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Abstract

The (q, r)-Whitney numbers were recently defined in terms of the q-Boson opera-
tors, and several combinatorial properties which appear to be q-analogues of similar
properties were studied. In this paper, we obtain elementary and complete symmetric
polynomial forms for the (q, r)-Whitney numbers, and give combinatorial interpreta-
tions in the context of A-tableaux. We also obtain convolution-type identities using
the combinatorics of A-tableaux. Lastly, we present applications and theorems related
to discrete q-distributions.

1 Introduction

In a recent paper, the author and Katriel [21] introduced a new approach to generate q-
analogues of Stirling and Whitney-type numbers. In this paper, the (q, r)-Whitney numbers
of the first and second kinds were defined as coefficients in

mn(a†)nan =
n∑

k=0

wm,r,q(n, k)(ma
†a+ r)k (1)

and

(ma†a+ r)n =
n∑

k=0

mkWm,r,q(n, k)(a
†)kak, (2)
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respectively (cf. [21]), by using as framework, the q-Boson operators a† and a of Arik and
Coon [2] which satisfy the commutation relation

[a, a†]q ≡ aa† − qa†a = 1. (3)

By convention, wm,r,q(0, 0) = Wm,r,q(0, 0) = 1 and wm,r,q(n, k) = Wm,r,q(n, k) = 0 for k > n

and for k < 0. Several combinatorial properties were already established, including the
following triangular recurrence relations [21, Theorem 6]:

wm,r,q(n+ 1, k) = q−n
(
wm,r,q(n, k − 1)− (m[n]q + r)wm,r,q(n, k)

)
, (4)

with [n]q =
qn−1
q−1

, the q-integer, and

Wm,r,q(n+ 1, k) = qk−1Wm,r,q(n, k − 1) + (m[k]q + r)Wm,r,q(n, k). (5)

From here, one readily obtains

wm,r,q(n, 0) = (−1)nq−(
n
2)

n−1∏

i=0

(m[i]q + r), (6)

wm,r,q(n, n) = q−(
n
2), (7)

Wm,r,q(n, 0) = rn, (8)

and
Wm,r,q(n, n) = q(

n
2). (9)

The identities presented in Eqs. (4) and (5) can be used as tools to obtain further combinato-
rial identities for wm,r,q(n, k) and Wm,r,q(n, k). For instance, with the aid of these recurrence
relations, the vertical recurrence relations

wm,r,q(n+ 1, k + 1) =
n∑

j=k

(−1)n−jq(
j
2)−(

n+1

2 )wm,r,q(j, k)
n∏

i=j+1

(m[i]q + r), (10)

with
∏n

i=j+1(m[i]q + r) = 1 when j = n, and

Wm,r,q(n+ 1, k + 1) = qk
n∑

j=k

(m[k + 1]q + r)n−jWm,r,q(j, k), (11)

can be proved by induction, as well as the rational generating function of the (q, r)-Whitney
numbers of the second kind given by

∞∑

n=k

Wm,r,q(n, k)t
n =

q(
k
2)tk

∏k
i=0 (1− (m[i]q + r)t)

. (12)

2



On the other hand, the horizontal recurrence relations

wm,r,q(n, k) = qn
n−k∑

j=0

(m[n]q + r)jwm,r,q(n+ 1, k + j + 1) (13)

and

Wm,r,q(n, k) =
n−k∑

j=0

(−1)jq(
k
2)−(

k+j+1

2 )
∏k+j

i=0 (m[i]q + r)
∏k

i=0(m[i]q + r)
Wm,r,q(n+ 1, k + j + 1) (14)

can be verified by evaluating the right-hand sides using Eqs. (4) and (5). Before proceeding,
we note that Eqs. (10) and (11) follow a behaviour similar to that of the Chu-Shi-Chieh’s
identity (see [6]) for the classical binomial coefficients given by

(
n+ 1

k + 1

)
=

(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
n

k

)
,

while Eqs. (13) and (14) are analogous with
(
n

k

)
=

(
n+ 1

k + 1

)
−

(
n+ 1

k + 2

)
+ · · ·+ (−1)n−k

(
n+ 1

n+ 1

)
,

another known identity for the classical binomial coefficients.
The purpose of this paper is to express the (q, r)-Whitney numbers of both kinds in

symmetric polynomial forms. This proves to be useful in establishing combinatorial inter-
pretations in terms of A-tableaux. In return, remarkable convolution-type identities are
obtained and several other interesting theorems are also presented.

2 Explicit formulas in symmetric polynomial forms

2.1 (q, r)-Whitney numbers of the first kind

Expanding the falling factorial (x)n = x(x− 1) · · · (x− n+ 1) in powers of x, we obtain

(x)n =
n∑

k=0

(−1)n−kxk
∑

1≤i1<i2<···<in−k≤n−1

n−k∏

j=1

ij ,

which yield the well-known expression for the Stirling numbers of the first kind in terms of
elementary symmetric functions. This relation can be generalized to the q-Stirling numbers
as follows:

[x]q[x− 1]q · · · [x− n+ 1]q = [x]q([x]q + qx)([x]q + qx[2]q) · · · ([x]q + qx[n− 1]q)

=
n∑

k=0

[x]kq · q
x(n−k)

∑

1≤i1<i2<···<in−k≤n−1

n−k∏

j=1

[ij]q .
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To further generalize this procedure to the (q, r)-Whitney numbers of the first kind, recall
that application of both sides of the defining relation in Eq. (1) on the q-boson number state
|ℓ〉 gives

mn[ℓ]q[ℓ− 1]q · · · [ℓ− n+ 1]q =
n∑

k=0

wm,r,q(n, k)
(
m[ℓ]q + r

)k
.

Since both sides of this relation are finite polynomials in ℓ, and since the relation is valid for
all integer ℓ, it remains valid when ℓ is replaced by the real number x, i.e.,

mn[x]q[x− 1]q · · · [x− n+ 1]q =
n∑

k=0

wm,r,q(n, k)
(
m[x]q + r

)k
. (15)

Now, defining y = [x]q + α, where α = r
m
, we note that [x− i]q = q−i(y − α− [i]q). Hence,

mn[x]q[x−1]q · · · [x−n+1]q =
n∑

k=0

(m[x]q+r)
kq−(

n
2)(−1)n−k

∑

0≤i1<i2<···<in−k≤n−1

n−k∏

j=1

(m[ij]q+r) .

(16)
The identity in the next theorem is obtained by comparing the right-hand-sides of Eqs. (15)
and (16).

Theorem 1. The (q, r)-Whitney numbers of the first kind satisfy the following explicit form

wm,r,q(n, k) = (−1)n−kq−(
n
2)

∑

0≤i1<i2<···<in−k≤n−1

n−k∏

j=1

(r + [ij]qm). (17)

Remark 2. The sum within this theorem is the symmetric polynomial of degree n− k in the
n variables {(r + [i]qm); i = 0, 1, . . . , n − 1}. For r = 0 all the terms with i1 = 0 vanish so
the summation starts at 1, which is consistent with the expressions presented above for the
Stirling and q-Stirling numbers of the first kind.

The above theorem can also be proved by induction as follows:

Alternative proof of Theorem 1. The theorem readily yields wm,r,q(0, 0) = 1. Making the
induction hypothesis that the theorem is true up to n, for all k = 0, 1, . . . , n, we prove it for
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n+ 1 and k = 0, 1, . . . , n, via the recurrence relation (4). Thus,

wm,r,q(n+ 1, k) = q−n
(
(−1)n+1−kq−(

n
2)

∑

0≤i1<i2<···<in+1−k≤n−1

n+1−k∏

j=1

(r + [ij]qm)

−(m[n]q + r)(−1)n−kq−(
n
2)

∑

0≤i1<i2<···<in−k≤n−1

n−k∏

j=1

(r + [ij]qm)
)

= q−(
n+1

2 )(−1)n+1−kq−(
n
2)
( ∑

0≤i1<i2<···<in+1−k≤n−1

n+1−k∏

j=1

(r + [ij]qm)

+(m[n]q + r)
∑

0≤i1<i2<···<in−k≤n−1

n−k∏

j=1

(r + [ij]qm)
)

The first term within the large paretheses contains all products of n+ 2− k distinct factors
out of {(r + [i]qm); i = 0, 1, . . . , n − 1}, whereas the second term contains all products
of n + 2 − k distinct factors, one of which is (r + m[n]q) and the others chosen out of
{(r + [i]qm); i = 0, 1, . . . , n− 1}. Together, these sums yield

∑

0≤i1<i2<···<in+1−k≤n

n+1−k∏

j=0

(r + [ij]qm),

thus establishing the theorem for the range of indices specified above. Finally, the theorem

yields wm,r,q(n+ 1, n+ 1) = q−(
n+1

2 ), in agreement with (7).

As q → 1, the explicit formula (17) reduces to an expression for the r-Whitney numbers
of the first kind given by

wm,r(n, k) = (−1)n−k
∑

0≤i1<i2<···<in−k≤n−1

n−k∏

j=1

(r + ijm). (18)

An equivalent of this identity was reported by Mangontarum et al. [18, Theorem 6]. For
m = 1 and r = 0, (17) reduces to an explicit formula for a q-analogue of the Stirling numbers
of the first kind, viz,

[
n

k

]

q

= (−1)n−kq−(
n
2)

∑

0≤i1<i2<···<in−k≤n−1

n−k∏

j=1

[ij]q, (19)

where
[
n
k

]
q
denote the q-Stirling numbers of the first kind defined by

[x]q,n =
n∑

k=1

(−1)n−k
[
n

k

]

q

[x]kq , (20)
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[x]q,n = [x]q[x− 1]q[x− 2]q · · · [x− n + 1]q (cf. [4]). For any given set of n− k integers that
satisfy 1 < i2 < · · · < in−k < n− 1, let

{ℓ1, ℓ2, . . . , ℓk} ≡ {1, 2, 3, . . . , n− 1} − {i1, i2, . . . , in−k}

be the complement with respect to {1, 2, 3, . . . , n− 1}. It follows that

n−k∏

j=0

[ij]q =
[n− 1]q!∏k
j=0[ℓj]q

. (21)

This allows (19) to be written in the form

[
n

k

]

q

= q−(
n
2)[n− 1]q!

∑

0≤i1<i2<···<in−k≤n−1

1
∏k

j=0[ℓj]q
. (22)

As q → 1, one recovers from (19) Comtet’s [8] identity given by

[
n

k

]
= (−1)n−k

∑

0≤i1<i2<···<in−k≤n−1

n−k∏

j=1

ij, (23)

while (22) yields Adamchik’s [1] identity for the Stirling numbers of the first kind given by

[
n

k

]
= (n− 1)!

∑

0≤i1<i2<···<in−k≤n−1

1
∏k

j=0 ℓj
. (24)

2.2 (q, r)-Whitney numbers of the second kind

Theorem 3. The (q, r)-Whitney numbers of the second kind satisfy the following explicit
form:

Wm,r,q(n, k) = q(
k
2)

∑

c0+c1+···+ck=n−k

k∏

j=0

(m[j]q + r)cj , (25)

where c0, c1, . . . , ck are non-negative integers.

Proof. We proceed by induction over n. First, we note that the theorem is satisfied when
n = k = 0. That is, Wm,r,q(0, 0) = 1. Making the induction hypothesis that the theorem
holds up to n (for all k = 0, 1, . . . , n) we show, using the recurrence relation (5), that it holds
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for n+ 1 and k = 0, 1, . . . , n. Thus,

Wm,r,q(n+ 1, k) = qk−1q(
k−1

2 )
∑

c0+c1+···+ck−1=n+1−k

k−1∏

j=0

(m[j]q + r)cj

+(m[k]q + r)q(
k
2)

∑

c0+c1+···+ck=n−k

k∏

j=0

(m[j]q + r)cj

= q(
k
2)
( ∑

c0+c1+···+ck−1=n+1−k

k−1∏

j=0

(m[j]q + r)cj

+(m[k]q + r)
∑

c0+c1+···+ck=n−k

k∏

j=0

(m[j]q + r)cj
)

Now, the first term within the big paretheses is a sum of products of n+ 1− k factors, non
of which contains (m[k]q + r). The second term is again a sum of n+1− k factors, each one
of which containing (m[k]q + r) at least once. Thus,

Wm,r,q(n+ 1, k) = q(
k
2)

∑

c0+c1+···+ck=n+1−k

k∏

j=0

(m[j]q + r)cj .

To complete the proof we need to show that the theorem holds for n+1 and k = n+1. For

this case the theorem yields Wm,r,q(n+1, n+1) = q(
n+1

2 ), which is in agreement with (9).

Apart from q(
k
2), (25) is a homogeneous complete symmetric polynomial of degree n− k

in the variables {(r + [j]qm); j = 0, 1, 2, . . . , k}. As q → 1, we obtain

Wm,r(n, k) =
∑

c0+c1+···+ck=n−k

k∏

j=0

(r +mj)cj , (26)

and for r = 0, (25) reduces to an expression for the q-Stirling numbers of the second kind,
viz, {

n

k

}

q

= q(
k
2)

∑

c0+c1+···+ck=n−k

[1]i1q [2]
i2
q · · · [k]ikq . (27)

The q-Stirling numbers of the second kind were originally defined as

[x]nq =
n∑

k=1

{
n

k

}

q

[x]q,k (28)

(cf. [4]). Moreover, when q → 1, Eq. (27) yields an expression for the classical Stirling
numbers of the second kind reported by Comtet [8].
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Notice that from the inner product

k∏

j=0

(m[j]q + r)cj = (m[0]q + r)c0(m[1]q + r)c1(m[2]q + r)c2 · · · (m[k]q + r)ck (29)

in the explicit formula in (25), we observe that there are exactly n− k factors of (m[j]q + r)
which is repeated cj times for each j. From here, we write

(m[0]q + r)c0 = (m[j1]q + r)(m[j2]q + r) · · · (m[jc0 ]q + r),

where ji = 0, i = 1, 2, . . . , c0;

(m[1]q + r)c1 = (m[jc0+1]q + r)(m[jc0+2]q + r) · · · (m[jc0+c1 ]q + r),

where jc0+i = 1, i = 1, 2, . . . , c1;

(m[2]q + r)c2 = (m[jc0+c1+1]q + r)(m[jc0++c1+2]q + r) · · · (m[jc0+c1+c2 ]q + r),

where jc0+c1+i = 2, i = 1, 2, . . . , c2 and so on until

(m[k]q + r)ck = (m[jc0+c1+···+ck−1+1]q + r)(m[jc0+c1+···+ck−1+2]q + r) · · · (m[jc0+c1+···+ck ]q + r),

where jc0+c1+···+ck−1+i = k, i = 1, 2, . . . , ck and c0 + c1 + c2 + · · · + ck−1 + ck = n− k. Thus,
0 ≤ j1 ≤ j2 ≤ · · · ≤ jn−k ≤ k and we have

Wm,r,q(n, k) = q(
k
2)

∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏

i=1

(m[ji]q + r). (30)

We formally state this result in the next theorem.

Theorem 4. The (q, r)-Whitney numbers of the second kind satisfy the following explicit
form:

Wm,r,q(n, k) = q(
k
2)

∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏

i=1

(m[ji]q + r). (31)

Notice that when q → 1, we obtain an identity similar to the result obtained by Man-
gontarum et al. [18, Theorem 11].

3 On the context of A-tableaux

De Medicis and Leroux [23] defined a 0-1 tableau to be a pair ϕ = (λ, f), where λ = (λ1 ≥
λ2 ≥ · · · ≥ λk) is a partition of an integer m and f = (fij)1≤j≤λi is a “filling” of the cells of
the corresponding Ferrers diagram of shape λ with 0’s and 1’s such that exactly one 1 in each
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0 0 0 1 0 1 0 1
0 1 0 0 1 0 1
0 0 1 0 0
1 0 0 0
0

Figure 1: A 0-1 tableau ϕ

column. For instance, Figure 1 represents the 0-1 tableau ϕ = (λ, f), where λ = (8, 7, 5, 4, 1)
with

f14 = f16 = f18 = f22 = f25 = f27 = f33 = f41 = 1

and fij = 0 elsewhere for 1 ≤ j ≤ λi. In the same paper, an A-tableau is defined to be
a list Φ of columns c of a Ferrers diagram of a partition λ (by decreasing order of length)
such that the length |c| is part of the sequence A = (ai)i≥0, a strictly increasing sequences
of non-negative integers. Combinatorial interpretations of Stirling-type numbers in terms of
A-tableaux are already done in the past. Similar works can be seen in [9, 12, 14, 17, 23] and
some of the references therein. In particular, Corcino and Montero [14] defined a q-analogue
of the Rucinski-Voigt numbers (an equivalent of the r-Whitney numbers of the second kind)
and then presented a combinatorial interpretation using the theory of A-tableaux. The
same type of interpretation was obtained by Mangontarum et al. [17] for the case of the
translated Whitney numbers (see [20]) and their q-analogues. It is important to note that the
q-analogues of these authors follow motivations which differ from that of the (q, r)-Whitney
numbers. Furthermore, the numbers considered in the paper of Ramı́rez and Shattuck [26]
belong to p, q-analogues, a natural extension of q-analogues.

Now, we let ω be a function from the set of non-negative integers N to a ring K, and
suppose that Φ is an A-tableau with r columns of length |c|. Also, it is known that Φ
might contain a finite number of columns whose lengths are zero since 0 ∈ A and if ω(0) 6=
0 (cf. [23]). Before proceeding, we denote by TA(x, y) the set of A-tableaux with A =
{0, 1, 2, . . . , x} and exactly y columns (with some columns possibly of zero length), and
by TAd (x, y) the subset of TA(x, y) which contains all A-tableaux with columns of distinct
lengths. The next theorem relates the (q, r)-Whitney numbers of both kinds to certain sets
of A-tableaux.

Theorem 5. Let Ω : N −→ K and ω : N −→ K be functions from the set of non-negative
integers N to a ring K (column weights according to length) defined by

Ω(|c|) = m[|c|]q + r

and
ω(|c|) = m[|c̄|]q + r,

9



where m and r are complex numbers, |c| is the length of column c of an A-tableau in TAd (n−
1, n− k), and |c̄| is the length of column c of an A-tableau in TA(k, n− k). Then

(−1)n−kq(
n
2)wm,r,q(n, k) =

∑

Φ∈TA
d
(n−1,n−k)

∏

c∈Φ

Ω(|c|) (32)

and
q−(

k
2)Wm,r,q(n, k) =

∑

φ∈TA(k,n−k)

∏

c̄∈φ

ω(|c̄|). (33)

Proof. Let Φ ∈ TAd (n − 1, n − k). This means that Φ has exactly n − k columns, say
c1, c2, . . . , cn−k whose lengths are j1, j2, . . . , jn−k, respectively. Now, for each column ci ∈ Φ,
i = 1, 2, 3, . . . , n− k, we have |ci| = ji and

Ω(|ci|) = m[|ji|]q + r.

Thus,

∏

c∈Φ

Ω(|c|) =
n−k∏

i=1

Ω(|ci|)

=
n−k∏

i=1

(m[ji]q + r).

Since Φ ∈ TAd (n− 1, n− k), then

∑

Φ∈TA
d
(n−1,n−k)

∏

c∈Φ

Ω(|c|) =
∑

0≤j1<j2<···<jn−k≤n−1

∏

c∈Φ

Ω(|c|)

=
∑

0≤j1<j2<···<jn−k≤n−1

n−k∏

i=1

(m[ji]q + r)

= (−1)n−kq(
n
2)wm,r,q(n, k).

The second result is obtained similarly.

3.1 Combinatorics of A-tableaux

In the following theorem, we will demonstrate the simple combinatorics of A-tableaux. To
start, note that Eqs. (32) and (33) are equivalent to

(−1)n−kq(
n
2)wm,r,q(n, k) =

∑

Φ∈TA
d
(n−1,n−k)

ΩA(Φ) (34)
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and
q−(

k
2)Wm,r,q(n, k) =

∑

φ∈TA(k,n−k)

ωA(φ), (35)

respectively, where

ΩA(Φ) =
∏

c∈Φ

Ω(|c|) =
∏

c∈Φ

(m[|c|]q + r), |c| ∈ {0, 1, 2, . . . , n− 1} (36)

and
ωA(φ) =

∏

c̄∈φ

ω(|c̄|) =
∏

c̄∈φ

(m[|c|]q + r), |c̄| ∈ {0, 1, 2, . . . , k}. (37)

Theorem 6. For nonnegative integers n and k, and complex numbers m and r, the following
identities hold:

wm,r,q(n, k) =
n∑

j=k

(
j

k

)
(−r2)

j−kwm,r1,q(n, j) (38)

Wm,r,q(n, k) =
n∑

j=k

(
n

j

)
r
n−j
2 Wm,r1,q(j, k), (39)

where r1 + r2 = r.

Proof. Let Φ ∈ TAd (n− 1). Substituting ji = |c| in Eq. (36) gives

ΩA(Φ) =
n−k∏

i=1

(m[ji]q + r),

where ji ∈ {0, 1, 2, . . . , n− 1}. Suppose that for some numbers r1 and r2, r = r1 + r2. Then,
with Ω∗(ji) = m[ji]q + r1, we may write

ΩA(Φ) =
n−k∏

i=1

[(m[ji]q + r1) + r2]

=
n−k∏

i=1

(Ω∗(ji) + r2)

=
n−k∑

ℓ=0

rn−k−ℓ2

∑

j1≤q1<q2<···<qℓ≤jn−k

ℓ∏

i=1

Ω∗(qi).

Let BΦ be the set of all A-tableaux corresponding to Φ such that for each ψ ∈ BΦ, one of
the following is true:

ψ has no column whose weight is r2;

11



ψ has one column whose weight is r2;

ψ has two columns whose weight are r2;

...

ψ has n− k columns whose weight are r2.

Then,

ΩA(Φ) =
∑

ψ∈BΦ

ΩA(ψ).

Now, if ℓ columns in ψ have weights other than r2, then

ΩA(ψ) =
∏

c∈ψ

Ω∗(|c|)

= rn−kℓ2

ℓ∏

i=1

Ω∗(qi),

where q1, q2, q3, . . . , qℓ ∈ {j1, j2, j3, . . . , jn−k}. Hence, Eq. (34) may be written as

(−1)n−kq(
n
2)wm,r,q(n, k) =

∑

Φ∈TA
d
(n−1,n−k)

ΩA(Φ)

=
∑

Φ∈TA
d
(n−1,n−k)

∑

ψ∈BΦ

ΩA(ψ).

For each ℓ, it is known that there correspond
(
n−k
ℓ

)
tableaux with ℓ distinct columns with

weights Ω∗(qi), qi ∈ {j1, j2, . . . , jn−k}. Since T
A
d (n− 1, n− k) contains

(
n
k

)
tableaux, then for

each Φ ∈ TAd (n− 1, n− k), the total number of A-tableaux ψ corresponding to Φ is

(
n

k

)(
n− k

ℓ

)
.

However, only
(
n
ℓ

)
tableaux in BΦ with ℓ distinct columns of weights other than r2 are

distinct. It then follows that every distinct tableau ψ appears

(
n
k

)(
n−k
ℓ

)
(
n
ℓ

) =

(
n− ℓ

k

)

times in the collection (cf. [12]). Thus, we consequently obtain

(−1)n−kq(
n
2)wm,r,q(n, k) =

n−k∑

ℓ=0

(
n− ℓ

k

)
rn−k−ℓ2

∑

ψ∈Bℓ

∏

c∈ψ

Ω∗(|c|),

12



where Bℓ denotes the set of all tableaux ψ having ℓ distinct columns whose lengths are in
the set {0, 1, 2, . . . , n− 1}. Reindexing the double sum yields

(−1)n−kq(
n
2)wm,r,q(n, k) =

n∑

j=k

(
j

k

)
r
j−k
2

∑

ψ∈Bn−j

∏

c∈ψ

Ω∗(|c|). (40)

Since Bn−j = TAd (n− 1, n− j), then

∑

ψ∈Bn−j

∏

c∈ψ

Ω∗(|c|) = (−1)n−jq(
n
2)wm,r1,q(n, j). (41)

Combining Eqs. (40) and (41) gives

(−1)n−kq(
n
2)wm,r,q(n, k) =

n∑

j=k

(
j

k

)
r
j−k
2 (−1)n−jq(

n
2)wm,r1,q(n, j) (42)

which is equivalent to the desired result in Eq. (38). Similarly, if φ ∈ TA(n − 1), then
substituting ji = |c̄| in Eq. (37) gives

ωA(φ) =
n−k∏

i=1

(m[ji]q + r),

where ji ∈ {0, 1, 2, . . . , k}. If for some numbers r1 and r2, r = r1 + r2, then

ωA(φ) =
n−k∏

i=1

[(m[ji]q + r1) + r2]

=
n−k∏

i=1

(ω∗(ji) + r2), ω
∗(ji) = m[ji]q + r1

=
n−k∑

ℓ=0

rn−k−ℓ2

∑

j1≤q1≤q2≤···≤qℓ≤jn−k

ℓ∏

i=1

ω∗(qi).

Suppose B̄φ is the set of all A-tableaux corresponding to φ such that for each ζ ∈ B̄φ, one
of the following is true:

ζ has no column whose weight is r2;

ζ has one column whose weight is r2;

ζ has two columns whose weight are r2;

...

13



ζ has n− k columns whose weight are r2.

Then, we may write

ωA(φ) =
∑

ζ∈B̄φ

ωA(ζ).

If there are ℓ columns in ζ with weights other than r2, then we have

ωA(ζ) =
∏

c̄∈ζ

ω∗(|c̄|)

= rn−kℓ2

ℓ∏

i=1

ω∗(qi),

where q1, q2, q3, . . . , qℓ ∈ {j1, j2, j3, . . . , jn−k}. It then follows that Eq. (35) may be expressed
as

q−(
k
2)Wm,r,q(n, k) =

∑

φ∈TA(k,n−k)

ωA(φ)

=
∑

φ∈TA(k,n−k)

∑

ζ∈B̄φ

ωA(ζ).

Like in the previous, for each ℓ, there correspond
(
n−k
ℓ

)
tableaux with ℓ columns having

weights ω∗(qi), qi ∈ {j1, j2, . . . , jn−k}. Since the set T
A(k, n− k) contains

(
n
k

)
tableaux, then

for each φ ∈ TA(k, n− k), there are
(
n

k

)(
n− k

ℓ

)

A-tableaux corresponding to φ. But only
(
ℓ+k
ℓ

)
of these tableaux are distinct. Hence, every

distinct tableau ζ with ℓ columns of weights other than r2 appears
(
n
k

)(
n−k
ℓ

)
(
ℓ+k
ℓ

) =

(
n

ℓ+ k

)

times in the collection (cf. [9]). It implies that

q−(
k
2)Wm,r,q(n, k) =

n−k∑

ℓ=0

(
n

ℓ+ k

)
rn−k−ℓ2

∑

ζ∈B̄ℓ

∏

c̄∈ζ

ω∗(|c̄|),

where B̄ℓ is the set of all tableaux ζ having ℓ columns of weights ω∗(ji). Reindexing the
sums yield

q−(
k
2)Wm,r,q(n, k) =

n∑

j=k

(
n

j

)
r
n−j
2

∑

ζ∈B̄j−k

∏

c̄∈ζ

ω∗(|c̄|). (43)

14



Since B̄n−j = TA(k, n− j), then
∑

ζ∈B̄j−k

∏

c̄∈ζ

ω∗(|c̄|) = q−(
k
2)Wm,r1,q(j, k). (44)

Moreover, by Eqs. (43) and (44), we obtain

q−(
k
2)Wm,r,q(n, k) =

n∑

j=k

(
n

j

)
r
n−j
2 q−(

k
2)Wm,r1,q(j, k) (45)

which is equivalent to the second desired result.

Let r1 = r − 1 and r2 = 1 in Eqs. (38) and (39). Then.

wm,r,q(n, k) =
n∑

j=k

(
j

k

)
(−1)j−kwm,r−1,q(n, j) (46)

and

Wm,r,q(n, k) =
n∑

j=k

(
n

j

)
Wm,r−1,q(j, k). (47)

These identities were first seen in [21, Theorem 9]. Now, using Eq. (39), the (q, r)-Dowling
numbers Dm,r,q(n) [21] may be expressed as

Dm,r,q(n) =
n∑

k=0

Wm,r,q(n, k)

=
n∑

k=0

n∑

j=k

(
n

j

)
Wm,r−1,q(j, k)

=
n∑

j=0

(
n

j

) j∑

k=0

Wm,r−1,q(j, k)

=
n∑

j=0

(
n

j

)
Dm,r−1,q(j).

Moreover, by applying the binomial inversion formula [8]

fn =
n∑

j=0

(
n

j

)
gj ⇐⇒ gn =

n∑

j=0

(−1)n−j
(
n

j

)
fj

to this identity gives

Dm,r−1,q(n) =
n∑

j=0

(−1)n−j
(
n

j

)
Dm,r,q(j).

These results are formally stated in the following corollary:
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Corollary 7. The (q, r)-Dowling numbers satisfy the recurrence relations with respect to r
given by

Dm,r+1,q(n) =
n∑

j=0

(
n

j

)
Dm,r,q(j) (48)

and

Dm,r,q(n) =
n∑

j=0

(−1)n−j
(
n

j

)
Dm,r+1,q(j). (49)

Remark 8. When q → 1 and m = β, we obtain the following identities by Corcino and
Corcino [11]:

Gn,β,r+1 =
n∑

j=0

(
n

j

)
Gj,β,r (50)

Gn,β,r =
n∑

j=0

(−1)n−j
(
n

j

)
Gj,β,r+1, (51)

where Gn,β,r := Dβ,r,1(n) is the generalized Bell numbers in [10, 11]. These identities were
used to identify the Hankel transform of Gn,β,r.

Looking at the previous corollary, we see that the sequence
(
Dm,r+1,q(n)

)
is the binomial

transform of the sequence
(
Dm,r,q(n)

)
, for r = 0, 1, 2, . . .. Using “Layman’s Theorem” [16],(

Dm,0,q(n)
)
,
(
Dm,1,q(n)

)
,
(
Dm,2,q(n)

)
, . . . ,

(
Dm,r,q(n)

)
, . . . have the same Hankel transform.

This directs our attention to the following open problem:

Problem 9. Is it possible to identify the Hankel transform ofDm,r,q(n) using a method parallel
to what is being done in [11] for Gn,β,r?

3.2 Convolution-type identities

Recall that for any two sequences an and bn, we call the sequence cn as convolution sequence
if

cn =
n∑

k=1

anbn−k, n = 0, 1, 2, . . . . (52)

One of the most famous convolution-type identity is the Vandermonde’s formula [6, 8] given
by (

a+ b

n

)
=

n∑

k=0

(
a

k

)(
b

n− k

)
. (53)

The following theorem contains convolution-type identities for the (q, r)-Whitney numbers
of the first kind which will be proved using the combinatorics of A-tableaux:
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Theorem 10. The (q, r)-Whitney numbers of the first kind have convolution-type identities
given by

wm,r,q(p+ j, n) = q−pj
n∑

k=0

wm,r,q(p, k)wm̄,r̄,q(j, n− k) (54)

and

wm,r,q(n+ 1, j + p+ 1) =
n∑

k=0

qk
2−nk−nwm,r,q(k, p)wm̄,r̄,q(n− k, j), (55)

where m̄ = mqp and r̄ = m[p]q + r.

Proof. For A1 = {0, 1, 2, . . . , p − 1} and A2 = {p, p + 1, p + 2, . . . , p + j − 1}, let Φ1 ∈
TA1

d (p − 1, p − k) and Φ2 ∈ TA2

d (j − 1, j − n + k). Note that by joining the columns of the
tableaux Φ1 and Φ2, we may generate an A-tableau Φ with p+ j−n distinct columns whose
lengths are in the set A = {0, 1, 2, . . . , p + j − 1}. That is, Φ ∈ TAd (p + j − 1, p + j − n).
Hence,

∑

Φ∈TA
d
(p+j−1,p+j−n)

ΩA(Φ) =
n∑

k=0





∑

Φ1∈T
A1
d

(p−1,p−k)

ΩA1
(Φ1)









∑

Φ2∈T
A2
d

(j−1,j−n+k)

ΩA2
(Φ2)




.

Note that in the right-hand side, we get

∑

Φ2∈T
A2
d

(j−1,j−n+k)

ΩA2
(Φ2) =

∑

p≤g1<g2<···<gj−n+k≤p+j−1

j−n+k∏

i=1

(m[gi]q + r)

=
∑

0≤g1<g2<···<gj−n+k≤j−1

j−n+k∏

i=1

(m[p+ gi]q + r)

=
∑

0≤g1<g2<···<gj−n+k≤j−1

j−n+k∏

i=1

(mqp[gi]q + ([p]q + r))

= (−1)j−n+kq(
j
2)wm̄,r̄,q(j, n− k),

where m̄ = mqp and r̄ = m[p]q + r. Also, using Eq. (34),

∑

Φ1∈T
A1
d

(p−1,p−k)

ΩA1
(Φ1) = (−1)p−kq(

p
2)wm,r,q(p, k)

and ∑

Φ∈TA
d
(p+j−1,p+j−n)

ΩA(Φ) = (−1)p+j−nq(
p+j
2 )wm,r,q(p+ j, n).
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Hence, by simplification, we obtain the convolution identity (54). Similarly, we let Φ1 be
a tableau with k − p columns whose lengths are in B1 = {0, 1, 2, . . . , k − 1} and Φ2 be a
tableau with n − k − j columns whose lengths are in B2 = {k + 1, k + 2, . . . , n} so that
Φ ∈ TB1

d (k − 1, k − p) and Φ ∈ TB2

d (n − k − 1, n − k − j). Note that we may generate an
A-tableau Φ by joining the columns of Φ1 and Φ2 whose lengths are in A = {0, 1, 2, . . . , n}.
Hence, we have

∑

Φ∈TA
d
(n,n−j−p)

ΩA(Φ) =
n∑

k=0





∑

Φ1∈T
B1
d

(k−1,k−p)

ΩB1
(Φ1)









∑

Φ2∈T
B2
d

(n−k−11,n−k−j)

ΩB2
(Φ2)




.

Applying Eq. (34) gives

∑

Φ∈TA
d
(n,n−j−p)

ΩA(Φ) = (−1)n−j−pq(
n+1

2 )wm,r,q(n+ 1, j + p+ 1)

and ∑

Φ1∈T
B1
d

(k−1,k−p)

ΩB1
(Φ1) = (−1)k−pq(

k
2)wm,r,q(k, p).

Also, in the right-hand side, we get

∑

Φ2∈T
B2
d

(n−k−11,n−k−j)

ΩB2
(Φ2) =

∑

p≤g1<g2<···<gn−k−j≤p+n−k−1

n−k−j∏

i=1

(m[gi]q + r)

=
∑

0≤g1<g2<···<gn−k−j≤n−k−1

n−k−j∏

i=1

(m[p+ gi]q + r)

=
∑

0≤g1<g2<···<gn−k−j≤n−k−1

n−k−j∏

i=1

(mqp[gi]q + ([p]q + r))

= (−1)n−k−jq(
n−k
2 )wm̄,r̄,q(n− k, j),

where m̄ = mqp and r̄ = m[p]q + r. This completes the proof.

The next theorem can be proved similarly.

Theorem 11. The (q, r)-Whitney numbers of the second kind have convolution-type identi-
ties given by

Wm,r,q(n+ 1, j + p+ 1) =
n∑

k=0

qp+pj+jWm,r,q(k, p)Wm̂,r̂,q(n− k, j) (56)
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and

Wm,r,q(p+ j, n) =
n∑

k=0

qnk−k
2

Wm,r,q(p, k)Wm̂,r̂,q(j, n− k), (57)

where m̂ = mqp+1 and r̂ = m[p+ 1]q + r.

As q → 1, we recover from Theorems 10 and 11 the results recently obtained by Xu and
Zhou [27, Theorems 2.1 and 2.4].

4 On Heine and Euler distributions

Consider the Poisson distribution

fX(x) = e−λ
λx

x!
, (58)

for x = 0, 1, 2, . . .. The factorial moment of a Poisson random variable is readily evaluated,
i.e.,

E
[
(X)n

]
= λn (59)

the mean, E
[
X
]
= λ, being the special case n = 1. Expanding xn in terms of falling

factorials (using the Stirling numbers of the second kind), we obtain the n-th moment of X
given by

E
[
Xn

]
= Bn(λ), (60)

whereBn(λ) are the Bell polynomials. The q-analogues of the Poisson distribution introduced
by Kemp [15], and Benkherouf and Bather in [3] are given by

fY (y) = eq(−λ)q
(y2) λ

y

[y]q!
, y = 0, 1, 2, . . . (61)

and

fZ(z) = êq(−λ)
λz

[z]q!
, z = 0, 1, 2, . . . . (62)

These are called Heine and Euler distributions, respectively, where

eq(t) =
∞∑

k=0

tk

[k]q!
(63)

and

êq(t) =
∞∑

k=0

q(
k
2) tk

[k]q!
. (64)

In line with this, Charalambides and Papadatos [5] obtained the following important results:

E
[
[Y ]r,q

]
=

q(
r
2)λr∏r

i=1(1 + λ(1− q)qi−1)
, (65)
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E
[
[Z]r,q

]
= λr, (66)

where [x]r,q = [x]q[x − 1]q[x − 2]q · · · [x − r + 1]q is the q-falling factorial of x of order r.
Considering these, we now state the following theorem:

Theorem 12. If Y and Z are random variables with Heine and Euler distributions, respec-
tively, and if the mean of Y is φ = λ

1+λ(1−q)
and the mean of Z is λ, then

Eφ
[
(m[Y ]q + r)n

]
=

n∑

ℓ=0

n∑

i=0

(−λ)iq−(
ℓ
2)−ℓi λℓ

[ℓ]q![i]q!

(m[ℓ]q + r)n
∏ℓ+i

j=1(1 + λ(1− q)qj−1)
, (67)

Eλ
[
(m[Z]q + r)n

]
= êq(−λ)

n∑

ℓ=0

λℓ

[ℓ]q!
(m[ℓ]q + r)n. (68)

Proof. From the defining relation in (1) and the result in (65),

Eλ
[
(m[Y ]q + r)n

]
=

n∑

k=0

mkWm,r,q(n, k)
q(

k
2)λk

∏k
j=1(1 + λ(1− q)qj−1)

.

Using the explicit formula for the (q, r)-Whitney numbers of the second kind [21, Theorem
16] given by

Wm,r,q(n, k) =
1

mk[k]q!

k∑

ℓ=0

(−1)k−ℓq(
k−ℓ
2 )

(
k

ℓ

)

q

(m[ℓ]q + r)n, (69)

we obtain

Eλ
[
(m[Z]q + r)n

]
=

n∑

k=0

{
1

[k]q!

k∑

ℓ=0

(−1)k−ℓq(
k−ℓ
2 )

(
k

ℓ

)

q

(m[ℓ]q + r)n

}

×
q(

k
2)λk

∏k
j=1(1 + λ(1− q)qj−1)

=
n∑

ℓ=0

n∑

k=ℓ

(−1)k−ℓq(
k−ℓ
2 )−(k2) λk

[ℓ]q![k − ℓ]q!

(m[ℓ]q + r)n
∏k

j=1(1 + λ(1− q)qj−1)
.

Reindexing the second sum yields (67). Eq. (68) may be shown similarly.

Remark 13. When m = 1 and r = 0 in the previous theorem, we have

Eφ
[
[Y ]nq

]
=

n∑

ℓ=0

n∑

i=0

(−λ)iq−(
ℓ
2)−ℓi λℓ

[ℓ]q![i]q!

[ℓ]nq∏ℓ+i
j=1(1 + λ(1− q)qj−1)

, (70)
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and

Eλ
[
[Z]nq

]
= êq(−λ)

n∑

ℓ=0

λℓ

[ℓ]q!
[ℓ]nq ≡ Bn,q(λ), (71)

where Bn,q(λ) is the q-Bell polynomials. On the other hand, if the mean is λ = x
m
,

Ex/m {(m[Z]q + r)n} = êq

(
−
x

m

) n∑

ℓ=0

xℓ

mℓ

(m[ℓ]q + r)n

[ℓ]q!
.

This explicit formula is due to Mangontarum and Katriel [21]. Thus

Ex/m
[
(m[Z]q + r)n

]
= Dm,r,q(n, x),

where

Dm,r,q(n, x) =
n∑

k=0

Wm,r,q(n, k)x
k (72)

is the (q, r)-Dowling polynomials.

It is worth mentioning that Mangontarum and Corcino [19] obtained the following pair
of n-th order generalized factorial moments

Eλ
[
(βX + γ|α)n

]
= e−λ

∞∑

i=0

(iβ + γ|α)n
i!

λi (73)

Eλ
[
(αX − γ|β)n

]
= e−λ

∞∑

i=0

(iα− γ|β)n
i!

λi, (74)

where X is a Poisson random variable with mean λ and α, β and γ may be real or complex
numbers. Here,

(t|α)n = t(t− α)(t− 2α) · · · (t− nα + α), (75)

with initial conditions (t| α)n = 0 when n ≤ 0 and (t| α)0 = 1. Notice that (73) unifies the
factorial moment in (59) and the n-th moment in (60). More precisely,

• when β = 1, γ = 0 and α = 0,

Eλ
[
(βX + γ|α)n

]
= Eλ

[
Xn

]
;

• when β = 1, γ = 0 and α = 1,

Eλ
[
(βX + γ|α)n

]
= Eλ

[
(X)n

]
.
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Other known “Bell-type” and “Dowling-type” polynomials (see [7, 10, 18, 22, 24, 25]) can be
shown to be particular cases of Eqs. (73) and (74). Furthermore, Corcino and Mangontarum
[13] obtained the generalized q-factorial moments

Eφ
[
[[βY ]q + [γ]q|[α]q]n,q

]
=

∞∑

j=0

êqβ ,j(−λ)
(qβλ)j [[βj]q + [γ]q|[α]q]n,q

[j]qβ !
∏j

i=1 (1 + λ(1− qβ)qβ(i−1))
(76)

and

Eλ
[
[[βZ]q + [γ]q|[α]q]n,q

]
= êb(−λ)

∞∑

j=0

[[βj]q + [γ]q|[α]q]n,q
λj

[j]b!
, (77)

where Y is a random variable with Heine distribution and mean φ = λ
1+λ(1−qβ)

, and Z is a
random variable with an Euler distribution and mean λ. The notations

[[βZ]q + [γ]q|[α]q]n,q =
n−1∏

j=0

([βt]q + [γ]q − [αj]q) (78)

and

êqβ ,j(−λ) =
∞∑

l=0

[
qβ(

j
2)(−λ)l

[l]qβ !
∏l

i=1 (q
β(i−1) + λ(1− qβ)qβj)

]
(79)

are used. (76) and (77) are found to be q-analogues of (73). By thoroughly investigating
(68), it is obvious that this result is not generalized by (76) and (77).

Privault [25] defined an extension of the classical Bell numbers as

ety−λ(e
t−t−1) =

∞∑

k=0

Bn(y, λ)
tk

k!
.

Moreover, he obtained the following n-th moment of a Poisson random variable

Eλ
[
(X + y − λ)n

]
= Bn(y,−λ), (80)

where

Bn(y,−λ) =
n∑

k=0

(
n

k

)
(y − λ)n−k

k∑

j=0

{
k

j

}
λj, (81)

Corcino and Corcino [10] showed that the (r, β)-Bell polynomials satisfy

Gn,β,r(x) =
n∑

k=0

(
n

k

)
rn−k

k∑

j=0

βk−j
{
k

j

}
xj. (82)

It then follows that
Gn,1,y−λ(λ) = Bn(y,−λ).

The next theorem is analogous to these identities.
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Theorem 14. The (q, r)-Dowling polynomials satisfy the identity

Dm,r,q(n, x) =
n∑

k=0

(
n

k

)
rn−k

k∑

j=0

mk−j

{
k

j

}

q

xj. (83)

Proof. Using the binomial theorem, we have

Ex/m
[
(m[Z]q + r)n

]
=

n∑

k=0

(
n

k

)
rn−kmkEx/m

[
[Z]kq

]

=
n∑

k=0

(
n

k

)
rn−kmkBn,q

( x
m

)

=
n∑

k=0

(
n

k

)
rn−kmk

k∑

j=0

{
k

j

}

q

( x
m

)j
.

The desired result follows from the fact that Ex/m
[
(m[Z]q + r)n

]
= Dm,r,q(n, x).

Remark 15. As q → 1, we obtain the (r, β)-Bell polynomial identity in Eq. (82). If the mean
is replaced with λ, then for an Euler random variable Z,

Eλ
[
(m[Z]q + r)n

]
=

n∑

k=0

(
n

k

)
rn−k

k∑

j=0

mk

{
k

j

}

q

λj.

As q → 1, we get [19, Eq. 34]

Eλ
[
(mX + r)n

]
=

n∑

k=0

(
n

k

)
rn−k

k∑

j=0

mk

{
k

j

}
λj.

When m = 1 and r = y − λ,

D1,y−λ,q(n, x) =
n∑

k=0

(
n

k

)
(y − λ)n−k

k∑

j=0

{
k

j

}

q

xj. (84)

This is a q-analogue of Privault’s identity since (84) → (81) as q → 1.
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[24] I. Mező, The r-Bell Numbers, J. Integer Sequences 14 (2011), Article 11.1.1.

[25] N. Privault, Generalized Bell polynomials and the combinatorics of Poisson central
moments, Electron. J. Combin. 18 (2011), #P54.

[26] J. L. Ramı́rez and M. Shattuck, A (p, q)-analogue of the r-Whitney-Lah numbers, J.
Integer Sequences 19 (2016), Article 16.5.6.

[27] A. Xu and T. Zhou, Some identities related to r-Whitney numbers, Integral Transforms
Spec. Funct. 27 (2016), 920–929.

2010 Mathematics Subject Classification: Primary 11B83; Secondary 11B73, 05A30.
Keywords: (q, r)-Whitney number, symmetric function, A-tableau, q-distribution.

(Concerned with sequences A008275, A008277, A000110, and A003575.)

25

https://cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html
http://dx.doi.org/10.1155/2016/6206207
https://cs.uwaterloo.ca/journals/JIS/VOL18/Mangontarum/mango2.html
http://dx.doi.org/10.1155/2014/678408
https://cs.uwaterloo.ca/journals/JIS/VOL14/Mezo/mezo9.html
https://cs.uwaterloo.ca/journals/JIS/VOL19/Ramirez2/ramirez12.html
http://oeis.org/A008275
http://oeis.org/A008277
http://oeis.org/A000110
http://oeis.org/A003575


Received August 16 2016; revised versions received November 20 2016; November 21 2016.
Published in Journal of Integer Sequences, December 27 2016.

Return to Journal of Integer Sequences home page.

26

http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Explicit formulas in symmetric polynomial forms
	(q,r)-Whitney numbers of the first kind
	(q,r)-Whitney numbers of the second kind

	On the context of A-tableaux
	Combinatorics of A-tableaux
	Convolution-type identities

	On Heine and Euler distributions
	Acknowledgment

