

Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.6

On The Pfaffians and Determinants of Some Skew-Centrosymmetric Matrices

Fatih Yılmaz Polatlı Arts and Sciences Faculty Gazi University 06900 Ankara Turkey fatihyilmaz@gazi.edu.tr

Tomohiro Sogabe Graduate School of Engineering Nagoya University Nagoya, 464-8603 Japan

sogabe@na.cse.nagoya-u.ac.jp

Emrullah Kırklar Polatlı Arts and Sciences Faculty Gazi University 06900 Ankara Turkey e.kirklar@gazi.edu.tr

Abstract

This paper shows that the Pfaffians and determinants of some skew centrosymmetric matrices can be computed by a paired two-term recurrence relation, or a general number sequence of second order. As a result, the complexities of the formulas are of order n. Furthermore, the formulas have no divisions at all, i.e., they fall into the class of breakdown-free algorithms.

1 Introduction

The determinant is one of the basic parameters in matrix theory. The determinant of a square matrix $A = (a_{i,j}) \in \mathbb{C}^{n \times n}$ is defined as

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)},$$

where the symbol S_n denotes the group of permutations of sets with n elements and the symbol $sgn(\sigma)$ denotes the signature of $\sigma \in S_n$.

The *Pfaffian* of a skew-symmetric matrix $A = (a_{i,j}) \in \mathbb{C}^{2k \times 2k}$ is defined by

$$\operatorname{Pf}(A) = \frac{1}{2^k k!} \sum_{\sigma \in S_{2k}} \operatorname{sgn}(\sigma) \prod_{i=1}^k a_{\sigma(2i-1), \sigma(2i)},\tag{1}$$

and is closely related to the determinant. In fact, Cayley's theorem states that the square of the Pfaffian of a matrix is equal to the determinant of the matrix, i.e.,

$$\det(A) = \operatorname{Pf}(A)^2$$

Matrix A is called a *centrosymmetric* matrix if $A = JAJ^{-1}$, where J is the anti-diagonal matrix whose anti-diagonal elements are one with all others being zero. If $A = -JAJ^{-1}$, the matrix is said to be *skew-centrosymmetric*. Skew-centrosymmetric matrices arise in many fields of science including numerical solutions of certain differential equations, digital signal processing, information theory, statistics, linear systems theory, and some Markov processes [1, 2, 3, 4, 5, 6].

In general, the complexities of the Pfaffian and the determinant are of the order $\mathcal{O}(n^3)$. This paper describes efficient computational formulas for the Pfaffians and determinants of special matrices for which the complexities of the formulas are of the order $\mathcal{O}(n)$. The formulas have no divisions at all, i.e., the formulas fall into the class of breakdown-free algorithms.

2 Pfaffians of skew-centrosymmetric matrices

Definition 1. $A_n = (a_{i,j})$ and $B_n = (b_{i,j})$ denote *n*-by-*n* matrices with the following elements:

$$a_{i,j} = \begin{cases} a, & \text{if } j = i+1; \\ -a, & \text{if } i = j+1; \\ 0, & \text{otherwise,} \end{cases}$$

$$b_{i,j} = \begin{cases} (-1)^{i+1}b, & \text{if } i+j=n+1; \\ 0, & \text{otherwise,} \end{cases}$$

where $1 \le i, j \le n$.

Definition 2. \mathcal{F}_n and \mathcal{G}_n denote 2-by-2 block matrices of the following form:

$$\mathcal{F}_n = \begin{pmatrix} A_k & B_k \\ (-1)^k B_k & A_k \end{pmatrix}, \quad \mathcal{G}_n = \begin{pmatrix} A_k & -B_k \\ (-1)^{k+1} B_k & A_k \end{pmatrix},$$

where n = 2k.

For example, if n = 10, it follows from Definition 2 that

We now describe algorithms for computing the Pfaffians of \mathcal{F}_n and \mathcal{G}_n . **Theorem 3.** Let $\{f_n\}$ and $\{g_n\}$ be the recursively defined sequences below:

$$f_n = bg_{n-1} + a^2 f_{n-2} \quad for \quad f_1 = b,$$

$$g_n = -bf_{n-1} + a^2 g_{n-2} \quad for \quad g_1 = -b$$

Then, for n = 2k, we obtain

$$f_k = \operatorname{Pf}(\mathcal{F}_n) \quad and \quad g_k = \operatorname{Pf}(\mathcal{G}_n),$$

where $f_{-1} = 0$, $f_0 = 1$ and $g_{-1} = 0$, $g_0 = 1$.

Proof. The proof is done by induction on k. For k = 1,

$$\mathcal{F}_2 = \begin{pmatrix} A_1 & B_1 \\ -B_1 & A_1 \end{pmatrix} = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \text{ and } \mathcal{G}_2 = \begin{pmatrix} A_1 & -B_1 \\ B_1 & A_1 \end{pmatrix} = \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}.$$

The definition of the Pfaffian in (1) clearly indicates that $Pf(\mathcal{F}_2) = b$ and $Pf(\mathcal{G}_2) = -b$. Thus, $f_1 = b = Pf(\mathcal{F}_2), g_1 = -b = Pf(\mathcal{G}_2)$. Let us assume that the recurrence relations hold for all $t \leq k$. Then we show that they hold for k = t + 1.

$$\mathcal{F}_{2t+2} = \begin{pmatrix} A_{t+1} & B_{t+1} \\ \hline (-1)^{t+1}B_{t+1} & A_{t+1} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & a & 0 & \cdots & 0 & b \\ \hline -a & & & 0 \\ 0 & A_t & -B_t & \vdots \\ \vdots & (-1)^{t+1}B_t & A_t & 0 \\ \hline 0 & & & a \\ \hline -b & 0 & \cdots & 0 & -a & 0 \end{pmatrix}.$$
(2)

From the expansion formula along with 2t + 2 column of (2), it follows that

$$Pf(\mathcal{F}_{2t+2}) = bPf(\mathcal{G}_{2t}) + aPf(\mathcal{M}_{2t}) = bg_t + aPf(\mathcal{M}_{2t}),$$
(3)

where

$$\mathcal{M}_{2t} = \begin{pmatrix} 0 & a & 0 & \cdots & \cdots & 0 \\ -a & 0 & a & 0 & \cdots & 0 \\ \hline 0 & a & & & & \\ \vdots & 0 & A_{t-1} & B_{t-1} \\ \vdots & \vdots & (-1)^{t-1} B_{t-1} & A_{t-1} \\ 0 & 0 & & & \end{pmatrix}.$$
(4)

From the expansion formula along with the first row of (4), it follows that

$$Pf(\mathcal{M}_{2t}) = aPf(\mathcal{F}_{2t-2}) = af_{t-1}.$$
(5)

From (3) and (5), we have

$$f_{t+1} = bg_t + a^2 f_{t-1}.$$

The recurrence relation for g_{t+1} can be obtained similarly.

Corollary 4. $f_n = (-1)^{n-1} b f_{n-1} + a^2 f_{n-2}$ with $f_{-1} = 0$ and $f_1 = 1$.

Corollary 4 shows that the computational costs of $Pf(\mathcal{F}_n)$ and $det(\mathcal{F}_n)(=Pf(\mathcal{F}_n)^2)$ are of the order $\mathcal{O}(n)$. Furthermore, the recurrences in Corollary 4 have no divisions. Thus, no breakdown occurs during the computation.

3 Determinant of the skew-centrosymmetric matrix

In this section, we consider the determinant of the matrix \mathcal{F}_n with n = 2k. It is well known from [3] that the determinant of the 2-by-2 block matrix holds

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(AD - CB)$$

if AC = CA. Applying the above formula to \mathcal{F}_n in Definition 2, the determinant of matrix \mathcal{F}_n equals that of $\mathcal{T}_k := A_k^2 - (-1)^k B_k^2$. Thus, we have

$$|\mathcal{F}_n| = |\mathcal{T}_k| = \det \begin{pmatrix} -a^2 + b^2 & 0 & a^2 & & \\ 0 & -2a^2 + b^2 & 0 & \ddots & \\ a^2 & 0 & \ddots & \ddots & a^2 \\ & \ddots & \ddots & -2a^2 + b^2 & 0 \\ & & a^2 & 0 & -a^2 + b^2 \end{pmatrix}_{k \times k}$$

The matrix \mathcal{T}_k belongs to the set of k-tridiagonal matrices. Sogabe and El-Mikkawy [8] considered a fast block diagonalization of k-tridiagonal matrices using permutation matrices. Exploiting the block diagonalization method, we can rearrange the matrix \mathcal{T}_k as below.

(i) We consider the case where k is odd. Let us define the following matrices:

$$H_{\frac{k-1}{2}} = (h_{i,j}) = \begin{cases} -2a^2 + b^2, & \text{if } i = j; \\ a^2, & \text{if } i = j+1 \text{ or } j = i+1; \\ 0, & \text{otherwise} \end{cases}$$

and

$$K_{\frac{k+1}{2}} = (k_{i,j}) = \begin{cases} -a^2 + b^2, & \text{if } i = j = 1 \text{ or } i = j = \frac{k+1}{2}; \\ -2a^2 + b^2, & \text{if } i = j = 2 \dots \frac{k-1}{2}; \\ a^2, & \text{if } i = j+1 \text{ or } j = i+1; \\ 0, & \text{otherwise.} \end{cases}$$

Then,

$$P^T \mathcal{T}_k P = \left(\begin{array}{c|c} H_{\frac{k-1}{2}} & 0\\ \hline 0 & K_{\frac{k+1}{2}} \end{array} \right),$$

where the permutation matrix P is determined by using the method in [8]. Obviously,

$$\det(P^T \mathcal{T}_k P) = \det \mathcal{T}_k = \det \mathcal{F}_n = \det(H_{\frac{k-1}{2}}) \det(K_{\frac{k+1}{2}}).$$

(ii) We consider the case where k is even. Let us define

$$N_{\frac{k}{2}} = (n_{i,j}) = \begin{cases} -a^2 + b^2, & \text{if } i = j = \frac{k}{2}; \\ -2a^2 + b^2, & \text{if } i = j = 1 \dots \frac{k}{2} - 1; \\ a^2, & \text{if } i = j + 1 \text{ or } j = i + 1; \\ 0, & \text{otherwise} \end{cases}$$

and

$$Q_{\frac{k}{2}} = (q_{i,j}) = \begin{cases} -a^2 + b^2, & \text{if } i = j = 1; \\ -2a^2 + b^2, & \text{if } i = j = 2 \dots \frac{k}{2}; \\ a^2, & \text{if } i = j + 1 \text{ or } j = i + 1; \\ 0, & \text{otherwise.} \end{cases}$$

Then,

$$P^T \mathcal{T}_k P = \left(\begin{array}{c|c} N_{\frac{k}{2}} & 0\\ \hline 0 & Q_{\frac{k}{2}} \end{array} \right).$$

Obviously,

$$\det(P^T \mathcal{T}_k P) = \det \mathcal{T}_k = \det \mathcal{F}_n = \det(N_{\frac{k}{2}}) \det(Q_{\frac{k}{2}}).$$

It can be seen that $\det(N_{\frac{k}{2}}) = \det(Q_{\frac{k}{2}})$.

El-Mikkawy [9] obtained two-term recurrence relation for the determinants of tridiagonal matrices, i.e.,

	d_1	a_1	0		0	
	b_2	d_2	a_2	·	÷	
$v_i =$	0	b_3	d_3	·	0	,
	÷	۰.	۰.	۰.	a_{i-1}	
	0		0	b_i	d_i	

where $v_i = d_i v_{i-1} - b_i a_{i-1} v_{i-2}$ for $v_0 = 1$ and $v_{-1} = 0$. Using this relation and the Laplace expansion, we obtain the result. If k is even, then

$$\det(N_{\frac{k}{2}}) = \det(Q_{\frac{k}{2}}) = (-a^2 + b^2)w_{\frac{k}{2}-1} - a^4w_{\frac{k}{2}-2}.$$

If k is odd, then

$$\det(K_{\frac{k+1}{2}}) = \left(-a^2 + b^2\right)^2 w_{\frac{k-3}{2}} - 2a^4(-a^2 + b^2)w_{\frac{k-5}{2}} + a^8 w_{\frac{k-7}{2}},$$
$$\det(H_{\frac{k-1}{2}}) = w_{\frac{k-1}{2}},$$

where

$$w_i = \begin{vmatrix} -2a^2 + b^2 & a^2 & \dots & 0 \\ a^2 & -2a^2 + b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a^2 \\ 0 & \dots & a^2 & -2a^2 + b^2 \end{vmatrix}.$$

Here $w_i = (-2a^2 + b^2)w_{i-1} - a^4w_{i-2}$ for $w_0 = 1$ and $w_{-1} = 0$.

Consequently, for n = 2k, we obtain

(i) If k is odd,

$$\det \mathcal{F}_n = \det \mathcal{T}_k$$
$$= w_{\frac{k-1}{2}} \left(\left(-a^2 + b^2 \right)^2 w_{\frac{k-3}{2}} - 2a^4 (-a^2 + b^2) w_{\frac{k-5}{2}} + a^8 w_{\frac{k-7}{2}} \right).$$

(ii) If k is even, det
$$\mathcal{F}_n = \det \mathcal{T}_k = \left((-a^2 + b^2) w_{\frac{k}{2} - 1} - a^4 w_{\frac{k}{2} - 2} \right)^2$$
.

4 Examples

Some examples of the Pfaffian and the determinant of the matrix \mathcal{F}_n (n = 2k) are shown in the following tables. Here F_n , P_n , and J_n are the *n*th Fibonacci, Pell, and Jacobsthal numbers, respectively.

	a=i,b=1	a=i,b=2	$a = i\sqrt{2}, b = 1$
k	$\operatorname{Pf}(\mathcal{F}_{2k})$	$\operatorname{Pf}(\mathcal{F}_{2k})$	$\operatorname{Pf}(\mathcal{F}_{2k})$
1	$F_2 = 1$	$P_2 = 2$	$J_2 = 1$
2	$-F_3 = -2$	$-P_3 = -5$	$-J_3 = -3$
3	$-F_4 = -3$	$-P_4 = -12$	$-J_4 = -5$
4	$F_{5} = 5$	$P_5 = 29$	$J_5 = 11$
5	$F_{6} = 8$	$P_{6} = 70$	$J_6 = 21$
6	$-F_7 = -13$	$-P_7 = -169$	$-J_7 = -43$
7	$-F_8 = -21$	$-P_8 = -408$	$-J_8 = -85$
8	$F_9 = 34$	$P_9 = 985$	$J_9 = 171$
÷	:	÷	÷
$\equiv 0,1 \pmod{4}$	F_{k+1}	P_{k+1}	J_{k+1}
$\equiv 2,3 \pmod{4}$	$-F_{k+1}$	$-P_{k+1}$	$-J_{k+1}$

Examples of the Pfaffians

	a=i, b=1	a=i, b=2	$a = i\sqrt{2}, b = 1$
k	$\det\left(\mathcal{F}_{2k}\right)$	$\det\left(\mathcal{F}_{2k}\right)$	$\det\left(\mathcal{F}_{2k}\right)$
1	F_2^2	P_{2}^{2}	J_2^2
2	F_{3}^{2}	P_{3}^{2}	J_3^2
3	F_4^2	P_4^2	J_4^2
4	F_{5}^{2}	P_{5}^{2}	J_5^2
5	F_{6}^{2}	P_{6}^{2}	J_6^2
6	F_{7}^{2}	P_{7}^{2}	J_{7}^{2}
7	F_{8}^{2}	P_{8}^{2}	J_{8}^{2}
8	F_{9}^{2}	P_{9}^{2}	J_{9}^{2}
÷	:	:	÷
t	F_{t+1}^{2}	P_{t+1}^{2}	J_{t+1}^2

Examples of the determinants

5 Acknowledgment

This work has been supported in part by JSPS KAKENHI (Grant No. 26286088).

The authors sincerely appreciate the referee's comments that enhanced the quality of the manuscript.

References

- [1] A. L. Andrew, Centrosymmetric matrices, SIAM Rev. 40 (1988), 697–698.
- [2] A. L. Andrew, Eigenvectors of certain matrices, Lin. Alg. Appl. 7 (1973), 151–162.
- [3] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer, 1999.
- [4] L. Datta and S. Morgera, On the reducibility of centrosymmetric matrices- applications in engineering problems, *Circ. Syst. Signal. Pr.* 8 (1989), 71–96.
- [5] M. El-Mikkawy and F. Atlan, On solving centrosymmetric linear systems, Appl. Math. 4 (2013), 21–32.
- [6] J. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, *Amer. Math. Monthly* **92** (1985), 711–717.
- [7] R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

- [8] T. Sogabe and M. El-Mikkawy, Fast block diagonalization of k-tridiagonal matrices, Appl. Math. Comput. 218 (2011), 2740–2743.
- [9] M. El-Mikkawy, A note on a three-term recurrence for a tridiagonal matrix, Appl. Math. Comput. 139 (2003), 503–511.

2010 Mathematics Subject Classification: Primary 15A15; Secondary 15A23. Keywords: Pfaffian, determinant, skew-centrosymmetric matrix.

(Concerned with sequences <u>A000045</u>, <u>A000129</u>, <u>A001045</u>.)

Received June 20 2016; revised versions received July 8 2016; January 18 2017; February 2 2017. Published in *Journal of Integer Sequences*, February 11 2017.

Return to Journal of Integer Sequences home page.