2---(a—1); (9)
because g > g —r(uj5012--- (g —3)(g—2)). Since r(ug) =, s(ug) = % —g+1=,9+1,
—1
T(ugy012- -+ (a —2)(a — 1)) =, m (g + 1) + %;
m019 M= (9 q) e W=D —1) _ N
012 (g~ 8)(g —2) = m (2 41) + WTZIZD gy (240)

Since § + 1 is even and —g +2(4 + 1) = 2, ged(g, § + 1) = 2. Hence,
{m(%—i—l) |m:0,1,2,...,g—1} =, {0,2,4,....g—4,9—2}.

a(a—1)
2

is even if a = 4q or 4¢q + 1; odd otherwise,

1}_ {0,2,4,...,9—2}, ifa=4qordq+ 1;
B {1,3,5,...,9 — 1}, otherwise,

Since

{r(u21201~~(a—1))|m:O,1,...,

NI wla

{T(u;”QOl---(g—Q))|m:O,1,..., —1}:{0,2,...,9—4,9—2}.
Therefore, by (9), for any digit a =0,1,...,9 — 2,
{a;@g+a+1|m:0,1,2,...,g—1}
A2k, 2k + 10 <2k < g—a <2k + 1< g}, ifa=4qordq+1;
B {2k1 4+ 1,2k5|0 < 2k1 + 1 < g —a < 2ky < g}, otherwise;

{a'(m+1)g|m:O,1,2,...,g—1} —{1,3,5,...,9— 3,9 — 1}.

Since g — 1 is not a digit in g, every even digit @’ in ugs is obtained by transforming the
digit a’s in {0,1,2,...,9 — 2}, where a = 4q or 4¢+ 1 with a < g —d’; a = 49+ 2 or
4q + 3 with a > g — /. Every odd digit @’ in uys is obtained by transforming the digit a’s
in {0,1,2,...,9— 2,9}, where a = 49+ 2 or 4q + 3 with a < g — d’; a = 4q or 4¢ + 1 with
a>g—a;a=g. That is,

if a’ is even, |ugly = [{ a| a=4¢,4¢+1with0<a < g—d;
a=4q+2,4¢+3withg—d <a<g—2 }|;
if a’isodd, Jugle = |[{ a| a=4¢+2,4¢+3with0<a < g—d,;
a=4q,4¢+ 1 with g —d <a < g— 1,
a=g H.

11



Let g = 4k + 2 for some integer k. Then,
lugslo = [{4¢,4¢ + 1|¢ = 0,1,2, ... k} — {4k + 1}| = 2k + 1;
lugslr = [{4¢+ 2,49+ 3|¢=10,1,2,... . k — 1} U {4k + 2}| = 2k + 1;
|ugsle = [{4¢,4¢+ 1]¢ = 0,1,2, ... k — 1}| = 2k,
and for any p=1,2,...,k,
|ugs|ap—1 ={4¢ +2|¢=0,... .k —p}U{4¢+3|¢=0,...,k —p—1}
U{dqlg=k—p+1,... .k} U{dqg+1llg=k—p+1,...,k— 1} U {4k + 2}|;
lugslap =[{4qlg =0,....k —p}U{dg+1lg=0,....k —p}
U{dg+2lg=k—p+1,....k—=1}U{dq+3lg=k—p,....k— 1}
lugslap+1 =|{4¢ +2]¢=0,... .k —p—1}U{4¢+3Jl¢g=0,...,k—p—1}
U{dglg=k—p+1,... k}U{dg+1llg=k—p+1,....k—1} U {4k + 2}
|ugslapre =[{4ql¢=0,....k —p—1} U{4¢+1lg=0,....k—p—1}
U{dg+2lg=k—p,.... k=1 U{dq¢+3lg=k—p,... .,k —1}.
Hence, |ugs|ap—1 = |ugslap = 2k + 1 and |ugs|apr1 = |ugs|apro = 2k.
Observation 27. Let g = 4k+2 for some integer k > 0. For any digit a € {0,1,2,...,9—1, g},

|u93|a = {

Lemma 28. For any g > 2,

, ifa=0,1,4p — 1, 4p;

) forp=1,2,... k.
—1, ifa=24p+1,4p+ 2,

[SISINIRSY

- mod
ged([ugsly, 9) = {;’ z;g ig EmZd :;

Proof. The case when g # 2 (mod 4) is shown in (8). Hence, assume g = 2 (mod 4). Let
g = 4k + 2 for some k. Then, by Observation 27,

iayuggh,: (O—i-l—i-pé(llp—l—i-élp)) ~g+<2+i(4p+l+4p+2)) : (3—1)

a=0 p=1

=g+g~ <1+ (8p—|—1)> -2-> (8p+3)
p=1 p=1
=, (2k+1)—2—4dk(k+1) -3k = —4k* -5k — 1=, -3k — 1=,k + 1.
Since [ug3ly =4 S(ug3), the number [ugsl, =, k + 1. Then, ged ([ugs]s, 2(2k +1))) = 1 if k is
even; 2 if k is odd, since ged(k + 1,2k + 1) = 1. That is,

k k

1, if g =2 (mod 8);

ged([ugsly, 9) = {2’ if g =6 (mod 8).

12



If ged([ugsls, g) = 1, f, transforms the string uj, to ug. Hence,

ugs = fy(ugs), if g # 6 (mod 8). (10)

We will focus on the case when g #Z 6 (mod 8) from now on, because it is relatively easy to
generate ug, for all n > 4.

Theorem 29. For any positive integer n > 3, if g £ 6 (mod 8),
(1) ged([ugnls, 9) = 1;
(2) ugn1 = fo(ug,);
(3) lugn| = g" =" if g # 2 (mod 4); g"~/2 if g = 2 (mod 8).

Proof. The proof is done by mathematical induction on n. The base case is shown in Lemma
28, (10), and Observation 26. Assume (1), (2), and (3) are true for alln —1 > 3:

_9 .

g2, if g £ 2 (mod 4);
d n— 9 - ]-7 n — gn* ; n— -

gc ([ug, 1]5 g) Ug fg(U% 1) |Ug, 1| {gn2/2, if g =2 (mod 8)'

Since g is even, |uy,_1| is even. Hence, there is no such case that g is even and |ug,_1] is
odd. Since ged([ugn-1]s,9) = 1, the number [fo(u?, )]s = [ugn-1]s (mod g) by Corollary
24. Since ug, = fy(uj, 1), (1) holds.

Since w4y, is the shortest repeating string in the string fg"(l()N ), the shortest repeating
string in f;‘“(lON) should be fg(u’;n) for some integer h. Since ged([ugnls, 9) = 1 by (1), the
string fy(u9,) repeats in f;*1(10") by Corollary 21: for some string t,

1 10%) = 0 (fy ) )

For any 0 < h < g, the number [u, ], =4 s(ull,) = h - s(ugn) =¢ h - [tga]s # 0 (mod g), since

ged([ugnls, 9) = 1. Hence, the string fg(ugn) cannot repeat in f;“(lON) by Theorem 16, if

h < g. Therefore, fy(uf,) is the shortest repeating string in f7'*'(10"). Hence, (2) holds.
By Induction hypothesis, [ug,| = |f,(u] , 1) = [u] , 1| = glugn-1], so (3) holds. O

Note 30. For any g # 2 (mod 4), Theorem 29 holds for all n > 1.

5 The number of digits in b-ary g-Collatz sequences

Let’s count the number of occurrences of each digit in the string w,, for g # 6 (mod 8).
First, we simplify the notation.

Definition 31. For any positive integer n and any digit a € {0,1,2,..., g},

Y [Ugntila, if g # 2 (mod 4);
|ug nt2la, if g =2 (mod 8).

gn -

13



For example, a,, for g = 2,3,4,10 is as follows.

n OQn 12n 22n n 03n 13n 23n 33n n O4n 14n 2471 34n 44n
1 1 1 0 1 1 1 0 1 1 1 1 1 0 1
2 2 1 1 2 2 3 2 2 2 3 4 3 3 3
31 3 3 2 3| 7 7 6 7 3113 13 13 12 13
41 6 5 5 4120 21 20 20 41 51 52 51 51 51
5| 11 11 10 5| 61 61 60 61 51205 205 205 204 205

010,11 110,n 210,11 310,71 410,n 510,n 610,n 710,n 81O,n 910,11 ]-010,n
5 5 4 5 5 4 4 5 5 4 4

46 46 45 45 46 46 45 45 46 45 45
455 455 454 455 455 454 454 455 455 454 454
4546 4546 4545 4545 4546 4546 4545 4545 4546 4545 4545
45455 45455 45454 45455 45455 45454 45454 45455 45455 45454 45454

CU ks W N |3

Lemma 32. For any positive integer n,

(1) >0 jag,=g" if g # 2 (mod 4); % if g =2 (mod 8);

(2) @gni1 =D sy oo for any g # 6 (mod 8).

Proof. Theorem 29 (3) and Note 30 provide (1), and Corollary 23 provides (2). ]

Lemma 33. Suppose g # 2 (mod 4). Then,

Ogn, ifa#1;

0 ny - - 17'
Unwomt%n:{g bl Opn+1, ifa=1
an ’ -

, and if n is even, ag, =
Ogn —1, ifa=g—1,

Proof. The proof is done by mathematical induction. The base case is obvious by Obser-
vation 26: ag = 1ifa # g—1; 0if a = g — 1, since ugp = 012--- (g — 2)g. Induction
hypothesis: suppose it is true for all n — 1. If n is even, n — 1 is odd. By induction hypoth-
esis, agp_1 = 0gp—1 for all @ # g — 1 and (g — 1)y = 04,,—1 — 1. Since ag, = Za,ﬁ_a -
by Lemma 32 (2), ag, = (¢ — 1)0y-1 + (¢ — 1)gn—1 = g - 0g,—1 — 1 for all a # 1 and
lgn = g - 04pn-1. Hence, ag, = 0y, for all @ # 1 and 1,4, = 0y, + 1. Similarly, we can prove
the case when n is odd. O]

Lemma 34. For any g = 8k + 2 for some integer k > 1,

Ona ) :07174 _174;

if nis odd, ag, =’ z.fa P P forp=1,2,...,2k;
Ogn — 1, ifa=2,4p+1,4p+ 2,

Fm+LiM=MAwﬁy—%

if nois even, ag, = .
7 gg”v Zfa:4Q+274q—|_37g_1vg7

forq=0,1,...,2k — 1.

14



Proof. The proof is done by mathematical induction. The base case is shown in Observation
27. Induction Hypothesis: suppose it is true for all n — 1. If n is even, n — 1 is odd.
By induction hypothesis, a;,-1 = 0gn—1 if @ = 0,1,4p — 1,4p and ay,—1 = 04,1 — 1 if
a=2,4p+1,4p+2forp=1,2,... 2k By Lemma 32 (2), agn = (§ +1) - 0gpn_1 + (£ - 1) -
(Ogn1—=1) =g -0gn1 —S4+1ifg—a=24p+1,4p+2; §-0gnm1 + % (Ogn—1 — 1) =
g - 0gn—1 — § otherwise. Since g = 8k + 2, the number g —a = 2,4p + 1,4p + 2 implies
a=g9g—2,42k—p)+1,4(2k—p). Since p =1,2,..., 2k, the number 2k—p =0,1,...,2k—1.
Hence, a4, = 0y, if a = 4q,4q+1, g—2; 04, — 1 otherwise, for ¢ = 0,1,2,...,2k—1. Similarly,
we can prove the case when n is odd. O

When ¢ = 2, we have a different arrangement for ag,[1].

Note 35.

0 ny if a = 07 17 . . ny if a = ]-727
If n is odd, as,, = 2 1 “ and if n is even, as, = 92 1 “
02, — 1, ifa=2, gon +1, ifa=0.

Corollary 36. For any positive integer n, if g Z 2 (mod 4),
(1) an is Odd; On=9- Og,nfl +1; (g - 1)gn =g Og,nfl;'
(2) ifn iseven, 0, =g-0gp_1—1; 1y =¢g-0g,_1.

Proof. If n is odd, n — 1 is even. By Lemma 33, ag,—1 = 0,,_1 for all @ # 1 and 1,,1 =
0gn—1 + 1. Then, by Lemma 32 (2),

Ogn - Og,n—l +1g,n—1 + 2g,n—l ++ (g - 2)g,n—1 + (g - 1)g,n—1;
(g - 1)gn - Og,n—l + 2g,n—1 + -+ (g - 2>g,n—1 + (9 - l)g,n—l + 9gn—1-

Hence, (1) is obtained. Similarly, we can prove (2). O
Corollary 37. For any positive integer n, if g =2 (mod 8),

(1) ifn is odd, 0p, = 5051 + 59n—1; gn = (5 — 1)0n—1 + (§ + 1)gn_1;

(2) ifnis even, gn = 20p—1 + 99n—1; On = (§ — 1)gn—1 + (§ + 1)05—1.

Proof. If nis odd, n—1is even. By Lemma 34 and Note 35, ag,—1 = 0y -1 if a = 4q,4¢+1,2
and ag -1 = ggn-1 ifa=4¢+2,4¢+3,9—1,g9 forany ¢ =0,1,...,,2k — 1. By Lemma 32

(2),
Ogn == Og,n—l + 1g,n—l +---+ (g - 1)9,71—1 and 9gn = 1g,n—l + 2g,n—l + e 9gn—1-

Hence, (1) is obtained. Similarly, we can prove (2). O

15



Corollary 38. For any positive integer n,

. 0,1,2,...,9}Hagn = 0gn = ggu}l = g;
[ 2 (mod 4), [{a €10,1,2,..., g g gni| = 9;

fo#2( ) H{a € {0,1,2,...,9}ag, =04, + (—1) }1‘(:11)31
‘{G’E{071727"'7g}|a’gn:0gn}’:§+T;

and if g =2 (mod 8), E
{a € {0.1,2,. ., gHagn = gonH| = & + G2

Proof. Tt is obtained by sorting and counting a,,’s using Lemma 33, 34 and Note 35. [

Even if there are b distinct digits in a b-ary string, there are only two distinct values to
identify a,,, for any g and n. If g # 2 (mod 4), there are g many a,,’s with a4, = 0,4, = gyn,
and only one ag, with ag, # 0g4,. If g = 2 (mod 8), there are £ 41 many ag,’s with ag, = 0y,
(ggn for even n) and § many ay,’s with ag, # Oy (ggn for even n) for odd n. Hence, we
consider the majority of ag,’s and the minority of a,4,’s as follows:

Definition 39. For any g # 6 (mod 8) and any positive integer n,

g = o and mg, = My, + (—1)".
Ggn, if n is even,

B {ogn, if n is odd:;

For example, the following shows the first few My, and m,, for g = 2,3,4,5,7, 10.

n |1 2 3 4 5 6 n |1 2 3 4 ) 6
My, |1 1 3 D 11 21 mo, |0 2 2 6 10 22
Ms, |1 2 7 20 61 182 mg, |0 3 6 21 60 183
My, |1 3 13 ol 205 819 My, |0 4 12 52 204 820
Ms, |1 4 21 104 521 2604 ms, [0 5 20 105 920 2605
Mz, |1 6 43 300 2101 14706 mm |0 7 42 301 2100 14707

Mo, |5 45 455 4545 45455 454545  myo, |4 46 454 4546 45454 454546

Then, we have a recurrence relation as follows:

Theorem 40. For any g # 6 (mod 8) and any integer n > 3,
Mgn = (g - 1)Mg,n71 + gMg,an'
Proof. By Lemma 36 and 37, for any positive integer n, whether n is even or odd,
if g %2 (mod 4), My, = gM,,, 1 + (=1)""" and my,, = gM,,,_1;
g

if g =2 (mod 8), M,, = 5M97R_1 + gmg,n—l and my, = (g + 1) My 1+ (g - 1) Mg n—1-

Hence, if g # 2 (mod 4),

Mgn = (g_1)Mg,n—1+Mg,n—1+(_1)n_1 = (g_l)Mg,n—1+mg,n—l = (g_l)Mg,n—l ‘l’gMgm,—Qa
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and if g = 2 (mod 8),

Mg, = gMg,nfl + gmy,nfl
B (s o) B (5 1) M (1) )
_ 7 ;L 9 M, st 9’ 2— 9 g s
_7 - I (M +Mgn_2) + gMyn_s
= (9= 1)5 (Myn-2 +Mgo) + gMyn-s = (9 = D)Myn1 + gMyos.
O
Furthermore, the explicit formulae are calculated as follows:
Theorem 41. For any nonnegative integer n,
if g # 2 (mod 4), M, = w} and if g = 2 (mod 8), M,, = g 9" é—l)"
Proof. By Lemma 32 (1), Corollary 38, and Definition 39,
if g # 2 (mod 4), gMy,, + mgy, = gMy, + M, + (=1)" = g™
if g =2 (mod 8), (§+1) Myn+ Tmgn = (5 +1) Myn+ 5 (Myn + (-1)") = 97:1
Since b = g + 1, the explicit formulae are calculated as desired. O

Notice that My = 1 for all g # 2 (mod 4) and My, = § for all g = 2 (mod 8).

6 Generalized Jacobsthal numbers

For any nonnegative integer n, the n-th Jacobsthal number, J, (A001045), and the nth
almost Jacobsthal numbers, A,, (A005578) and B,, (A000975), [6] are defined as follows:

Jn = W; A, = %ﬂ . B, = Fn;ﬂ , (11)

and they satisfy the following [1]: for any positive number n,
Jp = Loy, An = Ogy, B, = 290, I + An + B, = A (12)

In order to generalize (12), we first generalize the sequences in (11).
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Definition 42. For any integer g > 2 and any nonnegative integer n, the nth g-Jacobsthal
number, J,,, and the nth almost g-Jacobsthal numbers, A,, and B,,, are defined as

9" — (=" g" 9"~y
Jgn = ————; Ay = : B, = )
! g+1 ’ LJ [QHW

The g-Jacobsthal numbers (J,,) >, can be generated by the following recurrence as well.

Lemma 43. The g-Jacobsthal numbers (Jy,)n>0 satisfy the following:
(]_) JgO = O, ng = 1, Jgn = (g — 1)Jg,n71 + ngm,Q fOT’ n > 27'
(2) Jyo=0,Jyn1+ Jyn=9g""" forn>1.

Obviously, Ja, = J,, As, = A, and Bs, = B,,. The sequence (As,),>0 is identified as
A122983, and (J,)n>0 for g = 2,3,4,5,6 is identified as follows:

g | 2 3 4 5 6
(Jgn)nzo | A001045 A015518 A015521 A015331 A015540

Furthermore, consider Yy, := Jg, + (—1)" = %‘ Then, (Yy,)n>o for g = 2,3,4,5,6 is
identified as follows:

g | 2 3 4 5 6
(Ygn)nz0 | AO78008 A0054878 A109499 A109500 A109501

The following shows the first few J,,’s.

n 01 2 3 4 ) 6 7
Jop |01 1 3 ) 11 21 43
I3 |01 2 7 20 61 182 047
Jimw |01 3 13 51 205 819 3277
Jsn |01 4 21 104 521 2604 13021
Jon |01 5 31 185 1111 6665 39991
Jm 0 1 6 43 300 2101 14706 102943

Now, we can express M, and m,, defined in Section 5 in terms of J,,.
Theorem 44. For any positive integer n,
(1) if g# 2 (mod 4), My, = Jyn and my, = Jyn + (—1)";
(2) if g =2 (mod 8), My, = §Jg and my, = $.Jgn + (=1)".
Proof. 1t is obtained by Definition 39, Theorem 41, and Definition 42. m

Hence, we can express all a,,’s defined in Section 5 in terms of J,.
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Corollary 45. For any positive integer n, if g # 2 (mod 4),

o Jg,2n717 Zf& 7é g — 1;' o Jg,2n> Zfa 7é 17'
Qg on—1 = . and Qg,2n = .
Jgon—1—1, ifa=g—1 Jgon+1, ifa=1,

and if g =8k +2 with k > 1,

QJ n—1, ) :071a4 _1a4 ;
(g 2n—1 = 3 g2t z.fa b b forp=1,2,...,2k;
SJgon—1—1, ifa=2,4p+1,4p+2,
QJ 79 ] =4 274 3a - ]-7 ;
(gon = ;g’z z.fa I+ 250499 g forq=0,1,...,2k — 1.
§Jg,2n+17 Zfa:4Q>4q_|—1>g_2;

Proof. 1t is obtained by Theorem 44, Definition 39, Lemma 33, and Lemma 34. O

Now, let us compare A, and By, with Jg,. The following shows the first few Ag,, Jyn,
and By,, when g = 3 and 4.

n 01234 5 6 n|012 3 4 5 6
As, |11 3 7 21 61 183 Aw |1 1 4 13 52 205 820
Jsn |01 2 7 20 61 182 Jim |0 1 3 13 51 205 819
By |00 2 6 20 60 182 By |0 0 3 12 51 204 819

We can identify both Ay, and By, as Jg, or Jg, £ 1.

Lemma 46. For any nonnegative integer n,

Jgn, if nis odd; Jon — 1, if n is odd;
Agn - . . Bgn - . .
Jon + 1, if n is even. Jgn, if n is even.

Proof. Since g" = (g + 1) — 1)" =37 (1) (g+1)"(—1)"+ (—1)", the number ¢" — (—1)"
is divisible by g + 1. Hence,

[ g" w A G Vi [(—1)”} s {0, if n is odd:

g+1 g+1 g+1 1, if n is even.

and

[g" —gw _g" (D [(—1)” —gw gt {—1, if n is odd;

g+1 g+1 g+1 0, if n is even.

Therefore, we can generalize (12), when g #Z 2 (mod 4).
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Theorem 47. For any positive integer n, if g Z 2 (mod 4),

Jgns ifa#1,g—1;
agn = § Agn, fa=1; and (9 —1)Jgn + Agn + Bgn = g".
By, ifa=g—1,

Proof. Corollary 45 and Lemma 46 identify ag,, and Lemma 32 (1) provides the relation. [
To work on the case when g = 2 (mod 8), we express A, and B, more explicitly.

Corollary 48. For any nonnegative integer n,

m (- (-1 4 o " (S - (1) -

Agn _ g ( 2 )( ) 2 and Bgn — g ( 2 )( ) 2 . (13)
g+1 g+1

Proof. Since (*1);“ = 0 for odd n; 1 for even n, and (*1)# = —1 for odd n; 0 for even n,

n_ (—1)" 1) +1 m—(=1)" - =1

P Ve L PN L ) G i §

g+1 2 g+1 2

which is modified to (13). O

Notice that A,, and B,, are as follows:

A

We can obtain (13) from (14) by replacing 2 with %, However, we can consider replacing

% with %. If we consider Jy,, = % “Jn, Aoy = % - A, and By, = % - B,,, we can also consider

replacing % with §. Taking all of these new considerations, we now have the following:

g g E ol g (e o) -

g g"— (=" 9 (15)

2 g+1 7 2 g+1 2 g+1

By simplifying (15), we have another generalization of (11).

Definition 49. For any integer g > 2 any nonnegative integer n, we define J;,, A} , and
By, as follows:

I g — g(—l)n; A gt . B - gt —g-2 _
g 2(g+1) g 2(g+1) g 2(g+1)

Lemma 50. For any nonnegative integer n,

0, ifn is odd;

1, otherwise

g —1, ifn s odd;
J o o==J,.; A =J + B =J +
g 279 grooan { g 0, otherwise
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Proof. By Definition 42 and 49, it is obvious that J;,, = §.Jy,. Since

P G [ g(=1)" 1 d g~ I =" [g(—l)” —9- 21
an 2(9+1) 2(g+1) an 2(9+1) 2(g+1) ’
A, and By, are shown as desired. O

Theorem 51. For any positive integer n, if g = 8k 4+ 2 for some integer k > 1,

Jons ifa=4p—1 forp=1,2,...,2k;
Al ifa=0,1,4p forp=1,2,...,2k;
Qgn = .
7 By, ifa=4p—2,9g— 1,9 forp=1,2,...,2k;

Jo,+ (=1 ifa=4p+1forp=1,2...2k—1,

and
n+1

2

9

(4k —1)J,, + (2k +2) A}, + (2k + 2)B,,, = — (2k = 1)(=1)".

Proof. Lemma 50 and Corollary 45 identify a,,, and Lemma 32 (1) provides

gn+1
2

2k - Jy, + 2k + 2)A, 4+ (2k +2)B;, + (2k — 1) (J,,, + (-1)") =
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