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Abstract

For integer r ≥ 1 we give an elementary proof for the main term of the asymptotic

behavior of the rth moment of the number of divisors of n for positive integers n ≤ x.
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1 Introduction

Let τ(n) be the number of divisors of n. Ramanujan [2] stated without proof that, given
any real number ε > 0, the estimate

∑

n≤x

τ(n)2 = x(A(log x)3 + B(log x)2 + C log x+D) +O(x3/5+ε)

holds with A = π−2. An elementary proof of the asymptotic formula
∑

n≤x

τ(n)2 ∼ Ax(log x)3,

as x → ∞, appears in several places (see, for example, [1, Thm. 7.8]). Wilson [3] proved
Ramanujan’s claim and generalized it by showing that for any integer r ≥ 2 one has

∑

n≤x

τ(n)r = x(Cr,1(log x)
2r−1 + Cr,2(log x)

2r−2 + · · ·+ Cr,2r) +O(x
2
r
−1

2r+2
+ε).

Note that when r = 2, Wilson’s error term is better than the one claimed by Ramanujan.
We are not aware even of elementary proofs for the asymptotic formula

∑

n≤x

τ(n)r ∼ Crx(log x)
2r−1

as x → ∞ for any r ≥ 2. In this note, we give an elementary proof of the following more
general result.

Theorem 1. Let k be a positive integer and f(n) be a multiplicative function which on prime

powers pα satisfies

f(p) = k and f(pα) = αO(1) for all primes p and integers α ≥ 2,

where the constant implied by the above O is uniform in p. Then
∑

n≤x

f(n) = xCf (log x)
k−1 +O(x(log x)k−2)

where

Cf =
1

(k − 1)!

(

∏

p≥2

(

1−
1

p

)k
(

∑

α≥0

f(pα)

pα

))

.

In the case f(n) = τ(n)r for integer r ≥ 1, Theorem 1 applies with k = 2r.
The only facts that we use are Abel’s summation formula, the Möbius inversion formula,

the elementary estimate
∑

n≤t

1

n
= log t+ γ +O(1/t) (1)

valid for all real t ≥ 1, and the fact that the counting function of the squarefull numbers
s ≤ t is O(t1/2), where s is squarefull if and only if p2 | s for all prime factors p of s, all
provable by elementary means.
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2 A lemma

Lemma 2. Assume that r is a positive integer and f(n) is some arithmetic function such

that
∑

n≤x

f(n) =
r
∑

j=0

cj(log x)
j +O(x−1/2+o(1)), (2)

for some constants cj, j = 0, . . . , r. Then

∑

n≤x

f(n)(log(x/n))k =
k+r
∑

ℓ=0

Cℓ(log x)
ℓ +O(x−1/2+o(1)), (3)

holds for all positive integers k with some constants C0, . . . , Ck+r. Here, if ℓ ∈ {k, k +
1, . . . , k + r}, then

Cℓ := cℓ−k

(

1 + (ℓ− k)
k
∑

i=1

(−1)i

ℓ− k + i

(

k

i

)

)

. (4)

Furthermore, if r ≥ t ≥ 1 are positive integers and

∑

n≤x

f(n) =
r
∑

j=t

cj(log x)
j +O((log x)t−1), (5)

then
∑

n≤x

f(n)(log(x/n))k =
k+r
∑

j=k+t

Cj(log x)
j +O((log x)t+k−1). (6)

Proof. We show how to deduce (3) out of (2) with the leading coefficients given by (4). Let

A(x) =
∑

n≤x

f(n).

Then

A(x) =
r
∑

j=0

cj(log x)
j +R(x),

where |R(x)| = x−1/2+o(1) as x → ∞. Let i ≥ 1. Put

Bi(x) :=
∑

n≤x

f(n)(log n)i.
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Then, by the Abel summation formula and by interchanging the order between the summa-
tion and the integration, we get

Bi(x) = A(x)(log x)i − i

∫ x

1

A(t)

(

(log t)i−1

t

)

dt

=
r
∑

j=0

(

cj(log x)
j+i − i

∫ x

1

(

cj(log t)
j+i−1

t

)

dt

)

− i

∫ x

1

(log t)i−1R(t)

t
dt+R(x)(log x)i

=
r
∑

j=0

(

cj(log x)
j+i −

cji

j + i
(log t)j+i

∣

∣

∣

x

1

)

+

− i

∫ ∞

1

(log t)i−1R(t)

t
dt+ i

∫ ∞

x

(log t)i−1R(t)

t
dt+R(x)(log x)i

=
r
∑

j=0

cjj

j + i
(log x)j+i +Di +O(x−1/2+o(1)),

where

Di := −i

∫ ∞

1

(log t)i−1R(t)

t
dt

In the above, we used the fact that |R(t)| ≤ t−1/2+o(1) as t → ∞ to deduce that the above in-
tegral converges and that its tail from x to infinity as well as the other errors are O(x−1/2+o(1))
as x → ∞. Using the binomial formula and the above arguments, we have

Ck(x) :=
∑

n≤x

f(n)(log(x/n))k

=
k
∑

i=0

(−1)i
(

k

i

)

(log x)k−i
∑

n≤x

f(n)(log n)i

=
∑

n≤x

f(n) +
k
∑

i=1

(−1)i
(

k

i

)

(log x)k−iBi(x)

=
k+r
∑

ℓ=0

Cℓ(log x)
ℓ +O(x−1/2+o(1)),

where Cℓ are given by formula (4) for ℓ ≥ k. For ℓ = 1, . . . , k− 1, the coefficient Cℓ involves
the expression Dℓ. The deduction of (6) out of (5) is immediate by similar arguments.
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3 The proof of Theorem 1

Let f0(n) := f(n). Recursively define fj(n) such that

fj−1(n) =
∑

d|n

fj(d), j = 1, 2, . . . .

By Möbius inversion,

fj(n) =
∑

d|n

µ(d)fj−1(n/d).

On primes
fj(p) = fj−1(p)− 1, j = 1, 2, . . . .

Since f0(p) = k, we get that fj(p) = k − j. In particular, fk(p) = 0. Further, for α ≥ 2, we
have that

fj(p
α) = fj−1(p

α)− fj−1(p
α−1).

Since f0(p
α) = αO(1) it follows that fj(p

α) = αO(1) for all j ≥ 2. The constant in O(1) might
depend on j. Further,

∑

α≥0

fj(p
α)

pα
=

(

1−
1

p

)

∑

α≥0

fj−1(p
α)

pα
, j = 1, 2, . . . ,

therefore
∑

α≥0

fj(p
α)

pα
=

(

1−
1

p

)j
∑

α≥0

f(pα)

pα
, j = 0, 1, . . .

Put

Ej :=
∏

p≥2

(

∑

α≥0

fj(p
α)

pα

)

=
∏

p≥2

(

(

1−
1

p

)j
∑

α≥0

f(pα)

pα

)

.

Fix j ≥ 1. Then

Fj−1(x) :=
∑

n≤x

fj−1(n)

n
=
∑

n≤x

1

n

∑

d|n

fj(d) =
∑

d≤x

fj(d)
∑

n≤x
d|n

1

n
.

In the inner sum, we write an n ≤ x which is a multiple of d as n = dm for some integer
m ≤ x. We get

Fj−1(x) =
∑

d≤x

fj(d)

d

∑

m≤x/d

1

m
=
∑

d≤x

fj(d)

d
(log(x/d) + γ +O(d/x))

=
∑

d≤x

fj(d)

d
log(x/d) + γ

∑

d≤x

fj(d)

d
+O

(

1

x

∑

d≤x

|fj(d)|

)

(7)
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for j = 1, 2, . . .. When j = k, since fk(p) = 0, it follows that fk(d) = 0 if d is not squarefull.
Thus, when j = k in the right–hand side of (7), we have

∑

d≤x

fk(d)

d
log(x/d) + γ

∑

d≤x

fk(d)

d
+O

(

1

x

∑

d≤x

|fk(d)|

)

.

Note that

∑

d≤x

fk(d)

d
=

∑

d≥1

fk(d)

d
+O

(

∑

d>x

|fk(d)|

d

)

= Ek +O









∑

d≥x
d squarefull

1

d1+o(1)









= Ek +O(x−1/2+o(1)), (8)

where for the error term we used the fact that |fk(d)| = |τ(d)|O(1) = do(1) as d → ∞ and the
Abel summation formula to conclude that

∑

d>x
d squarefull

1

d1+o(1)
≤ x−1/2+o(1) as x → ∞.

Further, we have

∑

d≤x

fk(d)

d
(− log d+ γ) =

∑

d≥1

fk(d)(− log d+ γ)

d
+O







∑

d>x
d squarefull

|fk(d)| log d

d







:= Fk +O(x−1/2+o(1)) (9)

as x → ∞, by a similar argument since |fk(d)| log d ≤ do(1) as d → ∞. Finally

∑

d≤x

|fk(d)| ≤ x1/2+o(1), (10)

again since fk(d) = 0 if d is not squarefull. Collecting (8), (9) and (10) and putting them
into (7) with j = k, we get

Fk−1(x) =
∑

n≤x

fk−1(n)

n
= Ek log x+ Fk +O(x−1/2+o(1)).

In a similar way,

Gk−1(x) :=
∑

n≤x

|fk−1(n)|

n
= E ′

k log x+ F ′
k +O(x−1/2+o(1)).
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for some (maybe different) constants E ′
k and F ′

k. We now apply Lemma 2 in order to find
recursively Fk−2(x), Fk−3(x), . . . , F0(x). We claim, by induction on j, that

Fk−j(x) = Aj(log x)
j + Bj(log x)

j−1 +O((log x)j−2) (11)

for j = 2, . . . , k. At j = 1, this is so with A1 = Ek, B1 = Fk and the error term is better,
namely O(x−1/2+o(1)). In order to realize the induction step from j = 1 to j = 2, we use the
first part of Lemma 1 with r = 1, whereas for the induction step from j ≥ 2 to j + 1 we use
the second part of Lemma 2 with r = j and t = j − 1. Assuming that (11) holds for j ≥ 1,
we have, by (7),

Fk−j−1(x) =
∑

d≤x

fk−j−1(d)

d
=
∑

d≤x

fk−j(d)

d
log(x/d) + γ

∑

d≤x

fk−j(d)

d

+ O

(

1

x

∑

d≤x

|fk−j(d)|

)

.

By Lemma 2, we get that the right hand side is

Aj

j + 1
(log x)j+1 +

(

Bj

j
+ γAj

)

(log x)j

+ O

(

(log x)j−1 +
1

x

∑

d≤x

|fk−j(d)|

)

:= Aj+1(log x)
j+1 +Bj+1(log x)

j +O

(

(log x)j−1 +
1

x

∑

d≤x

|fk−j(d)|

)

,

where

Aj+1 =
Aj

j + 1
, and Bj+1 = γAj +

Bj

j
.

Thus, we note that Aj = Ek/j!. It remains to deal with the sum in the error term. But
the exact same approach applies to |fk−j(n)|. That is g0(n) = |fk−j(n)| satisfies the same
conditions as our initial f0(n) with k replaced by k − j. Thus,

∑

d≤x

|fk−j(d)|

d
= Cj(log x)

j +Dj(log x)
j−1 +O((log x)j−2),

where for j = 1, the error term is O(x−1/2+o(1)) as x → ∞. By Abel summation, we get that
∑

d≤x

|fk−j(d)| = x(Cj(log x)
j +Dj(log x)

j−1 +O((log x)j−2))

−

∫ x

1

(Cj(log t)
j +Dj(log t)

j−1 +O((log t)j−2))dt

= O(x(log x)j−1),
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which is sufficient for us. This completes the induction procedure and shows that at j = k
we have

∑

n≤x

f(n)

n
=

1

k!
Ek(log x)

k + Bk(log x)
k−1 +O((log x)k−2).

Abel summation formula once again gives
∑

n≤x

f(n) =

(

Ek

k!
(log x)k + Bk(log x)

k−1 +O((log x)k−2)

)

x

−

∫ x

1

(

Ek

k!
(log t)k + Bk(log t)

k−1 +O((log t)k−2)

)

dt

=
Ek

(k − 1)!
x(log x)k−1 +O(x(log x)k−2),

which is what we wanted.
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