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Abstract

In this paper, we consider arithmetic progressions contained in Lucas sequences
of the first and second kind. We prove that for almost all Lucas sequences, there
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are only finitely many arithmetic three term progressions and their number can be
effectively bounded. We also show that there are only a few Lucas sequences which
contain infinitely many arithmetic three term progressions and one can explicitly list
both the sequences and the progressions in them. A more precise statement is given
for sequences with dominant zero.

1 Introduction

The study of additive structures in certain sets of integers has a long history. In particular,
the description of arithmetic progressions has attracted the attention of many researchers
and is still an actively studied topic with a vast literature. Without trying to be exhaustive
and going into details we only mention a few interesting directions.

Bremner [4] found infinitely many elliptic curves such that among the first coordinates of
rational points one can find an eight term arithmetic progression. Campbell [5], modifying
ideas of Bremner, gave the first example of a progression of length twelve which was later
improved to fourteen by MacLeod [11]. For more details on the various generalizations to
other families of curves and recent progress we refer to the paper of Ciss and Moody [6] and
the references given there.

The study of arithmetic progressions in solution sets of Pellian equations is another
interesting direction. Dujella, Pethő, and Tadić [7] showed that for every four term arithmetic
progression (y1, y2, y3, y4) 6= (0, 1, 2, 3) there exist infinitely many pairs (d,m) such that the
equation x2 − dy2 = m admits solutions with y = yi for i = 1, 2, 3, 4. On the other hand,
Pethő and Ziegler [12] proved that for five term arithmetic progressions only a finite number
of such equations are possible. For further progress we refer to the papers of Aguirre, Dujella,
and Peral [1] and González-Jiménez [10].

In this paper, we connect to the field by considering arithmetic progressions in Lucas
sequences. Let A and B be non-zero integers such that the zeros α and β of the polynomial

x2 − Ax− B (1)

satisfy that α/β is not a root of unity. Define the sequences u = (un)
∞
n=0 and v = (vn)

∞
n=0

via the binary recurrence relations

un+2 = Aun+1 + Bun and vn+2 = Avn+1 + Bvn (n ≥ 0) (2)

with initial values u0 = 0, u1 = 1 and v0 = 2, v1 = A. We call u and v the Lucas sequences
of the first and second kind corresponding to the pair (A,B), respectively.

Remark 1. The classical definition of u and v requires gcd(A,B) = 1 which is needed for
certain arithmetic properties to hold. Hence our definition is more relaxed.

Remark 2. The assumption on the zeros of the companion polynomial (1) coincides with the
non-degeneracy property. The study of all linear recurrences can effectively be reduced to
such sequences, see [8].
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The investigation of arithmetic progressions in linear recurrences is not an entirely new
topic. Pintér and Ziegler [13] gave a criterion for linear recurrences of general order to
contain infinitely many three term arithmetic progressions. Note that the study of three
term arithmetic progressions is the first non-trivial problem and is the most general. Further,
they proved that the sequence of Fibonacci and Jacobsthal numbers are the only increasing
Lucas sequences having infinitely many three term progressions.

In this paper, we connect to the results of Pintér and Ziegler. On one hand, we give
an upper bound for the number of three term arithmetic progressions provided that there
are only finitely many. On the other hand, we explicitly list all those sequences which
contain infinitely many three term arithmetic progressions. Finally, by restricting ourselves
to sequences with companion polynomials having a dominant zero, we find all sequences
which contain a three term arithmetic progression and give a complete list of the occurrences.

Our main result is as follows:

Theorem 3. Let u = (un)
∞
n=0 and v = (vn)

∞
n=0 be the Lucas sequences of first and second

kind, respectively, corresponding to the pair (A,B). Then u and v admit at most 6.45 ·
102340 triples (k, l,m) such that uk < ul < um is a three term arithmetic progression, except
when u corresponds to (A,B) = (±1, 1), (±1, 2), (−1,−2) and v corresponds to (A,B) =
(±1, 1), (−1,±2), in which cases they admit infinitely many.

Remark 4. We expect that the upper bound in Theorem 3 is very far from being sharp.
It would be an interesting problem to study the average number of three term arithmetic
progressions in Lucas sequences of the first and second kind.

By imposing stronger restrictions on the sequences we can state much more. Namely, if
the companion polynomial (1) has a dominant zero, then it is possible to explicitly list all
three term arithmetic progressions in the corresponding sequence.

Theorem 5. Let u = (un)
∞
n=0 and v = (vn)

∞
n=0 be the Lucas sequences of first and second

kind, respectively, corresponding to the pair (A,B). Assume that A2 + 4B > 0. Then u
and v admit no three term arithmetic progression, except the cases listed in Tables 1 and 2,
respectively.

As an immediate consequence of Theorem 5 we have the following:

Corollary 6. Let u = (un)
∞
n=0 (resp. v = (vn)

∞
n=0) be the Lucas sequence of the first (resp.

second) kind corresponding to the pair (A,B). Assume that A2 + 4B > 0. If u (resp.
v) contains more than two (resp. one) three term arithmetic progressions, then u (resp. v)
contains infinitely many three term arithmetic progressions.

The ineffective methods we use in the proof of Theorem 3 do not give such sharp bounds
as in Corollary 6. However, it would be interesting to find optimal bounds also in the general
case, i.e., if we drop the condition A2 + 4B > 0 in Corollary 6.

In the next section, we prove Theorem 5. The main idea is to show that under a testable
condition, the growth of the sequence would contradict the existence of any three term
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(A,B) (k, l,m)
(1, 1) (0, 1, 3), (2, 3, 4), (t, t+ 2, t+ 3), t ≥ 0
(−1, 1) (1, 0, 2), (t, t+ 1, t+ 3), t ≥ 0
(1, 2) (1, 2t+ 1, 2t+ 2), (2, 2t+ 1, 2t+ 2), t ≥ 1
(−1, 2) (t+ 2, t, t+ 1), t ≥ 0

(2, B), B ≥ 1 (0, 1, 2)
(1, B), B ≥ 3 (1, 3, 4), (2, 3, 4)
(−1, B), B ≥ 3 (1, 0, 2)

Table 1: Triples (k, l,m) s.t. (uk, ul, um) is a three term AP.

(A,B) (k, l,m)
(1, 1) (1, 0, 2), (t, t+ 2, t+ 3), t ≥ 0
(−1, 1) (t, t+ 1, t+ 3), t ≥ 0
(−1, 2) (t, t− 1, t+ 1), t ≥ 1
(−2, 1) (1, 0, 2)
(1, 3) (1, 4, 5)

(−3,−1) (1, 0, 2)

Table 2: Triples (k, l,m) s.t. (vk, vl, vm) is a three term AP.

arithmetic progression. Further, this condition leaves only finitely many explicitly given
possibilities for (A,B) which we treat one by one, usually in an elementary way. The proof
of Theorem 3 in Section 3 is based on the theory of S-unit equations.

2 The dominant zero case

This section is devoted to the case, where A2 + 4B > 0, that is, the zeros of the companion
polynomial (1) are real. First, we remark that in any linear recurrence, the terms can
be represented as polynomial-exponential sums depending on the zeros of the companion
polynomial. In our situation, this leads to the well-known formulas

un =
αn − βn

α− β
and vn = αn + βn (n ≥ 0).

We will regularly use this interpretation of Lucas sequences instead of the recurrence relation
(2).

The following lemma concerns equations satisfied by three term arithmetic progressions.

Lemma 7. Let u = (un)
∞
n=0 be any sequence. Suppose that for some n0 we have |un/un′ | > 3

for every n > n0 and every n′ < n. If m > n0, then neither of the equations

uk − 2ul + um = 0, ul − 2uk + um = 0, uk − 2um + ul = 0 (3)
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has a solution (k, l,m) with k < l < m. In particular, u does not admit any three term
arithmetic progression with terms corresponding to the indices k, l and m with max{k, l,m} >
n0.

Proof. Assuming that n0 < m gives us either 3|uk| < 3|ul| < |um| or 3|ul| < 3|uk| < |um|. In
the former case, we have

|uk − 2ul + um| ≥ |um| − |uk − 2ul| ≥ |um| − (|uk|+ 2|ul|) > 3|ul| − 3|ul| = 0.

Thus the first equation of (3) has no solution with k < l < m. In an analogous way, one
can get the same deduction for 3|ul| < 3|uk| < |um| and it is easy to see that the second and
third equations of (3) are unsolvable as well.

We are in need of a good criterion for the applicability of Lemma 7.

Lemma 8. Let u = (un)
∞
n=0 be the Lucas sequence of the first kind corresponding to the pair

(A,B) with A2 + 4B > 0. Assume that n > n′. Then |un/un′ | > 3 if n is odd or n ≥ 8,
unless

• B < 0 and |A| ≤ 6 or

• |A| = 1 and 0 < B ≤ 9 or

• |A| = 2 and 0 < B ≤ 3.

Proof. Under our conditions the polynomial X2−AX−B has a dominant zero, say α. Note
that if |A| > 6 or |B| > 9, then we have |α| > 3 and may write

∣

∣

∣

∣

un

un−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

αn − βn

α− β

αn−1 − βn−1

α− β

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

αn

αn−1

1−
(

β

α

)n

1−
(

β

α

)n−1

∣

∣

∣

∣

∣

= |α|
∣

∣

∣

∣

1− θn

1− θn−1

∣

∣

∣

∣

> 3

∣

∣

∣

∣

1− θn

1− θn−1

∣

∣

∣

∣

with θ = β/α. It suffices to prove that

∣

∣

∣

∣

1− θn

1− θn−1

∣

∣

∣

∣

> 1.

Observe that there are trivial cases. These include θ > 0 and also θ < 0 when n is odd.
What remains to consider is the case when θ < 0 and n is even.

Next, we show that the quotients |u2n+2/u2n+1| increase with n, that is, they satisfy the
inequality

∣

∣

∣

∣

u2n+2

u2n+1

∣

∣

∣

∣

>

∣

∣

∣

∣

u2n

u2n−1

∣

∣

∣

∣

.
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Equivalently, we may write

|α|
∣

∣

∣

∣

1− θ2n+2

1− θ2n+1

∣

∣

∣

∣

> |α|
∣

∣

∣

∣

1− θ2n

1− θ2n−1

∣

∣

∣

∣

.

Since 0 < |θ| < 1, it reduces to

1− θ2n+2

1− θ2n+1
>

1− θ2n

1− θ2n−1

giving us
1− θ2n−1 − θ2n+2 + θ4n+1 > 1− θ2n+1 − θ2n + θ4n+1.

Collecting the terms on the left hand side and dividing both sides of the inequality by
−θ2n−1 > 0 we obtain

θ3 − θ2 − θ + 1 = (θ − 1)2(θ + 1) > 0,

which is obviously true for any θ with 0 < |θ| < 1. Since |u2/u1| = |A| ≥ 1, we have,
in particular, that |un/un−1| > 1 for all n ≥ 0. This proves the lemma for all odd n and
all n > 2n0 with |u2n0

/u2n0−1| > 3. Thus we need to show that |u8/u7| > 3 under our
hypotheses.

We distinguish between the cases where B > 0 and B < 0. Let us start with B < 0. We
have

|θ| =
∣

∣

∣

∣

β

α

∣

∣

∣

∣

=
|A| −

√
A2 + 4B

|A|+
√
A2 + 4B

≤ |A| − 1

|A|+ 1
= 1− 2

|A|+ 1
.

Note that in this case we also have that |α| > |A|+1
2

. Write x = |A|+1
2

. We show that

∣

∣

∣

∣

u8

u7

∣

∣

∣

∣

≥ x

1−
(

1− 1

x

)8

1 +

(

1− 1

x

)7 > 3.

Solving this inequality for x shows that the second inequality holds unless x < 3.55, i.e.,
|A| < 6.1.

When B > 0, we have

|θ| =
∣

∣

∣

∣

β

α

∣

∣

∣

∣

=

√
A2 + 4B − |A|√
A2 + 4B + |A|

= 1− 2|A|√
A2 + 4B + |A|

and with |A| ≥ 3 we obtain

|θ| ≥ 1 +
6√

9 + 4B + 3

and

|α| >
√
9 + 4B + 3

2
=: y.
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We need to show that

∣

∣

∣

∣

u8

u7

∣

∣

∣

∣

≥ y

1−
(

1− 3

y

)8

1 +

(

1− 3

y

)7 > 3.

The inequality holds unless y ≤ 3. However, y ≤ 3 is impossible, since it would imply B ≤ 0
which we excluded.

Similar arguments for the cases |A| = 2 and |A| = 1 yield that

∣

∣

∣

∣

u8

u7

∣

∣

∣

∣

> 3 provided that

B > 9 and B > 3, respectively.

A similar argument for Lucas sequences of the second kind reveals the following.

Lemma 9. Let v = (vn)
∞
n=0 be the Lucas sequence of the second kind corresponding to the

pair (A,B), with A2 + 4B > 0. Assume that n > n′. Then |un/un′ | > 3 if n is even or
n ≥ 7, unless

• B < 0 and |A| ≤ 7 or

• |A| = 1 and 0 < B ≤ 14 or

• |A| = 2 and 0 < B ≤ 3.

Proof. Since the proof of this Lemma is similar to that of Lemma 8, we omit most of the
details. Note that when |A| = 1 we have |v1/v0| = 1/2 < 1 and we can only deduce
|vn/vn−1| ≥ 1 provided that n ≥ 2. Thus we shall ensure |v7| ≥ 6. Direct computation yields
that indeed

|v7| = 7B3 + 14B2 + 7B + 1

when |A| = 1. Since |A| = 1 implies that B ≥ 1, we get |v7| > 6.

Now we apply Lemma 7 in combination with Lemma 8 and find that if u admits a three
term arithmetic progression, then one of the equations in (3) must have a solution with even
m ≤ 6. Writing the terms of u as polynomials in A and B we have to deal with finitely many
equations. We only present the main ideas through one example for each different type of
possible equations, we treat the rest in a similar manner.

Case m = 2. Since u0 = 0, u1 = 1 and u2 = A, we only get trivial equations like
A− 2 = 0.

Case m = 4. The corresponding equations are linear in B. For example, the triple
(k, l,m) = (1, 2, 4) substituted into the second equation of (3) gives us

A3 + 2AB + A− 2 = 0

implying

B =
−A3 − A+ 2

2A
.
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Hence A | 2, i.e., A = ±1,±2. However, we see that one of the conditions AB 6= 0 and
A2 + 4B > 0 fails in all cases. One can handle the other equations similarly.

Case m = 6. The corresponding equations are quadratic in B. Our general strategy
is to push the discriminant of each equation between two squares and solve the parametric
equation for each square between these lower and upper bounds. For example, the triple
(k, l,m) = (0, 3, 6) and the third equation of (3) gives

−6AB2 + (−8A3 + 1)B − 2A5 + A2 = 0.

The discriminant is D = 16A6 + 8A3 + 1 = (4A3 + 1)2. However, solving this for B we get
the pair (A,B) = (A,−A2) and A2 + 4B > 0 fails to hold.

Let us consider another example. For instance, take the triple (k, l,m) = (0, 2, 6). Then
we obtain D = A6 + 6A2 − 3A. But

A6 < A6 + 6A2 − 3A < (|A|3 + 1)2

provided that |A| > 3 and we deduce that D is never a square if |A| > 3. For those with
|A| ≤ 3 and A 6= 0 we obtain that D is a square if and only if A = 1. In this case, B = 0
which contradicts our assumption.

The same approach for each triple gives the complete list of three term arithmetic pro-
gressions.

We are left with the finite number of sequences satisfying

• B < 0 and |A| ≤ 6 or

• |A| = 1 and 0 < B ≤ 9 or

• |A| = 2 and 0 < B ≤ 3.

In these finitely many cases, we can use a growth argument to find all three term arithmetic
progressions.

Let us demonstrate this by an example, say A = 2 and B = 1 and (un)
∞
n=0 being a Lucas

sequence of the first kind. One may handle all the other finitely many equations by a similar
reasoning. First, note that in this specific case we have that α = 1 +

√
2 and β = 1 −

√
2.

Assume that uk < ul < um is a three term arithmetic progression and consider the first
equation of (3) which is equivalent to

αk + αm − 2αl = βk + βm − 2βm.

Let us assume for the moment that m > l + 1 > k + 1. Then

|α|m − 2|α|m−2 − |α|m−3 < |αk + αm − 2αl| = |βk + βm − 2βm| < 4|β|k.

Plugging in the concrete values of α and β we immediately get

(1 +
√
2)m−3

(

(1 +
√
2)3 − 2(1 +

√
2)− 1

)

= (4 + 3
√
2)(1 +

√
2)m−3 < 4
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which yields a contradiction unless m < 3. Now it is easy to find all three term arithmetic
progressions in this case. Note that in the case of l > m or k > m we may draw similar
conclusions.

Hence we can assume that m = l + 1 > k + 1. Then

|α|m − 2|α|m−1 < |α|k + 4|β|k

and inserting the concrete values of α and β we get

(1 +
√
2)m−2 < (1 +

√
2)k + 4.

Assuming k ≤ m− 3 yields √
2(1 +

√
2)m−3 < 4,

whence m ≤ 4 and we easily find all three term arithmetic progressions listed in Table 1 for
this case. Finally, we have to consider the case when m = l + 1 = k + 2. Here we get the
inequality

∣

∣αm − 2αm−1 − αm−2
∣

∣ < 4|β|k

which yields
2(1 +

√
2)m−2 < 4,

that is, m ≤ 3 and we find no additional three term arithmetic progressions. Similar argu-
ments for different orderings of uk, ul, um reveal no further solutions. Thus the case A = 2
and B = 1 is completely solved.

3 The case A2 + 4B < 0

Unfortunately, we found no effective method to resolve this case completely. The reason has
its roots in the use of the theory of S-unit equations. Indeed, the indices k, l,m corresponding
to a non-trivial arithmetic progression uk < ul < um contained in a Lucas sequence (un)

∞
n=0

of the first kind or a Lucas sequence (vn)
∞
n=0 of the second kind satisfy the Diophantine

equation
αk + αm − 2αl = ±

(

βk + βm − 2βl
)

, (4)

where the ± sign depends on whether we consider Lucas sequences of the first or second kind.
In view of Theorem 3, it is crucial to discuss the number of solutions to S-unit equation (4).
In the real case (cf. Section 2), we resolved this S-unit equation by using the fact that

|α| > |β| and that

∣

∣

∣

∣

un

un−1

∣

∣

∣

∣

≃ |α| as n → ∞. If A2 + 4B < 0, then this is no longer true and

we have to apply the deep theory of S-unit equations.
In order to determine an upper bound for the number of solutions we prove a series of

Lemmas which culminate in a proof for Theorem 3.
Before we start with the first lemma, let us note that both α and β are algebraic integers.

Moreover, due to Theorem 5, which was proved in the previous section, we may assume that
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α and β are conjugate imaginary quadratic integers. Hence we can suppose that α and β
are not units, otherwise α/β would be a root of unity. Thus we may suppose that |B| ≥ 2.
Write K = Q(α) = Q(β) and denote by σ the unique, nontrivial Q-automorphism of K, i.e.,
Gal(K/Q) = {id, σ}. Since K is an imaginary quadratic field, we also have that σ(ǫ) = ǫ−1,
where ǫ is any unit in K.

For fixed α and β we denote by C1 and C2 the number of non-trivial three term arithmetic
progressions of (un)

∞
n=0 and (vn)

∞
n=0, respectively and write C = max{C1, C2}. Actually, our

upper bounds for C1 and C2 coincide in each instance and hence we use only the quantity
C.

Let Γ = 〈α, β〉 ≤ Q̄∗ be the multiplicative group generated by α and β. We denote by
A = A(a0, . . . , ar) the number of non-degenerate, projective solutions [x0 : · · · : xr] ∈ Pr(Γ)
of the weighted, homogeneous S-unit equation

a0u0 + · · ·+ arur = 0. (5)

with a0, . . . , ar ∈ C, in unknowns u0, . . . , ur ∈ Γ. By a non-degenerate solution we mean a
solution to equation (5) such that no subsum on the left hand side of equation (5) vanishes.
Upper bounds A(a0, . . . , ar) ≤ A(r, s), where s denotes the rank of Γ, have been found most
prominently by Evertse, Schlickewei, and Schmidt [9] and Amoroso and Viada [2] in the most
general case. In particular, we use the bounds due to Schlickewei and Schmidt [14] which in
our case yield better results, although they depend on d = [K : Q] as well.

As we already noted above, three term arithmetic progressions in the Lucas sequences
(un)

∞
n=0 and (vn)

∞
n=0 yield solutions to (4). Thus we study the weighted S-unit equation

x1 + x2 − 2x3 = ±(y1 + y2 − 2y3), (6)

where x1, x2, x3, y1, y2, y3 ∈ Γ = 〈α, β〉 and, in particular, where x1 = αk, x2 = αm, x3 =
αl, y1 = βk, y2 = βm, y3 = βl.

Before we start investigating S-unit equations of type (6) we state a theorem due to
Beukers [3, Theorem 2] and draw some simple conclusions from it.

Lemma 10 (Beukers [3]). Let the non-degenerate recurrence sequence of rational integers
(un)

∞
n=0 be given by u0 ≥ 0, gcd(u0, u1) = 1, un = Aun−1−Bun−2, with A,B ∈ Z and A ≥ 0.

Assume that A2 − 4B < 0. If um = ±u0 has more than three solutions m, then one of the
following cases holds:

A = 1, B = 2,u0 = u1 = 1 when m = 0, 1, 2, 4, 12;

A = 1, B = 2,u0 = 1, u1 = −1 when m = 0, 1, 3, 11;

A = 3, B = 4,u0 = u1 = 1 when m = 0, 1, 2, 6;

A = 2, B = 3,u0 = u1 = 1 when m = 0, 1, 2, 5.

From this Lemma we can easily conclude the following statement.
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Lemma 11. Let (un)
∞
n=0 be a Lucas sequence of the first or second kind. Then for a fixed

integer λ the equation λ = um has at most 3 solutions m.

Proof. Let m0 be the smallest solution to λ = um. Consider instead of the original sequence
the sequence ak = um0+k/g(−1)kδ, where g = sgn(um0

) gcd(um0
, um0+1) and δ = 1−sgn(A)

2
(see

also the remarks following Theorem 2 in [3]). Therefore we conclude that an equation of the
form λ = |um| has more than three solutions if for the smallest solution m0, also m0 + 1 is a
solution and (A,B) = (±1,−2), (±3,−4) or (±2,−3).

However, the equation |um0
| = |um0+1| is equivalent to the equation

α± 1

β ± 1
=

(

β

α

)m0

in case that (un)
∞
n=0 is a Lucas sequence of first kind and

α± 1

β ± 1
= −

(

β

α

)m0

in case that (un)
∞
n=0 is a Lucas sequence of second kind. For all pairs of (α, β) we solve these

equations and find for instance, that m0 ≤ 2 (if a solution exists at all). By computing the
values of all possible further solutions we find that indeed no equation of the form λ = um

has more than three solutions.

Remark 12. Beukers [3, Corollary on page 267] already showed this result in case of Lucas
sequences of the first kind. In fact, he proved more and listed all the cases when there can
be three solutions. To the authors knowledge the case of Lucas sequences of the second kind
has not been treated since then.

Let us start by investigating the number of non-degenerate solutions to the S-unit equa-
tion (4):

Lemma 13. There are at most A(5, 2) three term arithmetic progressions contained in a
Lucas sequence (un)

∞
n=0 of the first kind that yield non-degenerate solutions to (4).

The same statement also holds for Lucas sequence (vn)
∞
n=0 of the second kind.

Proof. Consider the weighted S-unit equation

x1 + x2 − 2x3 = y1 + y2 − 2y3 (7)

with unknowns x1, x2, x3, y1, y2, y3 ∈ Γ. This has at most A(5, 2) non-degenerate, projective
solutions. Thus there exists a set C, with |C| ≤ A(5, 2), of sextuples (1, c2, c3, c4, c5, c6) such
that for any solution we have x2/x1 = c2, x3/x1 = c3, y1/x1 = c4, y2/x1 = c5 and y3/x1 = c6.
Assume now that a solution comes from an arithmetic progression uk < ul < um in a Lucas
sequence (un)

∞
n=0 of the first kind. Then we have

αk

βk
=

1

c4
,

αm

βm
=

c2
c5
,

αl

βl
=

c3
c6

or
βk

αk
=

1

c4
,

βm

αm
=

c2
c5
,

βl

αl
=

c3
c6

(8)
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for some (1, c2, c3, c4, c5, c6) ∈ C. Since by assumption α/β is not a root of unity, for every
sextuple (1, c2, c3, c4, c5, c6) ∈ C, there exists at most one triple (k, l,m) such that any set
of identities of (8) is satisfied, i.e., uk < ul < um is an arithmetic progression. Hence there
exist at most A(5, 2) three term arithmetic progressions in a Lucas sequence of the first kind
(un)

∞
n=0, yielding a non-degenerate solution to (4).
In the case of a Lucas sequence of the second kind (vn)

∞
n=0, we consider instead of (7) the

Diophantine equation
x1 + x2 − 2x3 = −(y1 + y2 − 2y3)

and derive the same conclusion as before.

Before we start dealing with vanishing subsums in equation (4) we note that α and β are
always multiplicatively independent. Otherwise, we would have αt = βs for some integers
t, s. Taking the conjugates we get αs = βt and hence (α/β)t+s = 1 which we did not allow
in the definition.

To deal with vanishing two-term subsums we use the following lemma.

Lemma 14. For fixed non-zero complex numbers a, b and c either there exists at most one
solution x, y ∈ Z to ax = cby or a and b are multiplicatively dependent.

Proof. Assume that two distinct solutions x, y and x′, y′ exist. Then we have

ax

by
= c =

ax
′

by′
,

hence
ax−x′

= by−y′ .

Thus a and b are multiplicatively dependent, since by assumption at least one exponent does
not vanish.

In view of Lemma 13, we are left to deal with vanishing subsums, which may occur in
equation (4). Of course, no one-term vanishing subsum exists. First, consider two term
vanishing subsums.

Lemma 15. There are at most 3A(3, 2) + 30 three term arithmetic progressions in a Lucas
sequence (un)

∞
n=0 of the first kind or a Lucas sequence (vn)

∞
n=0 of the second kind that yield

a solution to (4) such that a two term subsum vanishes.

Proof. First, we consider the Lucas sequences (un)
∞
n=0 of the first kind. In this case, there

exist exactly 15 possible vanishing two-term subsums in equation (4). We can divide these
15 subsums into five classes, namely

Case I x1 = −x2, y1 = −y2,

Case II x1 = y2, x2 = y1,

12



Case III x1 = 2x3, x2 = 2x3, y1 = 2y3, y2 = 2y3,

Case IV x1 = −2y3, x2 = −2y3, y1 = −2x3, y2 = −2x3.

Case V x1 = y1, x2 = y2, x3 = y3,

For each one we pick an equation and discuss it in detail. Since one can treat the other
equations in the same class by exactly the same arguments, we do not discuss them.

Case I: The equation x1 = −x2 implies that αk = −αm and we get αk−m = −1. Thus α
and hence β are roots of unity, which is excluded.

Case II: The equation x1 = y2 implies that αk = βm, i.e., α and β are multiplicatively
dependent, which cannot be the case.

Case III: The equation x1 = 2x3 implies that αk = 2αl, i.e., αk−l = 2. Thus α = ±
√
2 or

α = 2, both a contradiction to our assumption that α is imaginary quadratic.

Case IV: If x1 = −2y3 we get the equation αk = −2βl and an by an application of Lemma
14 there exists at most one pair (k, l) satisfying αk = −2βl or α and β are multiplicatively
dependent. The latter is not possible. However, if the pair (k, l) is fixed then ul and uk

and therefore also um is fixed. Due to Lemma 11 there are at most three possiblities for
m, i.e., there are at most three ways to extend the pair (k, l) to a triple (k, l,m) such that
uk < ul < um is an arithmetic progression.

Case V: If x1 = y1, then we have αk = βk and therefore (α/β)k = 1. Hence α/β is a root
of unity unless k = 0.

So far we have proved that one of the following statements holds:

• we obtain at most 12 additional solutions coming from Case IV,

• klm = 0.

Concerning the last case we assume that k = 0 first. We get the S-unit equation

x2 − 2x3 = y2 − 2y3. (9)

By the same arguments as in the proof of Lemma 13 we obtain that there are at most
A(3, 2) three term arithmetic progressions which come from non-degenerate solutions of (9).
Further, we have two vanishing two term subsums falling into Case III, two falling into Case
IV and two into Case V. Case III yields no additional solution. Case IV yields at most 3
additional solutions, hence in total at most six additional solutions. Finally, note that in
Case V we can now exclude that l or m vanishes, otherwise we would obtain k = l or k = m
and we get no additional solution. Thus k = 0 yields at most A(3, 2)+6 additional solutions.

By the same arguments it is possible to treat the cases of l = 0 and m = 0. We omit the
details. However, the case that klm = 0 yields at most 3A(3, 2) + 18 additional solutions.
Therefore we have at most 3A(3, 2) + 30 solutions.
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Let us note that the proof of Lemma 15, in particular its last part, shows the following.

Lemma 16. There are at most A(3, 2) + 6 three term arithmetic progressions uk < ul < um

in a Lucas sequence of the first or second kind such that k = 0. The same statements hold,
if we replace k = 0 by m = 0 or l = 0, respectively.

Since a vanishing four term or five term subsum implies a two term or one term vanishing
subsum, respectively, we are left to consider vanishing three term subsums.

Lemma 17. At least one of the following statements holds:

• There are at most 18A(2, 2)+9 three term arithmetic progressions in a Lucas sequence
of the first or second kind that yield a solution to (4) such that a three term subsum
vanishes,

• or α and β are quadratic irrational numbers and if uk < ul < um is an arithmetic
progression, then the companion polynomial of the Lucas sequence (un)

∞
n=0 of the first

kind divides Xk − 2X l +Xm,

• or α and β are quadratic irrational numbers and if vk < vl < vm is an arithmetic
progression, then the companion polynomial of the Lucas sequence (vn)

∞
n=0 of the second

kind divides Xk − 2X l +Xm.

Proof. Let us consider the case of Lucas sequences of the first kind. Lucas sequences of the
second kind can be treated by the same means.

There are 20 possible, different vanishing three term subsums of (4). These appear in
pairs and we can differentiate three different types:

I : x1 + x2 − 2x3 = 0, 0 = y1 + y2 − 2y3,

II : x1 + x2 = y1, −2x3 = y2 − 2y3,

II : x1 + x2 = y2, −2x3 = y1 − 2y3,

III : x1 + x2 = −2y3, −2x3 = y1 + y2,

II : x1 − 2x3 = y1, x2 = y2 − 2y3,

III : x1 − 2x3 = y2, x2 = y1 − 2y3,

II : x1 − 2x3 = −2y3, x2 = y1 + y2,

II : x1 = y1 + y2, x2 − 2x3 = −2y3,

II : x1 = y1 − 2y3, x2 − 2x3 = y2,

III : x1 = y2 − 2y3, x2 − 2x3 = y1.

Let us take the equations of type II first. Pick the first pair of equations in the list above
(the other cases run completely analogously). Consider the left hand side equation

x1 + x2 = y1. (10)
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By the theory of S-unit equations there are at most A(2, 2) pairs (c1, c2) such that x1/y1 =
(α/β)k = c1 and x2/y1 = αm/βk = c2. These two relations determine the pair (k,m)
uniquely. Hence there are at most A(2, 2) pairs (k,m) that fulfill the equation. With the
pair (k,m) fixed, the value of ul is fixed as well and by Lemma 11 there are at most three
ways to extend the pair (k, l) to a triple (k, l,m) such that uk < ul < um is an arithmetic
progression. We deduce that there exist at most 3A(2, 2) triples (k, l,m) satisfying a pair of
equations of type II.

Consider now equations of type I. Rewriting the two equations we get αk + αm − 2αl =
0 = βk + βm − 2βl. Thus in this case, the minimal polynomial of α and β, which is also the
companion polynomial of the sequence, divides Xk − 2X l +Xm.

Finally, we turn to equations of type III and consider the first equation of this type in
detail. We can handle the others similarly. Assume for the moment that there exists a prime
ideal p with p ∤ (2) and vp(α) > 0. Let p2 be a prime ideal lying above (2) and suppose
that m > k. We consider the equation x1 + x2 = −2y3 from a p-adic point of view. Write
vp(α) = ξp and vp(β) = ηp. Since the two smallest p-adic valuations of the summands have
to coincide, we have vp(x2) = kξp = lηp = vp(2y3). Considering p2-adic valuations we obtain
kξp2 = lηp2 + δ, where δ = 1, 2 depending on whether (2) is ramified or not. We get the
following system of linear equations

kξp2 − lηp2 = δ

kξp − lηp = 0

which has either no solution or at most one solution. Note that by assumption ξp > 0. Thus
in this case, equations of type III yield at most one pair (k, l) that extends to a triple (k, l,m)
such that uk < ul < um is an arithmetic progressions. Hence by Lemma 11 we have at most
three additional three term arithmetic progression.

If vp(α) = 0, but vp(β) > 0, then we take the equation −2x3 = y1 + y2 instead and draw
the same conclusions.

In view of the paragraph above, we may assume that the only prime ideals dividing (α)
and (β) are lying above (2). We distinguish now whether (2) splits, ramifies or is inert above
K.

We start with the case when (2) is inert, i.e., (2) is a prime in K. Then (α) = (2)x and
(β) = (2)y with some non-negative integers x, y. Since α and β are conjugate, we get x = y.
Hence α/β is a unit. However, recalling that α, β are from a quadratic imaginary field, this
yields that α/β is a root of unity, which is a contradiction.

One may prove the case where (2) ramifies by similar means as the inert case. In this
case,we have (2) = p2 with some prime ideal p. Note that p need not be principal although
p2 is principal. Thus (α) = px and (β) = py with some non-negative integers x, y. Taking
norm, we get x = y, and similarly as above we obtain that α/β is a root of unity, which is
impossible.

Finally, let us consider the case when (2) splits, that is, we can write (2) = p1p2. Assume
that (α) = p

ξ
1p

η
2, then (β) = p

η
1p

ξ
2. Considering the equation x1 + x2 = −2y3 from a p1-adic
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and a p2-adic viewpoint, respectively we get the following system of linear equations under
the assumption that m > k:

vp1(x2) = kξ = lη + 1 = vp1(2y3),

vp2(x2) = kη = lξ + 1 = vp2(2y3).
(11)

Note that we obtained this system due to the fact that the smallest p-adic valuations must
coincide. Solving the linear system (11) yields k(ξ2 − η2) = (ξ − η). Therefore either ξ = η
or k(ξ + η) = 1. The first case yields α = 2ξǫ and β = 2ξǫ−1 for some unit ǫ which yields
that α/β = ǫ2 is a root of unity, a contradiction. When k(ξ + η) = 1 we have k = 1 and
(ξ, η) = (0, 1), (1, 0). In any case, we obtain from the linear system (11) that l = −1, a
contradiction to our assumption that k, l,m are nonnegative integers.

So we are left with the problem which quadratic polynomials divide Xk − 2X l +Xm. In
particular, we may assume that the companion polynomial is irreducible, otherwise α and β
would be rational integers which case is covered by Theorem 5. We need to find all quadratic
factors of polynomials of the type:

• Xa − 2Xb + 1 or

• Xa +Xb − 2 or

• 2Xa −Xb − 1.

Since all zeros of the first polynomial are units, and all the zeros of the third polynomial
are either non-integral algebraic numbers or units, it is enough to study polynomials of the
form Xa +Xb − 2 only.

We state the following result due to Pintér and Ziegler [13, Lemma 3].

Lemma 18. Let a > b > 0 ∈ Z and let f(X) = Xa + Xb − 2 be a polynomial. Then
f(X) = h(X)g(X) factors into the monic polynomials h(X) and g(X) over Z, where the
only zeros of h(X) are roots of unity and g(X) is irreducible. Further, h(X)|Xgcd(a,b) ± 1.

We are interested in finding the quadratic factors of Xa + Xb − 2. By Lemma 18 we
only have to consider the cases (a, b) = (3, 2), (3, 1), (2, 1) or (4, 2). Thus the companion
polynomial is either X2 + 2X + 2 or X2 +X + 2 or X2 + 2.

Since X2 + X + 2 is the only polynomial with negative discriminant which is also a
companion polynomial of a non-degenerate binary recurrence, we obtain that either (A,B) =
(−1,−2) or there are at most A(5, 2) three term arithmetic progressions coming from non-
degenerate solutions to (4) (cf. Lemma 13), 3A(3, 2)+30 three term arithmetic progressions
coming form two term vanishing subsums of (4) (cf. Lemma 15) and 18A(2, 2) + 9 three
term arithmetic progressions coming form three term vanishing subsums of (4) (cf. Lemma
17). We summarize these results.
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Proposition 19. Let u = (un)
∞
n=0 and v = (vn)

∞
n=0 be Lucas sequences of the first and second

kind corresponding to the pair (A,B) with A2 + 4B < 0. Then u and v admit at most

C = A(5, 2) + 3A(3, 2) + 18A(2, 2) + 39

three term arithmetic progressions unless u or v correspond to (A,B) = (−1,−2) respectively.
In case of (A,B) = (−1,−2), the recurrences u and v admit infinitely many three term
arithmetic progressions.

Remark 20. Since X2 +X +2|X3 +X − 2, we get that uk < ul < um and vk < vl < vm with
(k, l,m) = (t + 1, t, t + 3) yield infinite families of three term arithmetic progressions in u
and v, respectively.

Theorem 3 is now an easy Corollary of Proposition 19. Indeed, due to a result of Schlick-
ewei and Schmidt [14], we know that A(k, s) ≤ 235B

3

d6B
2

, where B = max{k + 1, s} and
d = [K : Q], hence

C ≤ A(5, 2) + 3A(3, 2) + 18A(2, 2) + 39 < 6.45 · 102340.
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[7] A. Dujella, A. Pethő, and P. Tadić, On arithmetic progressions on Pellian equations,
Acta Math. Hungar. 120 (2008), 29–38.

17

https://cs.uwaterloo.ca/journals/JIS/VOL6/Campbell/campbell4.html
https://cs.uwaterloo.ca/journals/JIS/VOL20/Moody/moody7.html


[8] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences,
Vol. 104 of Mathematical Surveys and Monographs, American Mathematical Society,
2003.

[9] J.-H. Evertse, H. P. Schlickewei, and W. M. Schmidt, Linear equations in variables
which lie in a multiplicative group, Ann. of Math. (2) 155 (2002), 807–836.
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