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Abstract

In this paper we define the notion of singular composition of a positive integer.
We provide a characterization of these compositions, together with methods for de-
composing and also extending a singular composition in terms of other singular com-
positions. Consecutive extensions of particular compositions determine sequences of
integers which coincide with classical integer sequences involving Fibonacci and Lucas
numbers.

1 Introduction

Let k, n be integers where 1 ≤ k ≤ n, and let α = (a1, a2, . . . , ak) denote a composition of n
into k parts [3]. We call α (h, i)-singular if

(a1, a2, . . . , ai + ai+1, . . . , ak) = (a1+h, a2+h, . . . , ai+h + ai+1+h, . . . , ak+h), (1)

where 1 ≤ h ≤ k − 1, 1 ≤ i ≤ k and the indices are modulo k. Note that shifting a (h, i)-
singular composition of one position to the right, we obtain a (h, i+1)-singular composition.
Consequently, the choice of a single index i is sufficient for identifying such compositions.

∗ Work partially supported by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca).
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Thus we fix i = 1 and we call the composition α = (a1, a2, . . . , ak) h-singular if

(a1 + a2, a3, . . . , ak) = (a1+h + a2+h, a3+h, . . . , ak+h). (2)

A k-composition of n is singular when it is h-singular for a suitable value of 1 ≤ h ≤ k−1.

Example 1. The 5-composition (1, 2, 2, 1, 2) of n = 8 is 2-singular.

Kramer [2] used singular compositions in order to define the middle levels partition graph
of n.

The concatenation of the compositions α = (a1, a2, . . . , ak) and β = (b1, b2, . . . , bh) of the
positive integers n and m respectively is the composition αβ = (a1, a2, . . . , ak, b1, b2, . . . , bh)
of n +m. We let αi denote the concatenation of α with itself i times. A composition α is
periodic if α = πj, where 1 < j ≤ k and π is a suitable composition.

Fibonacci and Lucas numbers will appear in some of our results. Recall that the Fibonacci
sequence (Fn)n≥0 is defined by setting F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, for n ≥ 2.
The Lucas sequence (Ln)n≥0 is defined by setting L0 = 2, L1 = 1 and Ln = Ln−1 +Ln−2, for
n ≥ 2.

The paper is outlined as follows. In Section 2 we determine a characterization of aperiodic
singular compositions which allows us to obtain a method for constructing such compositions
(Theorem 11). In Section 3 we study decompositions (Theorem 14) and also extensions
(Theorem 18) of a singular composition in terms of other singular compositions. In Section
4 we prove that consecutive extensions of particular compositions determine sequences of
integers which coincide with classical sequences involving Fibonacci and Lucas numbers. We
conclude the paper by posing a more general definition of singular composition together with
an open problem.

2 A characterization of singular compositions

Let α be an h-singular k-composition of n; from (2) it follows that (a3, . . . , ak) = (a3+h, . . . , ak+h).
This equality determines the function fh : {3, 4, . . . , k} → {3+h, 4+h, . . . , k+h} on the

indices of the elements of previous sequences such that

fh(i) = i+ h,

where 3 ≤ i ≤ k and the integers are modulo k. We may represent fh in two-line notation

(

3 4 · · · k

3 + h 4 + h · · · k + h

)

. (3)

Note that the second line is obtained by shifting of h positions to the left the elements of the
sequence (1, 2, 3, 4, . . . , k) and ignoring the first two elements 1+h and 2+h. A consequence
is that the elements 1 and 2, which do not belong to the first line, belong to the second one,
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except for h = 1 and h = k − 1. Indeed for h = 1 the second line contains 1, but not 2; for
h = k − 1 the second line contains 2, but not 1. In a similar way, the elements 1 + h and
2 + h do not belong to the second line while they belong to the first one, except for h = 1
and h = k − 1.

Proposition 2. An h-singular k-composition of n, where h and k are not coprime, is peri-
odic.

Proof. Let gcd(k, h) = t > 1, where h = th′, k = tk′ and gcd(k′, h′) = 1. Note that the sets
Hi = {i, i+h, . . . , i+(k′−1)h}, 1 ≤ i ≤ t, determine a partition of the set [k]. Then, for an h-
singular k-composition α = (a1, a2, . . . , ak), the elements of the sets {ai, ai+h, . . . , ai+(k′−1)h},
1 ≤ i ≤ t, coincide and α turns out to be the concatenation (a1, a2, . . . , at)

k′ .

Throughout the paper we consider only aperiodic compositions.
Beggas et al. [1] proved that a particular bijection, called widened permutation, between

two n-sets having n − 1 elements in common has a decomposition into a linear order and
a possible permutation. In this case we have a similar function in which the two sets have
n− 2 elements in common, but for h = 1 and h = k − 1.

Lemma 3. Let h, k be coprime integers, where 1 ≤ h ≤ k − 1. The function fh does not
contain cycles.

Proof. By way of contradiction we assume there is a cycle

C = (d, d+ h, . . . , d+ (r − 1)h),

where 1 ≤ d ≤ k and d + rh ≡ d (mod k). This means that rh ≡ 0 (mod k) and therefore
k divides rh. Then, because gcd(k, h) = 1, k divides r. The unique possibility is r = k; so
the cycle contains all the elements. But this implies the impossible condition that also every
line of (3) contains all the elements.

Theorem 4. Let h, k be coprime integers, where 1 ≤ h ≤ k − 1. The function fh is
decomposed into the linear orders:

1.
Eh = (1 + h, 1 + 2h, . . . , 1 + rh) (4)

and
Fh = (2 + h, 2 + 2h, . . . , 2 + sh), (5)

where r = h−1, s = (k − 1)h−1 in Zk, for h 6= 1, k − 1;

2. E1 = (2) and F1 = (3, 4, . . . , k, 1), for h = 1;

3. Ek−1 = (k, k − 1, . . . , 2) and Fk−1 = (1), for h = k − 1.
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Proof. Let h 6= 1, k−1. Starting from 1+h we obtain the sequence (1+h, 1+2h, . . . , 1+rh =
a), where a is one of the two elements which are in the second but not in the first line. So
we have either a = 1 or a = 2. If a = 1, we obtain the impossible relation rh ≡ 0 (mod k).
If a = 2, we obtain rh ≡ 1 (mod k), which is satisfied for r = h−1 in Zk. Now starting from
2+h we obtain the sequence (2+h, 2+2h, . . . , 2+ sh = b), where either b = 1 or b = 2. The
unique possibility is b = 1, which holds for s = (k − 1)h−1 in Zk. By Lemma 3 the function
does not contain cycles; therefore it is decomposed into the previous linear orders.

Now let h = 1. The function f1 is decomposed into F1 = (3, 4, . . . , k, 1) and E1 = (2). In
the case h = k − 1, fk−1 is decomposed into Ek−1 = (k, k − 1, . . . , 2) and Fk−1 = (1). This
completes the proof of the theorem.

In the following we let Eh and Fh also denote the sets of the elements of the assigned
linear orders.

Corollary 5. For every 1 ≤ h ≤ k−1 such that gcd(k, h) = 1, Eh∪Fh = [k] and, for k > 2,
| Eh |6=| Fh |.
Proof. If k− h−1 = h−1, then k = 2h−1 and kh = 2 in Zk. This implies that 2 ≡ 0 (mod k),
a contradiction for k > 2.

Lemma 6. Let h1, h2 be two integers such that 1 ≤ h1 < h2 ≤ k − 1 and gcd(k, h1) =
gcd(k, h2) = 1. Then Eh1

6= Eh2
and Fh1

6= Fh2
.

Proof. The cardinalities of Eh1
and Eh2

coincide with h−1
1 and h−1

2 in Zk respectively. Because
h1 < h2, their inverses are distinct; then also the sets Eh1

and Eh2
are distinct. The same

argument applies for Fh1
and Fh2

.

The following result is straightforward.

Corollary 7. If k is a prime integer, then all the sets Eh (respectively Fh), 1 ≤ h ≤ k − 1,
are distinct.

Note that when k and h are coprime, then also k and k−h are coprime. In the following
result we establish a relation between Ek−h (respectively Fk−h) and Fh (respectively Eh).

Proposition 8. For every 1 ≤ h ≤ ⌊k
2
⌋ such that gcd(k, h) = 1, Ek−h = (Fh \ {1}) ∪ {2}

and Fk−h = (Eh \ {2}) ∪ {1}.
Proof. The result is easy to prove for h = 1. Let h′ = k − h. Since gcd(k, h) = 1, then
gcd(k, h′) = 1, Eh′ = {1+ h′, 1+ 2h′, . . . , 1+ (r′ − 1)h′, 2} and Fh′ = {2+ h′, 2+ 2h′, . . . , 2+
(s′ − 1)h′, 1}, where r′ = (h′)−1 and s′ = k − (h′)−1 in Zk.
Let s denote k − h−1 in Zk; it follows that

1 + k − h ≡ 2 + (s− 1)h (mod k).

Then 1+2(k−h) ≡ 2+(s−2)h and so on until 1+(s−1)(k−h) ≡ 2+h and 1+s(k−h) ≡ 2
(mod k). Thus Ek−h = {2 + (s− 1)h, 2 + (s− 2)h, . . . , 2 + h, 2} = (Fh \ {1}) ∪ {2}.

Moreover, 2 + k − h ≡ 1 + (r − 1)h (mod k), where r = h−1 in Zk; thus Fk−h =
{1 + (r − 1)h, 1 + (r − 2)h, . . . , 1 + h, 1} = (Eh \ {2}) ∪ {1}.
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Corollary 9. If α = (a1, a2, . . . , ak) is an aperiodic h-singular k-composition of n, then
every ai is equal to a1 or a2, 1 ≤ i ≤ k, as long as i ∈ Fh or i ∈ Eh respectively. Then a1
and a2 are distinct, and they satisfy the relation

(k − h−1)a1 + h−1a2 = n. (6)

Corollary 10. If an aperiodic composition contains more than two distinct elements, then
it is not singular.

Previous results allow us to give a characterization of singular compositions, which turns
out to be a method for their construction.

Theorem 11. Let h, k, n be positive integers such that 1 ≤ h < k ≤ n and gcd(k, h) = 1.
An aperiodic k-composition α = (a1, a2, . . . , ak) is h-singular if and only if a1 6= a2 and the
pair of elements (a1, a2) is a solution of the equation

(k − h−1)x1 + h−1x2 = n, (7)

where h−1, k−h−1 ∈ Zk, and each ai coincides with a1 or a2 for i ∈ Fh or i ∈ Eh respectively.

Proof. If α is h-singular, then by Corollary 9 the property holds.
Now let us assume that the pair of distinct integers (a1, a2) is solution of the equation (7) and
each ai coincides with a1 or a2 for i ∈ Fh or i ∈ Eh respectively. Hence, for h 6= 1, k− 1, the
composition α = (a1, a2, . . . , ak) which has the elements a1 and a2 in the positions given by
(5) and (4) respectively, is h-singular. Lastly, if h = 1, α = (a1, a2, a1, . . . , a1) is 1-singular,
while if h = k − 1, α = (a1, a2, . . . , a2) is (k − 1)-singular.

Example 12. The list of h-singular 9-compositions with a1 = 1 and a2 = 2 is

1. for h = 1, α1 = (1, 2, 1, 1, 1, 1, 1, 1, 1);

2. for h = 2, α2 = (1, 2, 2, 1, 2, 1, 2, 1, 2);

3. for h = 4, α4 = (1, 2, 2, 2, 2, 1, 2, 2, 2);

4. for h = 5, α5 = (1, 2, 1, 1, 1, 2, 1, 1, 1);

5. for h = 7, α7 = (1, 2, 1, 2, 1, 2, 1, 2, 1);

6. for h = 8, α8 = (1, 2, 2, 2, 2, 2, 2, 2, 2)

where the corresponding integers are n1 = 10, n2 = 14, n4 = 16, n5 = 11, n7 = 13 and
n8 = 17. Note that the compositions α5, α7 and α8 are obtained from α4, α2 and α1

respectively, by exchanging 1 with 2 after the first two positions.
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Let α = (a1, a2, . . . , ak) be an h-singular composition. By Proposition 8, it follows that by
exchanging a1 and a2 after the first two positions, we obtain a (k− h)-singular composition.
We now prove that by exchanging only the first two elements we obtain again a (k − h)-
singular composition.

Proposition 13. Let α = (a1, a2, . . . , ak) be an aperiodic h-singular composition of n, where
1 ≤ h ≤ k−1. Then α∗ = (a2, a1, a3, . . . , ak) is a (k−h)-singular composition of n, obtained
from α by rotation.

Proof. Consider the composition α∗ = (a∗1, a
∗
2, . . . , a

∗
k) = (a2, a1, a3, . . . , ak) of n. The set E∗

of indices of the elements equal to a∗2 in α∗ satisfies E∗ = (Fh\{1})∪{2} = Ek−h (Proposition
8). The same relation holds for F ∗ = Fk−h, where F ∗ is the set of indices of the elements
equal to a∗1 in α∗. Then α∗ is a (k−h)-singular composition of n. Note that the composition
α′ = (a1+h, a2+h, . . . , ak, a1, . . . , ah) is (k − h)-singular and is obtained from α by rotation.
Moreover a2 = a1+h and a1 = a2+h. Since the first two elements of α∗ coincide with the
first two of α′ and both the compositions are (k − h)-singular, E∗ = E ′ and F ∗ = F ′. Thus
α∗ = α′, and the result follows.

3 Decompositions and extensions

In this section we investigate two decompositions and some extensions of an aperiodic sin-
gular composition.

Theorem 14. Let α = (a1, a2, . . . , ak) be an aperiodic h-singular k-composition of n, where
k = hq+ r and 1 ≤ r < h. Then α = λµλ · · ·λ, where λ = (a1, a2, . . . , ah), µ is the sequence
of the last r elements of λ and q is the multiplicity of λ. Moreover λ is a (h − r)-singular
h-composition of a1 + · · ·+ ah.

Proof. Since α is h-singular, the sequences β = (a1 + a2, a3, . . . , ak) and γ = (a1+h +
a2+h, a3+h, . . . , ak+h) coincide. In particular this holds for the subsequences β′ and γ′ ob-
tained by deleting the first h− 1 elements of β and γ respectively. If 1 ≤ h ≤ ⌊k

2
⌋, by com-

paring β′ = (a1+h, a2+h, . . . , ak) and γ′ = (a1+2h, a2+2h, . . . , ak, a1, . . . , ah) = (a1+2h, . . . , ak)λ,
where λ = (a1, a2, . . . , ah), we obtain that the sequence (ak−(h−1), . . . , ak) formed by the
last h elements of β′ coincides with λ. Then the sequence of length h in γ′ which pre-
cedes the last subsequence λ coincides again with λ. We continue until we find a subse-
quence µ of length less than h in β′, which is formed by the last r elements of λ. Thus
µ = (ah−(r−1), ah−(r−2), . . . , ah). If ⌊k

2
⌋ < h ≤ k − 1, by comparing β′ and γ′ = µ we obtain

α = λµ. In both cases α = λµλ · · ·λ, where λ occurs q times.
Let us assume that r > 1. Since α is h-singular, the sequence

(a1 + a2, a3, . . . , ah, ah−(r−1), ah−(r−2), . . . , ah)λ
q−1

coincides with
(ah−(r−1) + ah−(r−2), ah−(r−3), . . . , ah)λ

q.
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Therefore the sequences of the first h− 1 elements coincide

(a1 + a2, a3, . . . , ah) = (ah−(r−1) + ah−(r−2), ah−(r−3), . . . , ah, a1, . . . , ah−r).

Thus the composition λ is (h−r)-singular. A similar argument applies in the case r = 1.

Proposition 15. Let α = (a1, a2, . . . , ak) be an aperiodic h-singular k-composition of n,
where k = hq + r and 1 < r < h. Then α = σλ · · ·λ, where λ = (a1, a2, . . . , ah), σ =
(a1, a2, . . . , ar) and the multiplicity of λ is q. Moreover λ is a (h− r)-singular h-composition
of a1 + · · ·+ ah.

Proof. Let λ = (a1, a2, . . . , ah) and σ = (a1, a2, . . . , ar). By applying the same argument
used in the proof of Theorem 14 to the subsequences obtained by deleting the first r − 1
elements of β and γ, the result follows.

Corollary 16. In the case of r = 1, there is not a decomposition α = σλλ · · ·λ.

Proof. In the case of r = 1, σ is reduced to the element a1. This implies the relation
a1 + a2 = 2a1; then a2 = a1, a contradiction to the assumption that α is aperiodic.

Corollary 17. If k = hq + r and 1 < r < h, then σλ = λµ.

Now we investigate an operation which can be considered the inverse of the decomposi-
tion; namely we want to determine an extension of a singular composition which turns out
to be again a singular composition.

Theorem 18. Let α be an aperiodic h-singular k-composition of n, and let ν denote the
sequence formed by the last k − h elements of α. The k′-composition β = ανα · · ·α, where
k′ = kq′ + k − h and q′ is the multiplicity of α, is k-singular.

Proof. Let α = (a1, a2, . . . , ak) be an aperiodic h-singular k-composition of n, where k > 2
and 1 ≤ h < k − 1. The composition β = ανα · · ·α, where ν denotes the sequence formed
by the last k − h elements of α, is k-singular if

(a1 + a2, . . . , ak, a1+h, . . . , ak)α
q′−1 = (a1+h + a2+h, . . . , ak)α

q′ .

In order to prove the equality, it is sufficient to show that

(a1 + a2, a3, . . . , ak, a1+h, . . . , ak) = (a1+h + a2+h, . . . , ak, a1, . . . , ak). (8)

Since α is h-singular, (a1 + a2, a3, . . . , ak) = (a1+h + a2+h, . . . , ak, a1, . . . , ah). Thus the left
side of (8) coincides with (a1+h+a2+h, . . . , ak, a1, . . . , ah, a1+h, . . . , ak) and the result follows.
A similar argument applies in the cases k = 2 and h = k − 1.
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4 Classical integer sequences

Let α be an h-singular k-composition of n. The composition β = ανα · · ·α, where ν is the
sequence formed by the last k − h elements of α and α is repeated q times, is called a q-
extension of α. By consecutive extensions, we determine a sequence of singular compositions
and therefore a sequence of integers corresponding to the numbers of their parts.

4.1 Fibonacci sequences

Let us consider the h0-singular k0-composition α0 = (a, b), with a 6= b, k0 = 2 and h0 = 1.
The 2-extension of α0 is the h1-singular k1-composition α1 = α0ν0α0 = (a, b, b, a, b), where
k1 = k0 · 2 + 1, h1 = k0 = 2 and ν0 is the composition formed by last (k0 − h0) = 1
element of α0. The consecutive 2-extension is the h2-singular k2-composition α2 = α1ν1α1 =
(a, b, b, a, b, b, a, b, a, b, b, a, b), where k2 = k1 · 2+3, h2 = k1 and ν1 is the composition formed
by last (k1 − h1) = 3 elements of α1 and so on.

The first values of the sequence of the numbers (kn)n≥0 of parts of the 2-extensions of α0

are
2, 5, 13, 34, 89, 233, . . .

These numbers appear as the first integers, but the first two, in the sequence A001519 [4],
which is obtained from the recursive relation

an = 3an−1 − an−2, (9)

with the initial conditions a0 = 1, a1 = 1. We prove that the integers kn satisfy the same
recursive relation.

Lemma 19. The integers kn of the parts of the 2-extensions of the 1-singular 2-composition
(a, b), with a 6= b, satisfy the recursive relation:

kn = 3kn−1 − kn−2

with the initial conditions k0 = 2, k1 = 5.

Proof. Recall that, by Theorem 18,

kn = 2kn−1 + kn−1 − hn−1.

Because hn−1 = kn−2, the result follows.

The following corollary is straightforward.

Corollary 20. The integers hn associated to the 2-extensions of the 1-singular 2-composition
(a, b), with a 6= b, satisfy the recursive relation:

hn = 3hn−1 − hn−2

with the initial conditions h0 = 1, h1 = 2.
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It is easy to prove that the generating function of the sequence of the integers kn is

2− x

1− 3x+ x2
,

and

kn =
2 +

√
5√

5
(
3 +

√
5

2
)n +

−2 +
√
5√

5
(
3−

√
5

2
)n.

Proposition 21. The sequence

k0, k1 − h1, k1, k2 − h2, k2, k3 − h3, . . . (10)

coincides with the sequence of Fibonacci numbers Fn, with initial conditions F2 = 2, F3 = 3.

Proof. We have to prove that every element of (10) is the sum of the preceding two elements
and the initial conditions coincide. For i ≥ 1, ki = ki − hi + ki−1, because hi = ki−1.
Moreover, for i ≥ 2, ki − hi = ki−1 + ki−1 − hi−1 by Lemma 19. Because k0 = 2, k1 = 5 and
h1 = 2, the initial conditions are 2 and 3, which coincide with F2 and F3 of the Fibonacci
sequence A000045.

Another consequence of Proposition 21 is that the elements ki, i ≥ 0, form a bisection of
the Fibonacci sequence; this result turns out to be one of the comments to A001519.

By repeating the previous procedure for q > 2, we easily obtain a sequence satisfying the
recursive relation

an = (q + 1)an−1 − an−2,

with the initial conditions a0 = 2, a1 = 2q + 1.
In the particular case of q = 3, we obtain the sequence whose first elements are

2, 7, 26, 97, . . .

which coincides with A001075, but the first element.
Again, for q = 4 we obtain a sequence whose first elements are

2, 9, 43, 206, . . .

which coincides with A002310, but the first element.

4.2 Lucas sequences

The first values of the sequence of the numbers (pn)n≥0 of parts of the 2-extensions of the
2-singular 3-composition (a, b, b), with a 6= b, are

3, 7, 18, 47, 123, . . .
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These integers coincide with the first integers, but the first one, of A005248, which is obtained
from the recursive relation (9), with the initial conditions a0 = 2, a1 = 3.

Using the same procedure of Lemma 19, the numbers pn satisfy the same recursive relation
with initial conditions p0 = 3 and p1 = 7. Moreover the generating function of the sequence
of the integers pn is

3− 2x

1− 3x+ x2
,

and

pn = (
3 +

√
5

2
)n+1 + (

3−
√
5

2
)n+1.

Proposition 22. The sequence

h0, p0 − h0, p0, p1 − h1, p1, p2 − h2, p2, p3 − h3, . . . (11)

coincides with the sequence of Lucas numbers Ln, with initial conditions L0 = 2, L1 = 1.

Another consequence of the previous result is that the elements pi, i ≥ 0, form a bisection
of the Lucas sequence A000032, as noted in a comment to A005248.

4.3 Other integer sequences

We now consider the sequence of the numbers (tn)n≥0 of parts of 2-extensions of the 3-singular
4-compositions (a, b, b, b), with a 6= b, that is

4, 9, 23, 60, 157, . . .

This sequence, which is not contained in [4], satisfies the recursive relation (9), with
initial conditions t0 = 4 and t1 = 9. The corresponding generating function is

4− 3x

1− 3x+ x2
,

and

tn =
3 + 2

√
5√

5
(
3 +

√
5

2
)n +

−3 + 2
√
5√

5
(
3−

√
5

2
)n.

By continuing, we may obtain other integer sequences by q-extension, with q ≥ 2, of the
singular composition (a, b, . . . , b), where b occurs more than three times.

5 Conclusion

The notion of singular composition can be generalized as follows. We call the composition
α = (a1, a2, . . . , ak) (h, i, j)-singular, if

(a1, a2, . . . , ai−1, ai + aj, ai+1, . . . , aj−1, aj+1, . . . , ak) =

= (a1+h, a2+h, . . . , ai−1+h, ai+h + aj+h, ai+1+h, . . . , aj−1+h, aj+1+h, . . . , ak+h), (12)
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where 1 ≤ h ≤ k − 1, 1 ≤ i < j ≤ k and the indices are modulo k.
This definition leads to compositions which can not be obtained from equation (1). In

fact, (1, 1, 2, 2, 2) satisfies (a1 + a3, a2, a4, a5) = (a1+h + a3+h, a2+h, a4+h, a5+h) for h = 4, but
it does not satisfy any equation (1).

Thus this definition poses the problem to find necessary and sufficient conditions based
on which a given aperiodic sequence with two distinct elements satisfies (12).
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