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Abstract

In this paper we define the notion of singular composition of a positive integer.
We provide a characterization of these compositions, together with methods for de-
composing and also extending a singular composition in terms of other singular com-
positions. Consecutive extensions of particular compositions determine sequences of
integers which coincide with classical integer sequences involving Fibonacci and Lucas
numbers.

1 Introduction

Let k,n be integers where 1 < k < n, and let & = (ay, as, ..., a;) denote a composition of n
into k parts [3]. We call a (h,i)-singular if

(ab A2,y A + Aig1y - - >(lk) = (@Hh, A2 hy vy Gith + Qi 14hy - - - 7ak+h)> (1)

where 1 < h <k —1,1 < ¢ <k and the indices are modulo k. Note that shifting a (h,i)-
singular composition of one position to the right, we obtain a (h, i+ 1)-singular composition.
Consequently, the choice of a single index i is sufficient for identifying such compositions.
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Thus we fix i = 1 and we call the composition « = (ay, as, . .., ax) h-singular if

(ay + ag,as, ..., ax) = (ar4n + Ao, A34h, - -5 Qhgn)- (2)
A k-composition of n is singular when it is h-singular for a suitable value of 1 < h < k—1.
Example 1. The 5-composition (1,2,2,1,2) of n = 8 is 2-singular.

Kramer [2] used singular compositions in order to define the middle levels partition graph
of n.

The concatenation of the compositions o = (ay, as, ..., ax) and 8 = (by, by, ..., by) of the
positive integers n and m respectively is the composition af = (a1, as, ..., ag, by, ba, ..., by)
of n +m. We let o' denote the concatenation of o with itself 4 times. A composition « is
periodic if = 7/, where 1 < j < k and 7 is a suitable composition.

Fibonacci and Lucas numbers will appear in some of our results. Recall that the Fibonacci
sequence (F,),>o is defined by setting Fy = 0, Fy = 1 and F,, = F,,_; + F,,_5, for n > 2.
The Lucas sequence (Ly,),>o is defined by setting Ly = 2, Ly = 1 and L,, = L1 + Lo, for
n > 2.

The paper is outlined as follows. In Section 2 we determine a characterization of aperiodic
singular compositions which allows us to obtain a method for constructing such compositions
(Theorem 11). In Section 3 we study decompositions (Theorem 14) and also extensions
(Theorem 18) of a singular composition in terms of other singular compositions. In Section
4 we prove that consecutive extensions of particular compositions determine sequences of
integers which coincide with classical sequences involving Fibonacci and Lucas numbers. We
conclude the paper by posing a more general definition of singular composition together with
an open problem.

2 A characterization of singular compositions

Let a be an h-singular k-composition of n; from (2) it follows that (as, ..., ax) = (a3, .., Ggrn)-
This equality determines the function f, : {3,4,...,k} = {34+ h,4+h,...,k+h} on the
indices of the elements of previous sequences such that

(@) =i+ h,
where 3 < i < k and the integers are modulo k. We may represent f;, in two-line notation
3 4 -k ‘ )
3+h4d+h - k+h
Note that the second line is obtained by shifting of i positions to the left the elements of the

sequence (1,2,3,4,..., k) and ignoring the first two elements 1+ h and 2+ h. A consequence
is that the elements 1 and 2, which do not belong to the first line, belong to the second one,



except for h =1 and h = k — 1. Indeed for h = 1 the second line contains 1, but not 2; for
h = k — 1 the second line contains 2, but not 1. In a similar way, the elements 1 + h and
2 + h do not belong to the second line while they belong to the first one, except for h = 1
and h =k — 1.

Proposition 2. An h-singular k-composition of n, where h and k are not coprime, is peri-
odic.

Proof. Let ged(k,h) =t > 1, where h = th', k = tk’ and gcd(k',h') = 1. Note that the sets
H; ={i,i+h,...,i+(K—=1)h}, 1 <i <t determine a partition of the set [k]. Then, for an h-
singular k-composition o = (a1, as, . .., ax), the elements of the sets {a;, aitn, ..., Gixgw—1)n}
1 < i <t, coincide and « turns out to be the concatenation (ay, as, . .., a;)" . ]

Throughout the paper we consider only aperiodic compositions.

Beggas et al. [1] proved that a particular bijection, called widened permutation, between
two m-sets having n — 1 elements in common has a decomposition into a linear order and
a possible permutation. In this case we have a similar function in which the two sets have
n — 2 elements in common, but for A =1 and h =k — 1.

Lemma 3. Let h,k be coprime integers, where 1 < h < k — 1. The function f;, does not
contain cycles.

Proof. By way of contradiction we assume there is a cycle
C=(d,d+h,...,d+(r—1)h),

where 1 < d < k and d+ rh = d (mod k). This means that rh = 0 (mod k) and therefore
k divides rh. Then, because ged(k, h) = 1, k divides r. The unique possibility is r = k; so
the cycle contains all the elements. But this implies the impossible condition that also every
line of (3) contains all the elements. O

Theorem 4. Let h,k be coprime integers, where 1 < h < k — 1. The function f; s
decomposed into the linear orders:

1.
Ep=(+4h142h,...,1+7rh) (4)

and
F, =2+ h,242h,...,2+ sh), (5)

where r = h™', s = (k= 1)h™1 in Zy, for h # 1,k —1;
2. Fy=(2) and Fy = (3,4,...,k, 1), for h=1;
3. By =(kk—1,...,2) and Fy_y = (1), for h =k — 1.



Proof. Let h # 1,k—1. Starting from 1+h we obtain the sequence (1+h, 14+2h,..., 14+rh =
a), where a is one of the two elements which are in the second but not in the first line. So
we have either a = 1 or a = 2. If @ = 1, we obtain the impossible relation rh = 0 (mod k).
If @ = 2, we obtain 7h = 1 (mod k), which is satisfied for r = A~ in Z;. Now starting from
2+ h we obtain the sequence (24 h,2+2h,...,2+ sh = b), where either b =1 or b = 2. The
unique possibility is b = 1, which holds for s = (k — 1)h~! in Z;. By Lemma 3 the function
does not contain cycles; therefore it is decomposed into the previous linear orders.

Now let h = 1. The function f; is decomposed into F} = (3,4,...,k,1) and F; = (2). In
the case h = k — 1, fi_1 is decomposed into Ey_1 = (k,k —1,...,2) and Fy_y = (1). This
completes the proof of the theorem. m

In the following we let Ej), and Fj, also denote the sets of the elements of the assigned
linear orders.

Corollary 5. For every 1 < h < k—1 such that gcd(k,h) = 1, E,UF, = [k] and, for k > 2,
| En [#] Fh |-

Proof. If k —h™' = h~! then k = 2h~! and kh = 2 in Z;,. This implies that 2 =0 (mod k),
a contradiction for k£ > 2. O

Lemma 6. Let hy, hy be two integers such that 1 < hy < hy < k — 1 and ged(k,hy) =
ng(k?, hg) =1. Then Eh1 7é Eh2 and Fh1 # Fh2-

Proof. The cardinalities of B, and Ej, coincide with o and h; ' in Z, respectively. Because
hi < hg, their inverses are distinct; then also the sets £}, and Ej,, are distinct. The same
argument applies for Fj, and Fj,. O

The following result is straightforward.

Corollary 7. If k is a prime integer, then all the sets E}, (respectively Fy,), 1 < h <k —1,
are distinct.

Note that when k& and h are coprime, then also k£ and k£ — h are coprime. In the following
result we establish a relation between Ej_j (respectively Fy_;) and F), (respectively E},).

Proposition 8. For every 1 < h < | %] such that ged(k,h) =1, B,y = (F, \ {1}) U {2}
and Fk—h = (Eh \ {2}) @) {1}

Proof. The result is easy to prove for h = 1. Let h' = k — h. Since ged(k,h) = 1, then
ged(k, ) =1, Ep ={1+R,14+2K0,...,1+ (" = 1)h,2} and Fpy = {2+ 1,24 2K,...,2+
(s — 1), 1}, where ' = (I/)"' and s’ = k — (h')~! in Z.

Let s denote k — h™! in Z;; it follows that

l+k—h=2+(s—1)h (mod k).

Then 14+2(k—h) = 2+(s—2)h and so on until 14+(s—1)(k—h) = 2+h and 1+s(k—h) = 2
(mod k). Thus Ej_p, = {24+ (s —1)h,2+ (s = 2)h,..., 2+ h,2} = (F, \ {1}) U {2}.

Moreover, 2 + k —h = 1+ (r — 1)h (mod k), where r = h™' in Z; thus Fj_; =
{1+ —=1h,1+(r—2)h,...,1+h, 1} = (E, \ {2}) U{1}. O
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Corollary 9. If a = (ay,as,...,ax) is an aperiodic h-singular k-composition of n, then
every a; is equal to a; or as, 1 <11 <k, as long as 1 € Fj, or 1 € Ej, respectively. Then a;
and ao are distinct, and they satisfy the relation

(k—h™Ya, + htag = n. (6)

Corollary 10. If an aperiodic composition contains more than two distinct elements, then
it 1 not singular.

Previous results allow us to give a characterization of singular compositions, which turns
out to be a method for their construction.

Theorem 11. Let h, k,n be positive integers such that 1 < h < k < n and ged(k,h) = 1.
An aperiodic k-composition o = (a1, as, ..., ag) is h-singular if and only if a1 # as and the
pair of elements (ay,az) is a solution of the equation

(k — h’l):cl + hill’Q =n, (7)
where h™* k—h=' € Z;,, and each a; coincides with a; or ay fori € F, ori € Ej, respectively.

Proof. 1f «v is h-singular, then by Corollary 9 the property holds.
Now let us assume that the pair of distinct integers (aq, as) is solution of the equation (7) and
each a; coincides with a; or ay for i € F}, or ¢ € E), respectively. Hence, for h # 1,k — 1, the

composition o = (ay, asg, ..., a;) which has the elements a; and as in the positions given by
(5) and (4) respectively, is h-singular. Lastly, if h = 1, « = (ay, as,aq,...,a;) is l-singular,
while if h =k — 1, a = (a1, a9, .. .,as) is (k — 1)-singular. O

Example 12. The list of h-singular 9-compositions with a; = 1 and as = 2 is

1,2,1,1,1,1,1,1,1

) Y Y Y P Y Y

1. forh=1a; =

2. for h=2, ap = (1,2,2,1,2,1,2,1,2);

I

I

1,2,2,2,2,1,2,2,2

Qg
3. for h=4, a4
4. for h =05, as

ar

5. for h =1, 1,2,1,2,1,2,1,2,1

- )

( )
( )
( )
(1,2,1,1,1,2,1,1,1);
( )
( )

6. for h =8, ag = (1,2,2,2,2,2,2,2,2

where the corresponding integers are n; = 10, ny = 14, ny = 16, ns; = 11, ny = 13 and
ng = 17. Note that the compositions as, oy and ag are obtained from ay, as and ay
respectively, by exchanging 1 with 2 after the first two positions.



Let o = (ay, aq, . .., ax) be an h-singular composition. By Proposition 8, it follows that by
exchanging a; and as after the first two positions, we obtain a (k — h)-singular composition.
We now prove that by exchanging only the first two elements we obtain again a (k — h)-
singular composition.

Proposition 13. Let a = (ay,as,. .., ax) be an aperiodic h-singular composition of n, where
1 <h<k-—1. Then o* = (as,a1,as,...,ax) is a (k— h)-singular composition of n, obtained
from « by rotation.

Proof. Consider the composition a* = (a},al, ..., a}) = (as, a1, as,...,ax) of n. The set E*
of indices of the elements equal to aj in o satisfies E* = (F,\{1})U{2} = Ej_,, (Proposition
8). The same relation holds for F* = Fj_;,, where F* is the set of indices of the elements
equal to af in a*. Then o* is a (k — h)-singular composition of n. Note that the composition
o = (@14p, Qogpy -y Qgy a1, ..., ap) is (k — h)-singular and is obtained from « by rotation.
Moreover as = ajyp and a; = agyp. Since the first two elements of a* coincide with the
first two of o’ and both the compositions are (k — h)-singular, E* = E' and F* = F’. Thus
o* = o/, and the result follows. O

3 Decompositions and extensions

In this section we investigate two decompositions and some extensions of an aperiodic sin-
gular composition.

Theorem 14. Let oo = (ay,as, ..., ax) be an aperiodic h-singular k-composition of n, where
k=hq+r and1 <r <h. Then o = Au\--- X\, where A = (ay,as,...,ap), p is the sequence
of the last r elements of X\ and q is the multiplicity of . Moreover X is a (h — r)-singular
h-composition of a; + -+ -+ ay,.

Proof. Since « is h-singular, the sequences 8 = (a; + as,as,...,a;) and v = (a1, +
A4 hy A31h, - - -, Agrp) coincide. In particular this holds for the subsequences 5 and +' ob-
tained by deleting the first A — 1 elements of 5 and v respectively. If 1 < h < LgJ, by com-
paring 8 = (a14h, Goth, - -, ax) and v = (@140n, Gaohy - -« Ay Q1y - ooy ) = (A1i2hy - - - Q) A,
where A = (a1, a9,...,a,), we obtain that the sequence (ax_(h—1),...,as) formed by the
last h elements of §’ coincides with A\. Then the sequence of length h in 4 which pre-
cedes the last subsequence A coincides again with A. We continue until we find a subse-
quence p of length less than h in (', which is formed by the last r elements of A\. Thus
p= (Ah—(r—1), Ah—(r—2), - - - s ap). 1f ng < h <k —1, by comparing 5" and 7 = i we obtain
a = A\p. In both cases a = ApA - - - A\, where A\ occurs ¢ times.
Let us assume that » > 1. Since « is h-singular, the sequence

-1
(al + az,as,...,ap, Ap—(r—1)s Ah—(r—2)5 - - - 7ah))\q

coincides with
(@h—(r—1) + Qh—(r—2); Qh—(r—3), - - -, Q)AL
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Therefore the sequences of the first h — 1 elements coincide

(a/l + gz, ag, . . . 7a/h) = (ah—('r‘—].) + ah—('r‘—?)7 ah—(?“—?))? <oy Qpy A1, .. ;a'h—r)'

Thus the composition A is (h —7)-singular. A similar argument applies in the case r = 1. [

Proposition 15. Let o = (aq,as,...,a;) be an aperiodic h-singular k-composition of n,
where k = hq+r and 1 < r < h. Then a = oA---\, where X\ = (ay,as,...,a), 0 =
(ay,as,...,a,) and the multiplicity of \ is q. Moreover X is a (h —1)-singular h-composition
of a1 + -+ -+ ay.

Proof. Let A = (ay,as,...,a,) and ¢ = (ay,as,...,a,). By applying the same argument
used in the proof of Theorem 14 to the subsequences obtained by deleting the first r — 1
elements of J and ~, the result follows. m

Corollary 16. In the case of r = 1, there is not a decomposition o = gAN--- \.

Proof. In the case of r = 1, ¢ is reduced to the element a;. This implies the relation
a1 + as = 2aq; then as = a1, a contradiction to the assumption that « is aperiodic. O]

Corollary 17. If k =hqg+r and 1 <r < h, then o\ = \u.

Now we investigate an operation which can be considered the inverse of the decomposi-
tion; namely we want to determine an extension of a singular composition which turns out
to be again a singular composition.

Theorem 18. Let o be an aperiodic h-singular k-composition of n, and let v denote the
sequence formed by the last k — h elements of a. The k'-composition = ava---«, where
k' =kq +k—h and ¢ is the multiplicity of o, is k-singular.

Proof. Let a = (aq,as,...,a;) be an aperiodic h-singular k-composition of n, where k > 2
and 1 < h < k — 1. The composition § = ava - --«, where v denotes the sequence formed
by the last £ — h elements of «, is k-singular if

!

!
-1
(a1 4+ ag, ..., ap, arin, - ap)a? " = (a1in + agin, - - ap)al

In order to prove the equality, it is sufficient to show that

(al +az,as, ..., 0k, Aiqp, - - ,(lk) = (a’l-‘rh + Qo4hs -5 Ak, A1,y - CLk). (8)
Since « is h-singular, (a; + ag,as,...,ax) = (a14n + a24n, .- -, A, a1, ...,ay). Thus the left
side of (8) coincides with (aiyp + aoin, ..., a0k, a1,...,an, a14p, ..., a;) and the result follows.
A similar argument applies in the cases k =2 and h =k — 1. O



4 Classical integer sequences

Let a be an h-singular k-composition of n. The composition § = ava---a, where v is the
sequence formed by the last k — h elements of o and « is repeated ¢ times, is called a ¢-
extension of a. By consecutive extensions, we determine a sequence of singular compositions
and therefore a sequence of integers corresponding to the numbers of their parts.

4.1 Fibonacci sequences

Let us consider the hg-singular ko-composition ag = (a,b), with a # b, kg = 2 and hy = 1.
The 2-extension of ag is the hy-singular kj-composition oy = ooy = (a, b, b, a,b), where
ki = ko-241, hy = ky = 2 and vy is the composition formed by last (kg — hy) = 1
element of . The consecutive 2-extension is the ho-singular ke-composition oy = ayryay =
(a,b,b,a,b,b,a,b,a,b,b,a,b), where ky = ki -2+ 3, hy = k; and 14 is the composition formed
by last (k1 — hy) = 3 elements of «; and so on.

The first values of the sequence of the numbers (ky,),>o of parts of the 2-extensions of aq
are

2,5,13,34,89,233, ...

These numbers appear as the first integers, but the first two, in the sequence A001519 [4],
which is obtained from the recursive relation

Qp = 3an—l — Qp—2, (9)

with the initial conditions ag = 1, a; = 1. We prove that the integers k,, satisfy the same
recursive relation.

Lemma 19. The integers k,, of the parts of the 2-extensions of the 1-singular 2-composition
(a,b), with a # b, satisfy the recursive relation:

kp =3kn_1 — kp_o
with the initial conditions ko = 2, ki = 5.
Proof. Recall that, by Theorem 18,
kp =2ky,—1 + kp—1 — hp_1.
Because h,_1 = k,_s, the result follows. O]
The following corollary is straightforward.

Corollary 20. The integers h,, associated to the 2-extensions of the 1-singular 2-composition
(a,b), with a # b, satisfy the recursive relation:

h'n - 3hn—1 - hn—Z

with the initial conditions hg = 1, hy = 2.


http://oeis.org/A001519

It is easy to prove that the generating function of the sequence of the integers k,, is
2—x
1— 3z + a2’

and

_2+¢i3+¢%n+—2+¢i3—¢%n
V5 2 NG 2 '

Proposition 21. The sequence

Ky,

ko, k1 — h, k1, ko — ho, ko, k3 — hs, . .. (10)
coincides with the sequence of Fibonacci numbers F,,, with initial conditions Fy = 2, F3 = 3.

Proof. We have to prove that every element of (10) is the sum of the preceding two elements
and the initial conditions coincide. For ¢ > 1, k; = k; — h; + k;_1, because h; = k;_1.
Moreover, for i > 2, k; — h; = k;_1 + k;—1 — h;_1 by Lemma 19. Because kg = 2, k; = 5 and
hy = 2, the initial conditions are 2 and 3, which coincide with F, and Fj3 of the Fibonacci
sequence A000045. O

Another consequence of Proposition 21 is that the elements k;, ¢ > 0, form a bisection of
the Fibonacci sequence; this result turns out to be one of the comments to A001519.
By repeating the previous procedure for ¢ > 2, we easily obtain a sequence satisfying the
recursive relation
an, = (q+ Day,_1 — a,_a,

with the initial conditions ag = 2, a; = 2¢g + 1.
In the particular case of ¢ = 3, we obtain the sequence whose first elements are

2,7,26,97,...

which coincides with A001075, but the first element.
Again, for ¢ = 4 we obtain a sequence whose first elements are

2,9,43, 206, . ..

which coincides with A002310, but the first element.

4.2 Lucas sequences

The first values of the sequence of the numbers (p,),>o of parts of the 2-extensions of the
2-singular 3-composition (a, b, b), with a # b, are

3,7,18,47,123, . ..
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These integers coincide with the first integers, but the first one, of A005248, which is obtained
from the recursive relation (9), with the initial conditions ag = 2, a; = 3.

Using the same procedure of Lemma 19, the numbers p,, satisfy the same recursive relation
with initial conditions py = 3 and p; = 7. Moreover the generating function of the sequence

of the integers p, is
3—2x
1— 3z + 22’
and V5 V5
3+V5,, 3—Vo,,
Pn = (_) +1 + (—) +1_
2 2
Proposition 22. The sequence

ho, po — ho,po; P1 — i1, p1,p2 — ha, p2,p3 — hs, . .. (11)
coincides with the sequence of Lucas numbers Ly, with initial conditions Ly = 2, L, = 1.

Another consequence of the previous result is that the elements p;, ¢ > 0, form a bisection
of the Lucas sequence A000032, as noted in a comment to A005248.

4.3 Other integer sequences

We now consider the sequence of the numbers (t,,),>0 of parts of 2-extensions of the 3-singular
4-compositions (a, b, b,b), with a # b, that is

4,9,23,60,157, . ..
This sequence, which is not contained in [4], satisfies the recursive relation (9), with
initial conditions ¢ty = 4 and ¢; = 9. The corresponding generating function is
4 — 3z
1— 3z + 2%’

B 3”‘/5(“\/5)% —3+2¢5(3—\/5)n
V5 2 V5 2 '
By continuing, we may obtain other integer sequences by g-extension, with ¢ > 2, of the
singular composition (a, b, ...,b), where b occurs more than three times.

and

tn

5 Conclusion

The notion of singular composition can be generalized as follows. We call the composition
a = (ay,ag,...,a;) (h,i,j)-singular, if

(a1, a2, ..., Qi-1, Qi + G4y Qig1y -, A1, Aty - Q) =

= (@14hs Qb -y Gith, Qieh F Aty Qig 14 hy - - -5 Qj—1thy Qjt1ths - - - > Qb )s (12)
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where 1 < h<k—1,1<17<j <k and the indices are modulo k.

This definition leads to compositions which can not be obtained from equation (1). In
fact, (1,1,2,2,2) satisfies (a1 + a3, ag, a4, as) = (a14n + a34h, Go1h, Qain, asyp) for h =4, but
it does not satisfy any equation (1).

Thus this definition poses the problem to find necessary and sufficient conditions based
on which a given aperiodic sequence with two distinct elements satisfies (12).

6 Acknowledgments

The authors thank the anonymous referee for his valuable suggestions which led to an im-
provement of the manuscript.

References

[1] F. Beggas, M. M. Ferrari, and N. Zagaglia Salvi, Combinatorial interpretations and
enumeration of particular bijections, Riv. Mat. Univ. Parma 8 (2017). To appear.

[2] A.-V.Kramer, A particular Hamiltonian cycle on middle levels in the De Bruijn digraph,
Discrete Math. 312 (2012), 608-613.

[3] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958.

[4] N. J. A. Sloane, The on-line encyclopedia of integer sequences, 2017. Available at
https://oeis.org.

2010 Mathematics Subject Classification: Primary 05A17; Secondary 11B39.
Keywords: ordered partition, composition, singular composition, Fibonacci number, Lucas
number.

(Concerned with sequences A000032, A000045, A001075, A001519, A002310, and A005248.)

Received April 20 2017; revised versions received May 11 2017; August 2 2017. Published in
Journal of Integer Sequences, September 5 2017.

Return to Journal of Integer Sequences home page.

11


https://oeis.org
http://oeis.org/A000032
http://oeis.org/A000045
http://oeis.org/A001075
http://oeis.org/A001519
http://oeis.org/A002310
http://oeis.org/A005248
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	A characterization of singular compositions
	Decompositions and extensions
	Classical integer sequences
	Fibonacci sequences
	Lucas sequences
	Other integer sequences

	Conclusion
	Acknowledgments

