
23 11

Article 17.2.2
Journal of Integer Sequences, Vol. 20 (2017),2

3

6

1

47

On Counting the Number of Tilings of a

Rectangle with Squares of Size 1 and 2

Johan Nilsson
LIPN Université Paris 13

93430 Villetaneuse
France

nilsson@lipn.univ-paris13.fr

Abstract

We consider tilings of a rectangle of size n×k with square tiles of size 1×1 and 2×2.
We present a method to calculate the number of such tilings via matrix multiplication,
where we optimize the number of multiplications needed and reduce the space required
for the matrix multiplication by dynamically generating the matrices involved.

1 Introduction

In this paper we study the problem of calculating the number of tilings of a rectangle R

with square tiles of size 1× 1 and 2× 2. This tiling problem is easily seen to be equivalent
to another classical problem, the problem of counting the number of ways of placing non-
attacking kings on a rectangular chessboard. Our version and the chess formulation of the
problem have been widely studied in different formulations and aspects; see [1, 2, 5], as well
as the sequences A063443, A193580 and A245013 in the On-Line Encyclopedia of Integer
Sequences OEIS [4].

Here we discuss a method using matrix multiplication to calculate the number of tilings
of R. The algorithm we introduce uses the idea of transforming the problem into a graph
problem and then applies the corresponding transition matrix An for the calculation. Our
way of approach is optimized in the number of multiplications needed to be done, with respect
to the non-zero entries of the sparse matrix An, which is exponentially less than the size of An.
The method we give here improves the idea by Race et al. [2], since we generate the matrix

1

mailto:nilsson@lipn.univ-paris13.fr
http://oeis.org/A063443
http://oeis.org/A193580
http://oeis.org/A245013

on the fly and thereby substantially reduce the space needed. By running an implementation
of our algorithm we have extended the sequence A063443 with 15 new entries. A summary
of our results can be found below.

Result 1. We present an algorithm for calculating the number of tilings of an n×k rectangle

R via matrix multiplication. The number of operations needed to generate the matrix An is

linear in the number of non-zero entries in An and requires only O(n) space. The space

required to perform the actual multiplication is linear in the number of rows of An.

The paper is organized as follows. In the next section, we give necessary definitions and
formulate the ideas of our method to calculate the number of tilings in detail. Thereafter
we present how to generate the adjacency matrix An for the matrix multiplication, and then
how to perform the actual calculation.

2 Graphs and matrices

In order to count the number of ways to tile an (n + 1) × (k + 1) rectangle R with square
tiles of size 1 × 1 and 2 × 2, we introduce a binary k × n matrix, Mk,n, to represent one
such tiling. The ones in Mk,n represent the lower left corner of a big tile; see Figure 1. The
zeros represent the small tiles or work as space fillers in the 3 remaining parts of a big tile.
We see a row in Mk,n as a binary word. Our use of the ones implies that we cannot have
two consecutive ones in a row. It suffices to consider the k × n matrix Mk,n instead of a
(k+1)× (n+1) matrix, since the rightmost column and the top row of the latter would just
contain zeros.

0 1 0

0 0 0

0 0 1

1 0 0

M4,3 =









1 0 0
0 0 1
0 0 0
0 1 0









100

001

000

010

Figure 1: A tiling of a 4 × 5 square and its representation by the M4,3 matrix and by a
sequence of words of length 3.

Further, a row in Mk,n is dependent on its neighboring rows. Hence, we may view
the rows in Mk,n as nodes in a graph Gn, where we have an edge between two rows r1 =
(r1,1, r1,2, . . . , r1,n) and r2 = (r2,1, r2,2, . . . , r2,n) if and only if r1 can be placed next to r2; see
Figure 2 and compare Figure 1. The row r1 can be placed next to r2 if and only if r2,j = 0

for j ∈ {i− 1, i, i+ 1} ∩ {1, . . . , n} for all i such that r1,i = 1.

2

http://oeis.org/A063443

101 010

100 001

000 A3 =

0
0
0

0
0
1

0
1
0

1
0
0

1
0
1

000

001

010

100

101

























1 1 1 1 1
1 0 0 1 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0

Figure 2: A graph and its corresponding adjacency matrix representing the ways to tile a
4× n rectangle R. A path of length n− 1 in the graph corresponds to a tiling of R.

Having the graph Gn, it is easy to get its corresponding adjacency matrix An. We index
the rows and the columns in An with the allowed words (or rows) that can occur in Mk,n in
lexicographical order. We denote the set of these allowed words by Tn, that is,

Tn =
{

t ∈ {0, 1}n : titi+1 6= 11 where t = t1 · · · tn
}

.

It is easy to see (and a standard exercise to show) that

|Tn| = Fn+2, (1)

where | · | denotes the cardinality of a set, and Fn is the nth Fibonacci number (that is,
Fn = Fn−1 + Fn+2 with F0 = 0 and F1 = 1; see A000045). By looking at the structure of
the set Tn, we see that we can give a recursive definition of the adjacency matrix An, as
previously noted in [1, 2]. We define

An =

(

An−1 An−2

An−2 0

)

, A0 =
(

1
)

, and A1 =

(

1 1
1 0

)

, (2)

where we fill the missing space in An with zeros; see again the matrix in Figure 2. The
number of rows in An is given by the size of Tn, that is,

Rows(An) = |Tn| = Fn+2, (3)

where Rows gives the number of rows of a square matrix. From the recursion in (2), together
with its initial conditions, we have that the number of ones in An satisfies the recursion

Ones(An) = Ones(An−1) + 2 ·Ones(An−2),

with Ones(A0) = 1 and Ones(A1) = 3, where the function Ones gives the number of ones in
a matrix; see Table 1.

It is straightforward to find a closed expression for the number of ones in An. Standard
techniques give

Ones(An) =
4

3
2n − 1

3
(−1)n, (4)

3

http://oeis.org/A000045

n 1 2 3 4 5 6 7 8

Ones(An) 3 5 11 21 43 85 171 341

Table 1: The number of ones in An for small values of n. The numbers follow the Jacobsthal
sequence; see A001045.

for n ≥ 0. This shows that An is a sparse matrix, since its number of entries are (Fn+2)
2, by

(3).
The question of finding the number of tilings of an n×k rectangle now reduces to making

a series of matrix multiplications. If we let a(n, k) be the number of tilings of such a rectangle
then

a(n, k) = 1T Ak−2

n−1 1, (5)

where 1 is a column vector of ones. This formula was also considered by Calkin et al. and
Race et al. [1, 2]. Note that we have a(n, k) = a(k, n). The number of matrix multiplications
can be reduced by noticing the following, which holds since the adjacency matrix An is
symmetric,

1T Aα+β
n 1 = 1T Aα

n · Aβ
n 1 = (Aα

n 1)
T (Aβ

n 1). (6)

For the case when α + β = 2γ in the above expressions we have 1T A2γ
n 1 = |Aγ

n 1|2.
If we perform the matrix multiplications in (5) with iterations, that is,

vj+1 = An−1vj, j = 1, . . . , k − 2 with v1 = 1 (7)

then the number of multiplications needed to be done is O(2nk), which is not symmetric
in n and k. So, making several matrix multiplications with a small matrix is often less
costly than few matrix multiplications with a large matrix. On the other hand, if we do the
matrix multiplications in (5) via squaring (i.e. by calculating A2

n, A
4
n, . . .) then we need

to make O(log k) matrix multiplications, resulting in O
(

(Fn)
3 log k

)

multiplications. This
occurs because the matrix A2

n is no longer sparse, it contains only non-zero entries. Also,
the space needed is substantially larger, as we need to store the matrix Aj

n. In this paper we
shall apply the method of iterated matrix multiplications.

Example 2. The number of ways to tile a 4× 4 square is given by

a(4, 4) = 1T A2

3 1 = (A3 1)
T (A3 1) = |A3 1|2 = 35,

and the number of ways to tile a 5× 9 rectangle is given by

a(5, 9) = 1T A7

4 1 = (A4

4 1)
T (A3

4 1) = a(9, 5) = 1T A3

8 1 = (A2

8 1)
T (A8 1) = 59925.

The number of multiplications made in the two different ways to find the result in the
calculation above is for a(5, 9)

4 ·Ones(A4) + Rows(A4) = 4 · 21 + 8 = 92

compared to
2 ·Ones(A8) + Rows(A8) = 2 · 341 + 54 = 736,

for a(9, 5), clearly in favor of the method using the smaller matrix. ⋄

4

http://oeis.org/A001045

3 Generating the adjacency matrix An

In general the matrix An is too large to store in the memory of a computer. It is better
to generate it dynamically when performing a matrix multiplication. In this section we
will show that this way of dealing with An can be done in asymptotically optimal time.
This means that the time needed to generate An is linear in the number of multiplications
performed in the matrix multiplication – or similarly, linear in the number of ones in An.
The space required for this is of order O(n).

3.1 Binary counters

To develop a method to generate the adjacency matrix An, we start by considering binary

counters. A binary counter is a binary vector p = p1 · · · pn ∈ {0, 1}n in which we step
through all the 2n possible words in lexicographical order by flipping the bits (or entries) in
p. It is a standard exercise to show that each increment (or to generate the next word) of
the counter can be made in amortized constant time; see [3]. Recall that amortized constant
time means that on average we have to make O(1) operations, for more of this, again see [3].

We give an algorithm (see Figure 3) implemented by the function Increment P, which
given p ∈ Tn generates the lexicographically next word in Tn. We will show that the function
Increment P makes such an incrementation of p in amortized constant time. An incremen-
tation is made by the function call Increment P(n,p), which changes the bits in p and
returns true if a word in Tn has been generated and false when there are no more elements
to generate.

5

boolean Increment_P(i,p)

{ flip p[i]

if(p[i] == 0)

{ if(i > 1)

{ return Increment_P(i-1,p)

}else

{ return false

}

}else

{ if(i > 1 and p[i-1] == 1)

{ flip p[i]

return Increment_P(i-1,p)

}else

{ return true

}

}

}

Figure 3: The pseudocode for the function Increment P that increments the vector p. A call
of the function gives the lexicographically next word of p in Tn. It returns true if the next
word has been found and false if we have generated all words.

The idea in the function Increment P is to check for the subpattern 11 or 0 when flipping
bit i in p. If one of these subpatterns exists, we have to go deeper in the recursion and flip
bits closer to the front of p. See Figure 4 for a walk–through of the case when p is of length
three.

p
[
1
]

p
[
2
]

p
[
3
]

p =0 0 0

0 0 1

(a)

p
[
1
]

p
[
2
]

p
[
3
]

p =0 0 1

0 0 0

0 1 0

(b)

p
[
1
]

p
[
2
]

p
[
3
]

p =0 1 0

0 1 1

0 1 0

0 0 0

1 0 0

(c)

p
[
1
]

p
[
2
]

p
[
3
]

p =1 0 0

1 0 1

(d)

p
[
1
]

p
[
2
]

p
[
3
]

p =1 0 1

1 0 0

1 1 0

1 0 0

0 0 0

(e)

Figure 4: The function Increment P applied to the vector p of length n = 3. The function
is called 5 times, illustrated in (a)–(e), where all but the last time (e) returns true. The
arrows indicate how the function flips the bits in p. Starting in (a) with p equal to zero, we
flip the last bit and return true. In (b) we see that we have to flip bits closer to the front
before finding an allowed word. Similar recursive steps happen in (c) and (e).

Let us turn to the performance of this increment function. For this, let f(n) denote the
total number of flips of bits in p performed by the function Increment P when called Fn+2

6

times starting form the zero word, that is, during the walk–through of the elements of Tn.
Similarly, let f(n, i) be the total number of times that the bit i is flipped during these Fn+2

calls. Then clearly

f(n) =
n

∑

i=1

f(n, i).

In Table 2 the result of a computer enumeration of f(n) for some small values of n is
presented.

n 1 2 3 4 5 6 7 8

f(n) 2 6 12 22 38 64 106 174

Table 2: The number of flips performed by Increment P when stepping through the words
of length n without the pattern 11.

Proposition 3. The number of times that, starting form the zero word, bit i in a binary

counter of length n is flipped during Fn+2 calls of the function Increment P is given by

f(n, i) = 2Fi+1, (8)

for n ≥ 1 and 1 ≤ i ≤ n.

Proof. We give a proof by induction on n. By inspection it is clear that f(n, i) = 2Fi+1 for
n = 1, 2 and 1 ≤ i ≤ n.

Now assume for induction that (8) holds for 1 ≤ n ≤ k. For the induction step n = k+1,
notice first that the function Increment P sets all bits back to zero once it has listed all
words. This implies that generating the words in Tk+1 from 00 · · · 0 to 10 · · · 0 uses precisely
f(k, i− 1) flips for bit number 2 ≤ i ≤ k + 1 and one flip for bit number 1.

Similarly, to generate all words in Tk+1 from 100 · · · 0 to 110 · · · 0 requires precisely f(k−
1, i− 2) flips for bit number 3 ≤ i ≤ k + 1 and one flip for bit number 2. Thus

f(k + 1, i) = f(k, i− 1) + f(k − 1, i− 2)

= 2Fi−1+1 + 2Fi−2+1

= 2Fi+1,

for 3 ≤ i ≤ k+1. For bit number 2, we see that we have flipped it two times when listing the
words from 00 · · · 0 to 10 · · · 0 and then one more time when listing the words from 100 · · · 0
to 110 · · · 0, and then finally one more to set it back to 0. We get f(k+1, 2) = 4 = 2F3. For
bit number 1 it is clear that it is flipped twice, once when listing the words from 00 · · · 0 to
10 · · · 0 and then one more to reset it.

From Proposition 3 we find the total number of flips performed to generate all words in
Tn to be given by

f(n) =
n

∑

i=1

2Fi+1 = 2Fn+3 − 4. (9)

7

Corollary 4. An incrementation of the binary vector p of length n with a call of the function

Increment P is made with an amortized constant number of flips.

Proof. From (1) and (9) we have the bound

2Fn+3 − 4

|Tn|
=

2Fn+3 − 4

Fn+2

= 2
Fn+3

Fn+2

− 4

Fn+2

≤ 4,

since Fn+1 ≤ 2Fn, which implies that we on average have to do less than 4 flips for each call
of the function Increment P.

The average number of flips to perform in each call of the incrementation function tends
to

lim
n→∞

2Fn+3 − 4

|Tn|
= lim

n→∞

2Fn+3 − 4

Fn+2

= 1 +
√
5 ≈ 3.2360 · · ·

To conclude, we have shown that the words in Tn can be generated in linear time in the
size of Tn, that is, in O

(

(1+
√
5

2
)n
)

time. The space needed to generate these words is O(n),
since we only need to store the vector p of length n.

3.2 Side conditions

In the previous section, we showed how to efficiently generate all the tuples in a matrix
representing a tiling. Applying this method to generate the adjacency matrix An would
require at least O

(

(1+
√
5

2
)2n

)

operations. This occurs since, for each row in An we have a
second binary counter generating the columns, and then check if there should be a one in
the corresponding entry of An. This method is straightforward but has the drawback that it
also generates all the entries in An that are zero. In this section we show how to overcome
this and generate just the entries in An that are ones, and thereby reduce the amount of
work substantially.

We introduce here a function Increment PQ, see Figure 5, that increases a binary vector
q with the side condition p ∈ Tn. The function generates all the elements q ∈ Tn that do not
have a collision with p. A collision with p means that if pi = 1, 1 ≤ i ≤ n, then qi+j = 1 for
some j = −1, 0, 1 with 1 ≤ i+ j ≤ n. We also say that words without collisions are allowed.
These allowed words correspond to the ones in An, where we see p as the row index and q

as the column index in An.
The function Increment PQ works in the same way as the function Increment P, with

the extra check for a collision with p when incrementing q. If there is a collision, we have to
go deeper in the recursion and flip bits closer to the front in q. The function returns true if
the incrementation was successful, and false if there are no further words to list. Finally, for
each word p ∈ Tn, we start with q = 0 and call the function repeatedly until false is returned.

Let us turn to the performance of the function Increment PQ. For this, let fp(n) denote
the total number of flips made when generating all words q when calling Increment PQ(n,p,q)

for all p ∈ Tn. That is, the total number of flips performed on q when we generate the matrix

8

boolean Increment_PQ(i,p,q)

{ n = length(p)

flip q[i]

if(q[i] == 0)

{ if(i > 1)

{ return Increment_PQ(i-1,p,q)

}else

{ return false

}

}else

{ if(i > 1)

{ if(q[i-1] == 1 or p[i-1] == 1 or p[i] == 1 or

(i < n and p[i+1] == 1))

{ flip q[i]

return Increment_PQ(i-1,p,q)

}else

{ return true

}

}else

{ if(p[i] == 1 or (i < n and p[i+1] == 1))

{ flip q[i]

return false

}else

{ return true

}

}

}

}

Figure 5: The pseudocode for the function Increment PQ that increments the vector q with
the side condition p. It returns true if the next word has been found, and false if we have
generated all words.

9

An. Similarly, let fp(n, i) be the total number of times the bits in q are flipped for the ith
word p in Tn, where we index the words lexicographically. In other words, this is the number
of flips made when generating row i in An. Then clearly

fp(n) =

Fn+2
∑

i=1

fp(n, i). (10)

In Table 3 the result of a computer enumeration of fp(n) for some small values of n is
presented.

n 1 2 3 4 5 6 7 8

fp(n) 4 14 40 96 222 488 1052 2222

Table 3: The number of flips performed by Increment PQ when stepping through the allowed
words q of length n for all words p ∈ Tn.

Lemma 5. The total number of flips on all q performed by Increment PQ(n,p,q) when

going through all p ∈ Tn is given by the recursion

fp(n) = fp(n− 1) + 2fp(n− 2) + 8Fn + 2Fn−1, (11)

for n > 2 with fp(1) = 4 and fp(2) = 14.

Proof. The basis conditions are obtained by stepping through the function Increment PQ.
For n = 1 we have fp(1) = fp(1, 1) + fp(1, 2) = 2 + 2 = 4 and similarly

fp(2) =

F4
∑

i=1

fp(2, i) = 6 + 4 + 4 = 14

for n = 2.
For the recursion (11) recall the recursive structure of the matrix An, see Figure 2. Let

p be the ith word in Tn. First let us consider the case when 0 < i ≤ Fn. To generate the
allowed words q in the interval from 00 · · · 0 to 10 · · · 0 requires fp(n− 1, i) + 1 flips, where
the plus one comes from flipping the first bit. To generate the words in the interval 10 · · · 0
to 110 · · · 0 requires fp(n− 2, i)+ 1 flips, and then an additional 2 flips are made for the two
first bits. We therefore have

fp(n, i) = fp(n− 1, i) + fp(n− 2, i) + 4, for 0 < i ≤ Fn.

Secondly, for Fn < i ≤ Fn+1, again notice that to generate the allowed words q in the
interval from 00 · · · 0 to 10 · · · 0 requires fp(n − 1, i) + 1 flips. Furthermore, in this case p

starts with 01. This means that after having generated the last allowed word q smaller than
10 · · · 0 the only extra flip made is on the first bit to reset it. Therefore we have

fp(n, i) = fp(n− 1, i) + 2, for Fn < i ≤ Fn+1.

10

Third and finally, for Fn+1 < i ≤ Fn+2 we make fq(n− 2, i− Fn+1) + 1 flips to generate
the allowed words from 00 · · · 0 to 01 · · · 0. As above we notice here that p starts with 10.
This means that after having generated the last allowed word q < 01 · · · 0, the only extra
flips made are on the first bits. So,

fp(n, i) = fp(n− 2, i− Fn+1) + 4, for Fn+1 < i ≤ Fn+2.

Summing up the three cases, recalling (10), gives

fp(n) =
Fn
∑

i=1

(

fp(n− 1, i) + fp(n− 2, i) + 4
)

+

Fn+1
∑

i=Fn+1

(

fp(n− 1, i) + 2
)

+

Fn+2
∑

i=Fn+1+1

(

fp(n− 2, i− Fn+1) + 4
)

= fp(n− 1) + 2fp(n− 2) + 8Fn + 2Fn−1,

completing the proof.

It is straightforward to give an explicit solution to the recursion (11) with its initial
conditions. We find

fp(n) =
32

3
2n − 2

3
(−1)n − 8Fn+2 − 2Fn+1.

Corollary 6. Generating the ones in the adjacency matrix An can be made in linear time

in the number of ones in An.

Proof. If we let f(An) denote the total number of flips needed to generate An, then

f(An)

Ones(An)
=

fp(n) + f(n)

Ones(An)

=
32

3
2n − 2

3
(−1)n − 8Fn+2 − 2Fn+1 + 2Fn+3 − 4

4

3
2n − 1

3
(−1)n

=
32 · 2n − 2(−1)n − 18Fn+2 − 12

4 · 2n − (−1)n

≤ 32 · 2n − 18Fn+2 − 10

4 · 2n − 1

≤ 8,

where the last inequality follows from

8(4 · 2n − 1)− (32 · 2n − 18Fn+2 − 10) = 18Fn+2 + 2 ≥ 0.

To conclude, the space needed to generate An is O(n), since we just have to store the
vectors p and q, and the work needed to do this is linear in the number of ones in An.

11

4 Matrix multiplication

In the previous section we have seen how to generate the adjacency matrix An. In this
section we describe how to use it efficiently in the matrix multiplication. First we present
how to count the number of tilings, without respect to what tiles we use - we turn to that
question in the second subsection.

4.1 Counting

The rows and columns in An are indexed in lexicographical order with the words of Tn. To
simplify the access into a specific position in An we introduce the index function In : Tn → N

by

In(t) = 1 +
n

∑

i=1

Fn+2−i ti, (12)

for t ∈ Tn with t = t1 · · · tn. It is easy to show that In indexes the words of Tn in order
without gaps. The function In is based on the well-known exercise of writing a natural
number in the Fibonacci base system. In the multiplication

u = Ak
n 1

the entry ui is the number of all paths of length k in the graph Gn (representing the tilings)
that end in node N with i = In(N). By the length of a path we mean the number of visited
edges in the path.

Now we have all the parts for the matrix multiplication An with a column vector vT =
(v1, v2, . . . , vFn+2

). The actual matrix multiplications are now performed according to (7).
The pseudocode for the matrix multiplication An v is given in Figure 6.

The algorithm for the matrix multiplication works as follows. We initiate a binary counter
row and for each increment of it we initiate and step through a second binary counter column.
We increment row with Increment P and column with Increment PQ where we have row

as the side condition. This corresponds to stepping through the matrix An from the upper
leftmost position going rightwards to the end of the row before moving to the next row,
restarting from the leftmost position, and so on. As the function Increment PQ does not go
through all the entries on a row, we have to use the index function In to find the correct
position. At each position, we just have to add the entry vi to a temporary vector vtmp.
We do not have to make any multiplications since all non-zero entries of An are ones. After
stepping through all rows of An we return the temporary vector vtmp.

4.2 Detailed count

Here we present how to keep track of the number of tilings with a specific number of large
tiles. The multiplication follows the pattern given in the previous section, with only a few

12

vector MatrixMultiplication(n,v)

{ initiate the binary vector ’row’ of length n to zero

initiate the vector ’v_tmp’ of length F(n+2) with zeros

do

{ initiate the binary vector ’column’ of length n to zero

r = I_n(row)

do

{ c = I_n(column)

v_tmp[r] = v_tmp[r] + v[c]

}

while(Increment_PQ(n,row,column))

}

while(Increment_P(n,row))

return v_tmp

}

Figure 6: The pseudocode for performing the multiplication Anv. The function In is the
index function from (12). Note that no actual multiplication is performed, as all non-zero
entries of An are 1.

changes. The vector v is modified to be a vector of (m+1)-tuples, where m is the maximum
number of big tiles in any of the tilings we are going to count.

Next, the initialization of v is made by

for(t in T_n)

{ v[I_n(t)][Ones(t)] = 1

}

where Ones gives the number of ones in a word, and all the other entries are set to zero.
Thus, in the multiplication

u = Ak
n v,

uij represents the number of all paths of length k in Gn that end in node N , with i = In(N),
which contain precisely j ones. That is, j is the total number of ones in the nodes along
such paths.

In the multiplication we have to take into account the number of ones which are in
the word representing the current row in An, say o = Ones(row). Now the entry-wise
multiplication will just be to add tuple vc to the tuple (vtmp)r, where the latter is shifted o

steps to the left. This is to take care of the extra o ones that we get by adding node row to
the paths. See the pseudocode in Figure 7.

13

vector MatrixMultiplicationDetailed(n,m,v)

{ initiate the binary vector ’row’ of length n to zero

initiate the array ’v_tmp’ of size F(n+2) X m with zeros

do

{ initiate the binary vector ’column’ of length n to zero

r = I_n(row)

o = Ones(row)

do

{ c = I_n(column)

for(i=0; o+i<length(v_tmp[r]); i++)

{ v_tmp[r][o+i] = v_tmp[r][o+i] + v[c][i]

}

}

while(Increment_PQ(n,row,column))

}

while(Increment_P(n,row))

return v_tmp

}

Figure 7: The pseudocode for performing the multiplication Anv, where we count of the
number of tilings with a specific number of large tiles.

Example 7. Let us return to the tilings of a 4× 4 square that we considered in Example 2.
We initialize v to be the following array

v =

0 1 2 3 4

000

001

010

100

101

























1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0

Clearly, the number of columns in v has to be adopted to the maximum number of large
squares in any of the tilings of the rectangle to tile. After multiplication with A3 we have

A3v =













1 3 1 0 0
0 1 1 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 0 0













and A2

3v =













1 6 4 0 0
0 1 4 2 0
0 1 3 1 0
0 1 4 2 0
0 0 1 3 1













.

Therefore, by summing up the columns,

1T A2

3 v =
[

1 9 16 8 1
]

.

This tells us there is 1 tiling with no 2×2 square, 9 tilings with precisely one 2×2 square, 16
with precisely two 2× 2 squares, and so on. In the same way, we can calculate the number

14

of tilings of a 5× 9 rectangle

1T A7

4 v =
[

1 32 402 2 564 9 009 17 696 18 738 9 636 1 847
]

which of course again sums up to 59925.
Unfortunately there seems to be no way to reduce the number of matrix multiplications

in this case with detailed count, as we did in (6). At this moment we must leave the question
about finding such a shortcut open. ⋄

5 Enumerations

With an implementation in JAVA of this algorithm, we calculated the number of tilings of
a square S of size n × n, for n = 1, 2, . . . , 40. The result is in detail presented in the OEIS
[4] under the sequence A063443. See also Table 4 for some of the sequence values.

n a(n, n), A063443

1 1

2 2

3 5

4 35

5 314

6 6427

7 202841

8 12727570

9 1355115601

10 269718819131
...

36 7.512803 · 10160
37 1.198698 · 10170
38 3.447777 · 10179
39 1.787377 · 10189
40 1.670949 · 10199

Table 4: The number of tilings of a n× n square.

In the same spirit, in Figure 8 we illustrate the distribution of the number of tilings of a
23× 23 square, with a specified number of 2× 2 tiles.

15

http://oeis.org/A063443
http://oeis.org/A063443

Nbr of tilings

Nbr of 2× 2 squares
71 1210

3.188 · 1064

Figure 8: The distribution of the number of tilings of a 23 × 23 square with given number
of 2× 2 squares. The y–axis is drawn in a logarithmic scale.

6 Acknowledgment

The author wishes to thank T. Fernique and A. Ugolnikova at Université Paris 13 for our
discussions of the problem and for reading drafts of the manuscript. This work was supported
by the ANR project QuasiCool (ANR-12-JS02-011-01).

References

[1] N. J. Calkin, K. James, S. Purvis, S. Race, K. Schneider, and M. Yancey, Counting
kings: as easy as λ1, λ2, λ3,. . . . Proceedings of the Thirty-Seventh Southeastern Inter-

national Conference on Combinatorics, Graph Theory and Computing., Congr. Numer.
183 (2006), 83–95.

[2] S. Race, K. Schneider, and M. Yancey, The kings problem. Manuscript available at
http://www4.ncsu.edu/~slrace/gsskings.pdf.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd ed., MIT Press, 2009.

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electroni-
cally at http://oeis.org .

[5] H. Wilf, The problem of the kings, Electronic J. Combinatorics 2 (1995), #R3. Available
at http://www.combinatorics.org/ojs/index.php/eljc/article/view/v2i1r3.

2010 Mathematics Subject Classification: Primary 68R05; Secondary 68Q25.

16

http://www4.ncsu.edu/~slrace/gsskings.pdf
http://oeis.org
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v2i1r3

Keywords: tiling, analysis of algorithms, combinatorics.

(Concerned with sequences A001045, A063443, A193580 and A245013.)

Received April 20 2016; revised version received December 1 2016. Published in Journal of

Integer Sequences, December 27 2016.

Return to Journal of Integer Sequences home page.

17

http://oeis.org/A001045
http://oeis.org/A063443
http://oeis.org/A193580
http://oeis.org/A245013
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Graphs and matrices
	Generating the adjacency matrix An
	Binary counters
	Side conditions

	Matrix multiplication
	Counting
	Detailed count

	Enumerations
	Acknowledgment

