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Abstract

We study the largest values of the rth row of Stern’s diatomic array. In particular,

we prove some conjectures of Lansing. Our main tool is the connection between the

Stern sequence, alternating binary expansions, and continuants. This allows us to

reduce the problem of ordering the elements of the Stern sequence to the problem of

ordering continuants. We describe an operation that increases the value of a continuant,

allowing us to reduce the problem of largest continuants to ordering continuants of

very special shape. Finally, we order these special continuants using some identities

and inequalities involving Fibonacci numbers.

1 Introduction

The Stern sequence A002487 is defined as follows: s(0) = 0, s(1) = 1, s(2n) = s(n) and
s(2n+1) = s(n)+s(n+1) for every n ≥ 0. Stern’s diatomic array consists of rows indexed by
0, 1, 2, . . . , where if r ≥ 0, then the rth row is s(2r), s(2r + 1), . . . , s(2r+1). Stern’s diatomic
array can also be constructed in the following way. Start with the 0th row 1, 1. If r ≥ 1,
then to construct the rth row, copy the previous row, and between every two consecutive
numbers x, y, write their sum x + y. This array was first studied by Stern [7]. Lehmer [4]
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summarized several properties of this array. Recently Defant [1] gave upper bounds for the
elements of the Stern sequence.

For r ≥ 0 and m ≥ 1, let Lm(r) denote the mth largest distinct value of the rth row
of Stern’s diatomic array. If there are fewer than m distinct values in the rth row, then
we just take Lm(r) = −∞. Lucas [5] has observed that the largest value in the rth row
is L1(r) = Fr+2, where Fn denotes the nth Fibonacci number. Lansing [3] determined the
second and third largest values L2(r) and L3(r), and formulated the following conjectures
about the Lm(r)’s. Her Conjecture 7 [3] says that if m ≥ 1 and r ≥ 4m− 2, then

Lm(r) = Lm(r − 1) + Lm(r − 2).

Her Conjecture 9 [3] says that if m ≥ 2 and r ≥ 4m− 4, then

Lm(r) = Lm−1(r)− Fr−(4m−5) = Fr+2 −

m∑

j=2

Fr−(4j−5).

The following theorem is our main result. It gives a formula for Lm(r) for certain values
of r and m, and it implies the two conjectures of Lansing stated above.

Theorem 1. If r ∈ Z≥0, then

{L1(r), . . . , L⌈ r
2
⌉(r)} = {Fr+2 − FiFj; i, j ∈ Z≥0, i+ j = r − 1}.

More explicitly, if 1 ≤ m ≤ ⌈ r
2
⌉, then

Lm(r) = Fr+2 − F2m−2−bFr−2m+1+b,

where

b = b(m, r) =

{

0, if m ≤ ⌊ r+3
4
⌋ or 2 | r;

1, if m > ⌊ r+3
4
⌋ and 2 ∤ r.

We show now that Theorem 1 implies the two conjectures stated above.

Proof of Conjecture 7 [3]. Let m ≥ 1 and r ≥ 4m − 2. Then m ≤ ⌊ (r−1)+3
4

⌋, so Lm(r) =
Fr+2 − F2m−2Fr−2m+1 and Lm(r − 1) = Fr+1 − F2m−2Fr−2m by Theorem 1. If r ≥ 4m − 1,

then m ≤ ⌊ (r−2)+3
4

⌋, while if r = 4m − 2, then 2 | r − 2, so either way Lm(r − 2) =
Fr − F2m−2Fr−2m−1. The conjecture now follows from

Fr+2 − F2m−2Fr−2m+1 = (Fr+1 − F2m−2Fr−2m) + (Fr − F2m−2Fr−2m−1).

Proof of Conjecture 9 [3]. It is enough to prove Lm−1(r) − Lm(r) = Fr−(4m−5), because
L1(r) = Fr+2. Now m − 1 ≤ ⌊ r+3

4
⌋, and either 2 | r = 4m − 4, or m ≤ ⌊ r+3

4
⌋. So

Lm−1(r) = Fr+2 − F2m−4Fr−2m+3 and Lm(r) = Fr+2 − F2m−2Fr−2m+1 by Theorem 1. Hence

Lm−1(r)− Lm(r) = F2m−2Fr−2m+1 − F2m−4Fr−2m+3 = (−1)2m−4F2Fr−(4m−5) = Fr−(4m−5)

by Lemma 3.
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Here is a brief description of the contents of the paper. In Section 2 we state some basic
results about Fibonacci numbers, alternating binary expansions and continuants. In Section
3 we describe the connection between the Stern sequence, alternating binary expansions
and continuants. Using this description we reduce the problem of comparing the elements
of the Stern sequence to the problem of comparing continuants, which is the subject of
Section 4. (For earlier work on comparing continuants, see Ramharter’s paper [6].) Using
some identities involving Fibonacci numbers, we finish the proof of Theorem 1 in Section 5.
Finally, in Section 6 we discuss possible extensions of our results.

2 Preliminaries

In this section we introduce some notation, and state some basic results about Fibonacci
numbers, alternating binary expansions and continuants. Let Fn denote the nth Fibonacci
number for every n ∈ Z. So F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for every n ∈ Z. Note

that ( 1 1
1 0 )

n =
(

Fn+1 Fn

Fn Fn−1

)

for every n ∈ Z. The following basic lemma describes the sign of

the Fibonacci numbers.

Lemma 2. If n ∈ Z, then F−n = (−1)n+1Fn. Hence

Fn







= 0, if n = 0;

> 0, if n > 0 or 2 ∤ n;

< 0, if n < 0 and 2 | n.

Proof. The first part is easy to check by induction on n, and the second part follows from
the first part.

The following lemma describes a useful identity, which allows us to compare FiFj’s with
fixed i+ j.

Lemma 3. If i, j, k, l ∈ Z and i+ j = k + l, then

FiFj − FkFl = (−1)kFi−kFj−k.

Hence if i+ j = k + l, then FiFj = FkFl if and only if {i, j} = {k, l}.

Proof. If n, i, j ∈ Z, then

Fn+iFn+j − FnFn+i+j = (−1)nFiFj.

Dickson [2, p. 404] attributes this identity to A. Tagiuri. Substituting k, i− k and j− k into
n, i and j, we obtain the stated identity. To prove the second part, note that by Lemma 2,
if n ∈ Z, then Fn = 0 if and only if n = 0.
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The following lemma describes the ordering of FiFj’s with i, j ≥ 0 and i + j fixed. We
need this result to prove the second half of Theorem 1.

Lemma 4. Let n ∈ Z≥0, then the set

{FiFj; i, j ∈ Z≥0, i+ j = n}

has cardinality ⌈n+1
2
⌉, and if m ∈ {1, . . . , ⌈n+1

2
⌉}, then the mth smallest element of this set

is F2m−2−cFn−(2m−2−c), where

c =

{

0, if m ≤ ⌊n+4
4
⌋ or 2 ∤ n;

1, if m > ⌊n+4
4
⌋ and 2 | n.

Proof. The last part of Lemma 3 implies that the cardinality is ⌈n+1
2
⌉. Form ∈ {1, . . . , ⌈n+1

2
⌉}

let c(m) be defined as c in the statement above, and let u(m) = 2m − 2 − c(m) and
v(m) = n − (2m − 2 − c(m)). Then u(m), v(m) ≥ 0 and u(m) + v(m) = n, so Fu(m)Fv(m)

is an element of the set. Let 1 ≤ m < m′ ≤ ⌈n+1
2
⌉. All we need to prove is that

Fu(m)Fv(m) < Fu(m′)Fv(m′). The difference is

Fu(m′)Fv(m′) − Fu(m)Fv(m) = (−1)u(m)Fu(m′)−u(m)Fv(m′)−u(m)

by Lemma 3. Here

u(m′)− u(m) = 2(m′ −m)− c(m′) + c(m) ≥ 2− 1 > 0,

so Fu(m′)−u(m) > 0. Therefore we need to prove that (−1)c(m)Fv(m′)−u(m) > 0. First suppose
that 2 ∤ n. Then c(m) = c(m′) = 0, so v(m′) − u(m) = n − 2(m′ + m − 2) is odd, hence
(−1)c(m)Fv(m′)−u(m) > 0 by Lemma 2. So let 2 | n.

Suppose that m > ⌊n+4
4
⌋. Then c(m) = c(m′) = 1, and m > ⌊n+4

4
⌋ = ⌈n+2

4
⌉, so

m− 1 ≥ ⌈n+2
4
⌉ ≥ n+2

4
> n

4
, hence

2 | v(m′)− u(m) = n− 2(m′ +m− 3) ≤ n− 2(2m+ 1− 3) = n− 4(m− 1) < 0.

Thus (−1)c(m)Fv(m′)−u(m) > 0 by Lemma 2.
Finally, let m ≤ ⌊n+4

4
⌋. Then c(m) = 0. If m′ > ⌊n+4

4
⌋, then c(m′) = 1 and 2 ∤

v(m′)− u(m), so Fv(m′)−u(m) > 0. If m′ ≤ ⌊n+4
4
⌋, then c(m′) = 0 and 4m′ − 4 ≤ n, so

v(m′)− u(m) = n− 2(m′ +m− 2) ≥ n− 2(2m′ − 3) > n− (4m′ − 4) ≥ 0,

hence Fv(m′)−u(m) > 0.

Now we turn to the discussion of alternating binary expansions. For d, l0 ∈ Z≥0,
l1, . . . , ld ∈ Z≥1 we define

A(l0, . . . , ld) =
d∑

i=0

(−1)d−i2l0+···+li .

We call this an alternating binary expansion. The following lemma gives a bound for
A(l0, . . . , ld).
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Lemma 5. If d, l0 ∈ Z≥0 and l1, . . . , ld ∈ Z≥1, then

2l0+···+ld−1 ≤ A(l0, . . . , ld) ≤ 2l0+···+ld .

If d > 0, then A(l0, . . . , ld) < 2l0+···+ld.

Proof. We prove by induction on d. For d = 0 this is trivial, so suppose that d ≥ 1 and that
the statement is true for smaller values of d. Let ki = l0 + · · ·+ li for every i ∈ {0, 1, . . . , d}.
Then 0 ≤ k0 < k1 < · · · < kd, and A(l0, . . . , ld) = 2kd − 2kd−1 + 2kd−2 − · · · + (−1)d2k0 =
2kd − A(l0, . . . , ld−1). Here 0 < 2kd−1−1 ≤ A(l0, . . . , ld−1) ≤ 2kd−1 ≤ 2kd−1 by the induction
hypothesis, so 2kd−1 ≤ A(l0, . . . , ld) < 2kd .

The following lemma describes the number of alternating binary expansions of a positive
integer.

Lemma 6. Every n ∈ Z≥1 has exactly two alternating binary expansions, and exactly one
of these has the form n = A(l0, 1, l2, . . . , ld), where l0 ∈ Z≥0 and d, l2, . . . , ld ∈ Z≥1. If n is a
power of 2, then d = 1 and the other expansion is n = A(l0), while otherwise d ≥ 2 and the
other expansion is A(l0, l2 + 1, l3, . . . , ld).

Proof. It is easy to check that A(l0, 1) = A(l0) = 2l0 and A(l0, 1, l2, . . . , ld) = A(l0, l2 +
1, l3, . . . , ld) for d ≥ 2. Hence it is enough to prove that every n ∈ Z≥1 has exactly one
alternating binary expansion of the form n = A(l0, . . . , ld) such that d ≥ 1 and l1 = 1. We
prove by induction on n. Let k be the unique positive integer such that 2k−1 ≤ n < 2k. Let
ki = l0 + · · · + li for i ∈ {0, . . . , d}. Then 2kd ≤ n < 2kd by Lemma 5, so kd = k. Moreover
n = 2k − A(l0, . . . , ld−1), so n′ = A(l0, . . . , ld−1) = 2k − n. If d = 1, then l0 = k − 1 and
n = A(l0, 1) = 2k−1. Now let d ≥ 2. Then A(l0, . . . , ld−1) < 2kd−1 ≤ 2k−1 by Lemma 5, so
2k−1 < n < 2k and n′ < 2k−1 < n. By the induction hypothesis, there is a unique expansion
n′ = A(l0, . . . , ld−1) with l1 = 1, where furthermore l0+ · · ·+ ld−1 ≤ k−1, because n′ < 2k−1.
Then ld = k − (l0 + · · ·+ ld−1) ∈ Z≥1 is also determined.

Now we will recall some basic facts about continuants. Continuants are polynomials in
several variables, which come up often when working with continued fractions. We define
the dth continuant Kd(X1, . . . , Xd) ∈ Z[X1, . . . , Xd] for every d ∈ Z≥0, by the following
recursion: K0 = 1, K1(X1) = X1, and

Kd(X1, . . . , Xd) = XdKd−1(X1, . . . , Xd−1) +Kd−2(X1, . . . , Xd−2)

for every d ≥ 2. We can safely write K(X1, . . . , Xd) instead of Kd(X1, . . . , Xd), because d is
anyway determined by the number of variables. If X = (X1, . . . , Xd), then we will also use
the notation K(X) = K(X1, . . . , Xd). The continuants are related to continued fractions by
the following identity:

[a0, a1, . . . , ad] = a0 +
1

a1 +
1

...+ 1

ad

=
K(a0, . . . , ad)

K(a1, . . . , ad)
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for every d ≥ 0.
The following lemma gives maybe the most practical description of continuants, using

2× 2 matrices.

Lemma 7. If d ≥ 2, then
(

Kd(X1, . . . , Xd) Kd−1(X1, . . . , Xd−1)
Kd−1(X2, . . . , Xd) Kd−2(X2, . . . , Xd−1)

)

=

(
X1 1
1 0

)

· · ·

(
Xd 1
1 0

)

.

So if d ≥ 0, then Kd(X1, . . . , Xd) = M1,1, where M =
(
X1 1
1 0

)
· · ·

(
Xd 1
1 0

)
.

Proof. This easily follows from the defining recursion by induction on d.

The continuants have the following symmetry property.

Lemma 8. K(X1, . . . , Xd) = K(Xd, . . . , X1) for every d ≥ 0.

Proof. Let M =
(
X1 1
1 0

)
· · ·

(
Xd 1
1 0

)
, then

MT =
(
Xd 1
1 0

)T
· · ·

(
X1 1
1 0

)T
=

(
Xd 1
1 0

)
· · ·

(
X1 1
1 0

)
,

hence
K(Xd, . . . , X1) = (MT)1,1 = M1,1 = K(X1, . . . , Xd)

by Lemma 7.

The following lemma states a few simple identities involving continuants.

Lemma 9. If d ≥ 1, then

K(X1, . . . , Xd) = K(X1 − 1, X2, . . . , Xd) +K(X2, . . . , Xd).

If d ≥ 2, then
K(1, X2, . . . , Xd) = K(X2, . . . , Xd) +K(X3, . . . , Xd).

If d ≥ 1, then
K(1, X1, X2, . . . , Xd) = K(X1 + 1, X2, . . . , Xd)

and
K(X1, . . . , Xd−1, Xd, 1) = K(X1, . . . , Xd−1, Xd + 1).

Proof. The identities are trivial for d = 1, so assume that d ≥ 2. Using Lemma 8 and the
defining recursion of the continuants, we obtain

K(X1, . . . , Xd) = X1K(X2, . . . , Xd) +K(X3, . . . , Xd).

Substituting X1 − 1 into X1, we get

K(X1 − 1, X2, . . . , Xd) = (X1 − 1)K(X2, . . . , Xd) +K(X3, . . . , Xd).

These two equations immediately imply the first part of the lemma. Substituting 1 into X1

in the first equation, we obtain the second part of the lemma.
The fourth identity follows from the third one by Lemma 8. Finally,

K(X1 + 1, X2, . . . , Xd) = K(X1, . . . , Xd) +K(X2, . . . , Xd) = K(1, X1, . . . , Xd)

by the first two parts of the lemma.
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3 Connecting the Stern sequence, alternating binary

expansions and continuants

The following proposition describes the connection between the Stern sequence, alternating
binary expansions and continuants. This result plays a central role in this paper: it allows
us to reduce the problem of ordering the elements of the Stern sequence to the problem of
ordering continuants.

Proposition 10. If d, l0 ∈ Z≥0 and l1, . . . , ld ∈ Z≥1, then

s(A(l0, l1, . . . , ld)) = K(l1, . . . , ld).

Proof. We prove by induction on l0 + · · · + ld. So let S ∈ Z≥0, and suppose the statement
is true if l0 + · · · + ld < S. Now let l0 + · · · + ld = S. If l0 > 0, then A(l0, l1, . . . , ld) =
2l0A(0, l1, . . . , ld), so s(A(l0, l1, . . . , ld)) = s(A(0, l1, . . . , ld)) = K(l1, . . . , ld) by the induction
hypothesis. So assume that l0 = 0.

Let ki = l0+· · ·+li for every i ∈ {0, . . . , d}, and let n = A(l0, l1, . . . , ld) =
∑d

i=0(−1)d−i2ki .
Note that k0 = l0 = 0, so k1 = l1. Here n > 0 by Lemma 5, and n is odd, so n = 2m+ 1 for
some m ∈ Z≥0. If d = 0, then n = 1, and s(1) = 1 = K(). So let d ≥ 1.

First suppose that l1 ≥ 2. If d is even, then m = A(l1−1, l2, . . . , ld) and m+1 = A(0, l1−
1, l2, . . . , ld), while if d is odd, then m+1 = A(l1−1, l2, . . . , ld) and m = A(0, l1−1, l2, . . . , ld).
(Note that l1 − 1 ≥ 1.) So either way we get

s(n) = s(m) + s(m+ 1) = s(A(0, l1 − 1, l2, . . . , ld)) + s(A(l1 − 1, l2, . . . , ld))

= K(l1 − 1, l2, . . . , ld) +K(l2, . . . , ld) = K(l1, . . . , ld)

using the induction hypothesis and Lemma 9.
Now suppose that l1 = 1. If d = 1, then n = A(0, 1) = 1 and s(n) = 1 = K(1). So let

d ≥ 2. If d is odd, then m = A(l2, . . . , ld) and m + 1 = A(0, l2, . . . , ld), while if d is even,
then m+ 1 = A(l2, . . . , ld) and m = A(0, l2, . . . , ld). So either way we get

s(n) = s(m) + s(m+ 1) = s(A(0, l2, . . . , ld)) + s(A(l2, . . . , ld))

= K(l2, . . . , ld) +K(l3, . . . , ld) = K(1, l2, . . . , ld) = K(l1, . . . , ld)

using the induction hypothesis and Lemma 9.

For r ∈ Z let us define

Er = {(l1, . . . , ld); d ∈ Z≥1, l1, . . . , ld ∈ Z≥1, l1 = ld = 1, l1 + · · ·+ ld = r + 1}

and

E ′
r = {(l1, . . . , ld); d ∈ Z≥1, l1, . . . , ld ∈ Z≥1, l1 = ld = 1, l1 + · · ·+ ld ≤ r + 1}.

Using Lemmas 5, 6 and Proposition 10, we obtain the following corollary.
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Corollary 11. If r ∈ Z≥0, then the set of values of the rth row of Stern’s diatomic array is

{s(n); 2r ≤ n ≤ 2r+1} = {K(l); l ∈ E ′
r}.

Proof. Suppose that l ∈ E ′
r. Let l0 = r + 1−

∑r

i=1 li and n = A(l0, . . . , ld). Then 2r ≤ n ≤
2r+1 and s(n) = K(l) by Lemma 5 and Proposition 10. So the left hand side contains the right
hand side. Conversely, let n ∈ {2r, . . . , 2r+1}. If n = 2r or n = 2r+1, then s(n) = 1 = K(1).
So suppose that 2r < n < 2r+1. According to Lemma 6, n has an alternating binary
expansion n = A(l0, . . . , ld) with d ≥ 1 and l1 = 1. Here l1+ · · ·+ ld ≤ l0+ · · ·+ ld = r+1 by
Lemma 5, and s(n) = K(l1, . . . , ld) by Proposition 10. So if ld = 1, then l = (l1, . . . , ld) ∈ E ′

r

and s(n) = K(l). If ld > 1, then l′ = (l1, . . . , ld − 1, 1) ∈ E ′
r and s(n) = K(l) = K(l′) by

Lemma 9. So the right hand side contains the left hand side.

This corollary implies that Lm(r) is the mth largest distinct value in {K(l); l ∈ E ′
r}. So

we need to compare the continuants K(l), where l ∈ E ′
r.

4 Comparing continuants

The following proposition describes a simple operation on (l1, . . . , ld) that increasesK(l1, . . . , ld).
This operation is our main tool in comparing continuants.

Proposition 12. Let d, l1, . . . , ld ∈ Z≥1, j ∈ {1, . . . , d}, and suppose that lj = u + v for
some u, v ∈ Z≥1. Then

K(l1, . . . , ld) ≤ K(l1, . . . , lj−1, u, v, lj+1, . . . , ld),

where equality holds if and only if j = 1 and u = 1, or j = d and v = 1.

Proof. Lemma 7 implies that

K(l1, . . . , ld) = (P ( u+v 1
1 0 )Q)1,1

and
K(l1, . . . , lj−1, u, v, lj+1, . . . , ld) = (P ( u 1

1 0 ) (
v 1
1 0 )Q)1,1,

where P =
(
l1 1
1 0

)
· · ·

(
lj−1 1
1 0

)
and Q =

(
lj+1 1
1 0

)
· · ·

(
ld 1
1 0

)
. Using

( u 1
1 0 ) (

v 1
1 0 )− ( u+v 1

1 0 ) =
(
(u−1)(v−1) u−1

v−1 1

)
= ( u−1

1 ) (v − 1, 1)

we obtain

∆ = K(l1, . . . , lj−1, u, v, lj+1, . . . , ld)−K(l1, . . . , ld) = (P ( u−1
1 ) (v − 1, 1)Q)1,1

= (P1,1(u− 1) + P1,2)(Q1,1(v − 1) +Q2,1).

Here P1,1, P1,2, Q1,1, Q2,1, u− 1, v − 1 ≥ 0, so ∆ ≥ 0. Note that detP, detQ ∈ {−1, 1}, since
det (X 1

1 0 ) = −1. So (P1,1, P1,2) 6= (0, 0) and (Q1,1, Q2,1) 6= (0, 0). Hence ∆ = 0 if and only
if u = 1 and P1,2 = 0, or v = 1 and Q2,1 = 0. It is easy to see that P1,2 = 0 if and only if
j = 1, and similarly, Q2,1 = 0 if and only if j = d.
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We introduce some notation. Let

h(l1, . . . , ld) =
d∑

i=1

(li − 1) = l1 + · · ·+ ld − d.

For r ∈ Z and a ∈ Z≥0 let

Er,a = {(l1, . . . , ld) ∈ Er; h(l1, . . . , ld) = a}

and
E ′

r,a = {(l1, . . . , ld) ∈ E ′
r; h(l1, . . . , ld) = a}.

Then E ′
r =

⋃

a≥0E
′
r,a =

⋃

t≤r

⋃

a≥0 Et,a.
For s, p0, p1, . . . , ps ∈ Z≥0 let

wp0,...,ps(X1, . . . , Xs) = (1, . . . , 1
︸ ︷︷ ︸

p0

, X1, 1, . . . , 1
︸ ︷︷ ︸

p1

, X2, . . . , 1, . . . , 1
︸ ︷︷ ︸

ps−1

, Xs, 1, . . . , 1
︸ ︷︷ ︸

ps

)

and
κp0,...,ps(X1, . . . , Xs) = K(wp0,...,ps(X1, . . . , Xs)).

For s = 0 we simply write
wp0 = (1, . . . , 1

︸ ︷︷ ︸

p0

)

and κp0 = K(wp0).
The idea is that starting from (l1, . . . , ld) ∈ E ′

r, and using the operation of Proposition 12
several times, and also possibly increasing elements or adding new elements to (l1, . . . , ld), we
can increase K(l1, . . . , ln) to K(wr+1). If we stop a bit earlier, we get the largest continuants.
The precise statement is described in the following proposition.

Proposition 13. If r ∈ Z≥0 and l ∈ E ′
r \ (Er,0 ∪ Er,1), then there is an m ∈ Er−1,0 ∪ Er,2

such that K(l) ≤ K(m).

Proof. We will use several times that if u1, . . . , ud ∈ Z≥1, then

K(u1, . . . , ud) ≤ K(u1, . . . , ud, 1),

and if u′
1, . . . , u

′
d ∈ Z≥1 and ui ≤ u′

i for every i, then

K(u1, . . . , ud) ≤ K(u′
1, . . . , u

′
d).

We prove by induction on h(l). If h(l) = 0, then l = wd for some d ≤ r, so we can take
m = wr ∈ Er−1,0. If h(l) = 1, then l = wp0,p1(2) for some p0, p1 ∈ Z≥1 with p0+p1 ≤ r−2, so
we can take m = wp0,r−2−p0(3) ∈ Er,2. Finally, let h(l) ≥ 2, and suppose that the statement
is true for smaller values of h. Then there is a j ∈ {2, . . . , d− 1} such that lj ≥ 2. Let

l′ = (l1, . . . , lj−1, lj − 1, 1, lj+1, . . . , ld),

then l′ ∈ E ′
r, and K(l) ≤ K(l′) by Proposition 12. Moreover h(l′) = h(l) − 1 ≥ 1, so

l′ /∈ Er,0. If l′ /∈ Er,1, then by the induction hypothesis there is an m ∈ Er−1,0 ∪ Er,2 such
that K(l) ≤ K(l′) ≤ K(m). So suppose that l′ ∈ Er,1. Then l ∈ Er,2, so we can take
m = l.
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5 Fibonacci identities

Based on Proposition 13, our next goal is to calculate K(l) for l ∈ Er,0 ∪Er,1 ∪Er−1,0 ∪Er,2.
If r ≥ 1, then Er,0 = {wr+1}, Er−1,0 = {wr},

Er,1 = {wp0,p1(2); p0, p1 ∈ Z≥1, p0 + p1 = r − 1},

and Er,2 = Ur ∪ Vr, where

Ur = {wp0,p1(3); p0, p1 ∈ Z≥1, p0 + p1 = r − 2}

and
Vr = {wp0,p1,p2(2); p0, p2 ∈ Z≥1, p1 ∈ Z≥0, p0 + p1 + p2 = r − 3}.

In general κp0,...,ps(X1, . . . , Xs) = M1,1, where

M = ( 1 1
1 0 )

p0
(
X1 1
1 0

)
( 1 1
1 0 )

p1
(
X2 1
1 0

)
· · · (Xs 1

1 0 ) (
1 1
1 0 )

ps .

Note that ( 1 1
1 0 )

p =
(

Fp+1 Fp

Fp Fp−1

)

for every p ∈ Z. Calculating the matrix products, we get

κp0 = Fp0+1,

κp0,p1(2) = 2Fp0+1Fp1+1 + Fp0+1Fp1 + Fp0Fp1+1,

κp0,p1(3) = 3Fp0+1Fp1+1 + Fp0+1Fp1 + Fp0Fp1+1,

κp0,p1,p2(2, 2) =Fp0+1Fp1Fp2 + Fp0Fp1+1Fp2 + 2Fp0+1Fp1+1Fp2 + Fp0+1Fp1−1Fp2+1

+ Fp0Fp1Fp2+1 + 4Fp0+1Fp1Fp2+1 + 2Fp0Fp1+1Fp2+1 + 4Fp0+1Fp1+1Fp2+1.

In the following lemma we express these values in more useful forms.

Lemma 14. If p0, p1, p2 ∈ Z≥0, then

κp0,p1(2) = Fp0+p1+3 − Fp0Fp1 = Fp0+p1+2 + Fp0+p1 + Fp0−1Fp1−1,

κp0,p1(3) = Fp0+p1+3 + Fp0+p1+1 − 2Fp0+p1−2 − 2Fp0−2Fp1−2,

κp0,p1,p2(2, 2) =(Fp0+p1+p2+4 + Fp0+p1+p2+2 − Fp0+p1+p2−4)

−
(
Fp1(Fp0−1Fp2−1 + 3Fp0−2Fp2−1 + 3Fp0−1Fp2−2) + 2Fp0−2Fp1+1Fp2−2

)
.

Proof. If i, j ∈ Z, then
(

Fi+j+1 Fi+j

Fi+j Fi+j−1

)

= ( 1 1
1 0 )

i+j = ( 1 1
1 0 )

i ( 1 1
1 0 )

j =
(

Fi+1 Fi

Fi Fi−1

)(
Fj+1 Fj

Fj Fj−1

)

,

hence Fi+j = Fi+1Fj+FiFj−1. Applying this identity twice, we get that Fi+j+k = Fi+j+1Fk+
Fi+jFk−1 = (Fi+1Fj+1 + FiFj)Fk + (Fi+1Fj + FiFj−1)Fk−1 for i, j, k ∈ Z. Using these
identities, one can express every term in the statement of the Lemma as a polynomial
of Fp0 , Fp0+1, Fp1 , Fp1+1, Fp2 , Fp2+1. Comparing the obtained polynomials, one can check the
stated identities. The calculations could be done by hand, but they are tedious. Instead
we have used Mathematica [8] to carry out these symbolic calculations, this is done in the
attached file.
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Corollary 15. If r ≥ 6, then

max{K(l); l ∈ Er,1} < Fr+2 = κr+1,

min{K(l); l ∈ Er,1} = κ1,r−2(2) = Fr+1 + Fr−1,

max{K(l); l ∈ Ur} = κ2,r−4(3) = Fr+1 + Fr−1 − 2Fr−4,

max{K(l); l ∈ Vr} = κ2,0,r−5(2, 2) = Fr+1 + Fr−1 − Fr−7.

So if r ≥ 6, then

max{K(l); l ∈ Er−1,0 ∪ Er,2} ≤ min{K(l); l ∈ Er,1},

with strict inequality for r 6= 7.

Proof. Let r ≥ 6. Recalling the description of Er,1, Ur and Vr, we see that

{K(l); l ∈ Er,1} = {κp0,p1(2); p0, p1 ∈ Z≥1, p0 + p1 = r − 1},

{K(l); l ∈ Ur} = {κp0,p1(3); p0, p1 ∈ Z≥1, p0 + p1 = r − 2},

{K(l); l ∈ Vr} = {κp0,p1,p2(2); p0, p2 ∈ Z≥1, p1 ∈ Z≥0, p0 + p1 + p2 = r − 3}.

Using Lemma 14 one can easily reduce the first part of the proposition to the following
statements. If p0, p1 ∈ Z≥1 and p0 + p1 = r − 1, then Fp0Fp1 > 0 and Fp0−1Fp1−1 ≥ 0.
If p0, p1 ∈ Z≥1 and p0 + p1 = r − 2, then 2Fp0−2Fp1−2 ≥ 0. If p0, p2 ∈ Z≥1, p1 ∈ Z≥0 and
p0+p1+p2 = r−3, then Fp1(Fp0−1Fp2−1+3Fp0−2Fp2−1+3Fp0−1Fp2−2)+2Fp0−2Fp1+1Fp2−2 ≥ 0.
These statements follow from the facts that Fn > 0 for n ≥ 1, and Fn ≥ 0 for n ≥ −1.

Now we prove the last part. If l ∈ Er−1,0, then K(l) = κr = Fr+1 < Fr+1 + Fr−1.
Since Er,2 = Ur ∪ Vr, the statement follows from Fr+1 + Fr−1 − 2Fr−4 < Fr+1 + Fr−1 and
Fr+1 + Fr−1 − Fr−7 ≤ Fr+1 + Fr−1. Note that here Fr−7 > 0 if r ≥ 6 and r 6= 7.

Now we are ready to prove our main result.

Proof of Theorem 1. The second part of the theorem follows from the first part by Lemma
4. We prove now the first part. For r ∈ {0, 1, 2, 3, 4, 5} one could check the statement by
hand. The attached Mathematica file contains a program that does this.

Suppose that r ≥ 6, and let m ≥ 1. By Corollary 11, Lm(r) is the mth largest distinct
value in {K(l); l ∈ E ′

r}. If l ∈ E ′
r \ (Er,0 ∪ Er,1), then

K(l) ≤ min(K(l′); l′ ∈ Er,1)

by Proposition 13 and Corollary 15. Moreover

{K(l); l ∈ Er,0} = {Fr+2}

and
{K(l); l ∈ Er,1} = {Fr+2 − FiFj; i, j ∈ Z≥1, i+ j = r − 1}

by Lemma 14. So {L1(r), . . . , L|H|(r)} = H, where

H = {Fr+2 − FiFj; i, j ∈ Z≥0, i+ j = r − 1}.

Here |H| = ⌈ r
2
⌉ by Lemma 4.
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6 Further research

Using our results, it would not be hard to describe the exact positions where the first ⌈ r
2
⌉

largest values in the rth row of Stern’s diatomic sequence appear.
To determine Lm(r) for 1 ≤ m ≤ ⌈ r

2
⌉, we needed to calculate and (sometimes) compare

the values of K(l) for l ∈ Er,0 ∪ Er,1 ∪ Er,2. To go a step further, i.e., to determine Lm(r)
for some m > ⌈ r

2
⌉, we would probably need to calculate and compare the values of K(l) for

l ∈
⋃3

i=0 Er,i. For example, we have ordered {K(l); l ∈ Er,0 ∪ Er,1}, but we have not yet
ordered {K(l); l ∈ Er,2}.

Instead of studying Stern’s diatomic array, which starts with the 0th row 1, 1, we could
study the following generalization. Start with the 0th row a, b, where a, b ∈ R, and in each
step construct a new row by copying the last row, and writing between each two consecutive
elements their sum. One could try to understand the largest values in the rth row of this
array.
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