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Abstract

In this paper, we count the number of non-attacking bishop and king positions on
the regular and cylindrical m×n (where m = 1, 2, 3) chessboards. This is accomplished
through the use of scientific computing, recurrence relations, generating functions and
closed-form formulas.

1 Introduction

Stevens [4] gave a nice combinatorial proof of the Fibonacci identity F 2
n = 2(F 2

n−1 +F 2
n−2)−

F 2
n−3. This was accomplished by enumerating the non-attacking bishop positions on a 2× n

chessboard in two different ways. Inspired by his result, we sought to generalize his method
to an m× n chessboard and hoped to establish other combinatorial identities. As it turned
out, this was not so easy to do. In pursuing our original goal, we had to count the number of
non-attacking bishop and king positions on various types of chessboards. This is the focus
of our paper.

2 Regular chessboards

Let n ≥ 1. Clearly, there are 2n non-attacking bishop positions on a 1 × n chessboard.
Stevens [4] pointed out that the number of non-attacking bishop positions on a 2× n chess-
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board is F 2
n+2 (where F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, for n ≥ 2). Let us count the

non-attacking bishop positions on a 3 × n chessboard. Each non-attacking bishop position
(on a 3×n chessboard) can be associated with a string of length n (using the digits 0 through
7) as described in Figure 1.

B

B B

B

B B

B

B

B

B

B

B

0 1 2 3 4 5 6 7

Figure 1:

The length n strings that we are interested in do not contain the following substrings:

• 12, 13, 16, 17, 21, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 42, 43, 46, 47, 52, 53,
56, 57, 61, 62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77.

• 104, 105, 106, 107, 114, 115, 144, 145, 154, 155, 304, 305, 306, 307, 401, 403, 405, 407,
411, 415, 441, 445, 451, 455, 501, 503, 504, 505, 506, 507, 511, 514, 515, 541, 544, 545,
551, 554, 555, 601, 603, 605, 607, 701, 703, 704, 705, 706, 707.

n b(n) w(n) B3(n)
0 1 1 1
1 4 2 8
2 5 5 25
3 10 7 70
4 15 15 225
5 34 22 748
6 49 49 2401
7 108 71 7668
8 157 157 24649
9 348 228 79344
10 505 505 255025

Table 1: The number of non-attacking bishop positions on a 3×n chessboard, where n ≥ 0.

Throughout this paper, we assume that the chessboard has a black square in the upper
left-hand corner. A chessboard is viewed as being fixed in position and orientation. Let B3(n)

2



denote the number of non-attacking bishop positions on a 3 × n chessboard. Let b(n) and
w(n) denote the number of non-attacking bishop positions on the black and white squares of
a 3×n chessboard, respectively. For the degenerate case where n = 0, we set b(0) = w(0) = 1
and B3(0) = b(0) · w(0) = 1. A computer program was created and calculated the values
found in Table 1. We note that the sequences b(n), w(n) and B3(n) do not appear in [3].

The computations were performed on the following platform: Intel Q9400 @ 2.6 GHz
with 8 GB RAM. The program was written in C. For n = 1, 2, . . . , 8, the computational
runtimes were nearly instantaneous. However, approximately four minutes were required for
the n = 9 case and 30 minutes for the n = 10 case. Although this computational approach
works, it is clear that it does not scale well as n gets large. We now use a combinatorial
approach to gain better insight on this enumeration problem.

For odd n ≥ 1, a truncated 3 × n chessboard has a missing black square in the lower
righthand corner of the board. Let bT (n), for odd n ≥ 1, denote the number of non-attacking
bishop positions on the black squares of a truncated 3× n board. Clearly, bT (1) = 2.

Lemma 1. For n ≥ 1, bT (2n+1) = b(2n)+bT (2n−1) = b(2n)+b(2n−2)+· · ·+b(2)+bT (1).

Proof. We establish the claim using strong mathematical induction. Let P (n) be the state-
ment: bT (2n+ 1) = b(2n) + bT (2n− 1) = b(2n) + b(2n− 2) + · · ·+ b(2) + bT (1).

• Base Case. Note that bT (3) = 7 = 5 + 2 = b(2) + bT (1). Thus, P (1) is true.

• Inductive Step. Assume P (n) is true, for all n ≤ k. Now, consider bT (2(k + 1) + 1),
the number of non-attacking bishop positions on the black squares of a truncated
3× (2(k + 1) + 1) chessboard. Any such position either has no bishop or a bishop on
the black square of the last column of the truncated chessboard. See Figure 2. Thus,

bT (2(k + 1) + 1) = b(2(k + 1)) + bT (2(k + 1)− 1)

= b(2(k + 1)) + bT (2k + 1)

= b(2(k + 1)) + b(2k) + b(2k − 2) + · · ·+ b(2) + bT (1)

= b(2(k + 1)) + b(2(k + 1)− 2) + b(2(k + 1)− 4) + · · ·+ b(2) + bT (1).

Hence, P (n) is true, for all n ≥ 1.

B

Figure 2: The two possible cases for a non-attacking bishop position on the black squares of
a truncated 3× (2(k + 1) + 1) chessboard, where k ≥ 1.
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n bT (n)
1 2
3 7
5 22
7 71
9 228
11 733

Table 2: The number of non-attacking bishop positions on the black squares of a truncated
3× n chessboard, where n ≥ 1 and odd.

For odd n ≥ 1, the sequence bT (n) (A030186) is found in [3]. See Table 2. There, we see
the sequence described in the following way:

ak = 3ak−1 + ak−2 − ak−3, for k ≥ 3, and a0 = 1, a1 = 2, a2 = 7.

k ak
0 1
1 2
2 7
3 22
4 71
5 228

Table 3: Some values of ak.

Its generating function is

A(x) =
1− x

1− 3x− x2 + x3
=

∞
∑

k=0

akx
k.

Lemma 2. For n ≥ 2, b(2n+ 1) = b(2n) + bT (2n− 1) + bT (2n− 1) + b(2n− 2).

Proof. Let n ≥ 2. Every non-attacking bishop position on the black squares of a 3× (2n+1)
chessboard is in one of several cases: there is no bishop, one bishop or two bishops in the
last column of the chessboard. See Figure 3. Thus, b(2n+1) = b(2n)+ bT (2n− 1)+ bT (2n−
1) + b(2n− 2).
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Figure 3: The possible cases for a non-attacking bishop position on the black squares of a
3× (2n+ 1) chessboard, where n ≥ 2.

Lemma 3. For n ≥ 2, b(2n) = b(2n − 1) + b(2n − 2) and w(2n) = b(2n). Furthermore,

B3(2n) = (b(2n− 1) + b(2n− 2))2.

Proof. Let n ≥ 2. Every non-attacking bishop position on the black squares of a 3 × 2n
chessboard is in one of two cases: there is no bishop or one bishop in the last column of the
chessboard. See Figure 4. Thus, b(2n) = b(2n − 1) + b(2n − 2). On a 3 × 2n chessboard,
the configuration of white squares is identical to the configuration of black squares. Hence,
w(2n) = b(2n). Since bishops on white squares cannot attack bishops on black squares,
B3(2n) = (b(2n− 1) + b(2n− 2))2.

B

Figure 4: The possible cases for a non-attacking bishop position on the black squares of a
3× 2n chessboard, where n ≥ 2.

Lemma 4. For n ≥ 0, w(2n+ 1) = bT (2n+ 1) = an+1.

Proof. Note that w(1) = bT (1) = 2 = a1. Let n ≥ 1. From Figure 5 and Lemma 3, we see
that

w(2n+ 1) = w(2n) + w(2n− 1)

= b(2n) + w(2n− 1).

Through iteration, one obtains w(2n+1) = b(2n)+b(2n−2)+ · · ·+b(2)+bT (1). By Lemma
1, this yields w(2n+ 1) = bT (2n+ 1) = an+1.

5



B

Figure 5: The possible cases for a non-attacking bishop position on the white squares of a
3× (2n+ 1) chessboard, where n ≥ 1.

For even n ≥ 2, a truncated 3 × n chessboard has a missing white square in the lower
righthand corner of the board. Let wT (n), for even n ≥ 2, denote the number of non-
attacking bishop positions on the white squares of a truncated 3 × n board. For example,
wT (2) = 3. Note that for the degenerate case (where n = 0), we set wT (0) = 1.

Lemma 5. For n ≥ 2, wT (2n) = w(2n− 1) + wT (2n− 2) = w(2n− 1) + w(2n− 3) + · · ·+
w(3) + wT (2).

Proof. We establish the claim using strong mathematical induction. Let P (n) be the state-
ment: wT (2n) = w(2n− 1) + wT (2n− 2) = w(2n− 1) + w(2n− 3) + · · ·+ w(3) + wT (2).

• Base Case. From Figure 6, we see that wT (4) = w(3) + wT (2). Thus, P (2) is true.

B

Figure 6: The possible cases for a non-attacking bishop position on the white squares of a
truncated 3× 4 chessboard.

• Inductive Step. Assume P (n) is true, for all n ≤ k. Now, consider wT (2(k + 1)),
the number of non-attacking bishop positions on the white squares of a truncated
3 × 2(k + 1) chessboard. Any such position either has no bishop or a bishop on the
white square of the last column of the truncated chessboard. Thus,

wT (2(k + 1)) = w(2(k + 1)− 1) + wT (2(k + 1)− 2)

= w(2(k + 1)− 1) + wT (2k)

= w(2(k + 1)− 1) + w(2k − 1) + w(2k − 3) + · · ·+ w(3) + wT (2)

= w(2(k + 1)− 1) + w(2(k + 1)− 3) + w(2(k + 1)− 5) + · · ·

+ w(3) + wT (2).

Hence, P (n) is true, for all n ≥ 2.
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n wT (n)
0 1
2 3
4 10
6 32
8 103
10 331

Table 4: The number of non-attacking bishop positions on the white squares of a truncated
3× n chessboard, where n ≥ 0 and even.

The sequence wT (2n) (A033505) is found in [3]. See Table 4. There, we see that wT (2n) =
∑n

i=0 ai, for n ≥ 0. Its generating function is

WT (x) =
1

1− 3x− x2 + x3
=

∞
∑

k=0

wT (2k)x
k

and hence,

WT (x
2) =

1

1− 3x2 − x4 + x6
=

∞
∑

k=0

wT (2k)x
2k.

Lemma 6. For n ≥ 2, w(2n) = w(2n − 1) + wT (2n − 2) + wT (2n − 2) + w(2n − 3) =
w(2n− 1) + w(2n− 3) + 2

∑n−1
i=0 ai. Also, w(2) = 5.

Proof. It is clear that w(2) = 5. Let n ≥ 2. From Figure 7, we see that w(2n) = w(2n −

1) + wT (2n − 2) + wT (2n − 2) + w(2n − 3). By remarks preceding this Lemma, we have
wT (2n− 2) = wT (2(n− 1)) =

∑n−1
i=0 ai. Thus, the claim is established.

Using the results above, we have the following systems of recurrence relations:

System for b(k): For n ≥ 3,

b(2n+ 1) = b(2n) + 2an + b(2n− 2),

b(2n) = b(2n− 1) + b(2n− 2),

an = 3an−1 + an−2 − an−3,

where a0 = 1, a1 = 2, a2 = 7, b(1) = 4, b(2) = 5, b(3) = 10, b(4) = 15 and b(5) = 34.
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Figure 7: The possible cases for a non-attacking bishop position on the white squares of a
3× 2n chessboard, where n ≥ 2.

This can be written as the piecewise-defined recurrence relation

b(k) =

{

b(k − 1) + 2a k−1

2

+ b(k − 3), if k is odd;

b(k − 1) + b(k − 2), if k is even,

for k ≥ 3, and b(0) = 1, b(1) = 4 and b(2) = 5.

System for w(k): For n ≥ 3,

w(2n+ 1) = bT (2n+ 1) = an+1,

an = 3an−1 + an−2 − an−3,

where a0 = 1, a1 = 2, a2 = 7, w(1) = 2, w(3) = 7 and w(5) = 22.

We now find generating functions for these systems of recurrence relations.

For k odd, we have b(k) = b(k − 1) + 2a k−1

2

+ b(k − 3). Set k = 2t + 1. Then, 2at =

b(2t+ 1)− b(2t)− b(2t− 2). Substituting this into 2ak = 3 · 2ak−1 + 2ak−2 − 2ak−3 yields

b(2k + 1)− b(2k)− b(2k − 2) = 3(b(2k − 1)− b(2k − 2)− b(2k − 4)) +

(b(2k − 3)− b(2k − 4)− b(2k − 6))−

(b(2k − 5)− b(2k − 6)− b(2k − 8)).
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Thus,

b(2k + 1) = b(2k) + b(2k − 2) + 3b(2k − 1)− 3b(2k − 2)−

3b(2k − 4) + b(2k − 3)− b(2k − 4)− b(2k − 6)−

b(2k − 5) + b(2k − 6) + b(2k − 8).

Hence,

b(2k + 1) = b(2k) + 3b(2k − 1)− 2b(2k − 2) + b(2k − 3)−

4b(2k − 4)− b(2k − 5) + b(2k − 8).

For k even, we have b(k) = b(k − 1) + b(k − 2). Thus, b(2t) = b(2t− 1) + b(2t− 2).

Now, set g(k) = b(2k) and h(k) = b(2k + 1). Then,

g(k) = b(2k) = h(k − 1) + g(k − 1),

and

h(k) = b(2k + 1) = g(k) + 3h(k − 1)− 2g(k − 1) + h(k − 2)−

4g(k − 2)− h(k − 3) + g(k − 4).

Using Maple, we obtain the generating functions

G(x) =
1 + 2x− x2

1− 3x− x2 + x3
=

∞
∑

k=0

g(k)xk =
∞
∑

k=0

b(2k)xk,

and

H(x) =
4− 2x

1− 3x− x2 + x3
=

∞
∑

k=0

h(k)xk =
∞
∑

k=0

b(2k + 1)xk.

Thus,

B(x) = G(x2) + xH(x2) =
1 + 4x+ 2x2 − 2x3 − x4

1− 3x2 − x4 + x6
=

∞
∑

n=0

b(n)xn.

We also have the generating function

J (x) =
1

x
·

(

1− x

1− 3x− x2 + x3
− 1

)

=
2x+ x2 − x3

x− 3x2 − x3 + x4
=

∞
∑

k=0

w(2k + 1)xk.
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Thus,

W(x) = G(x2) + xJ (x2) =
1 + 2x+ 2x2 + x3 − x4 − x5

1− 3x2 − x4 + x6
=

∞
∑

n=0

w(n)xn.

Using Doron Zeilberger’s powerful Cfinite Maple package [5] to calculate the Hadamard
product B(x)⊙W(x), we obtain the generating function for B3(n), namely

B3(x) =
−1− 5x− x2 + 7x3 + 5x4 − x5 + x6 − x7

−1 + 3x+ 2x3 + 4x4 − 10x5 − 2x6 − x8 + x9
=

∞
∑

n=0

B3(n)x
n.

Theorem 7. For n ≥ 0, the number of non-attacking bishop positions on a 3×n chessboard

is B3(n) = b(n) ·w(n). The generating function for B3(n) is the Hadamard product B3(x) =
B(x)⊙W(x).

Proof. Bishops on white squares cannot attack bishops on black squares.

We now shift our focus to counting the non-attacking king positions on an m× n chess-
board, wherem = 1, 2 and 3. The Fibonacci sequence is described by the recurrence relation:
F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, for all n ≥ 2. For all n ≥ 1, the number of non-
attacking king positions on a 1× n chessboard is known to be Fn+2 [1, p. 510, Exercise 26].
Let K2(n) denote the number of non-attacking king positions on a 2 × n chessboard. For
the degenerate case (n = 0), we set K2(0) = 1. Clearly, K2(1) = 3.

Lemma 8. For n ≥ 2, K2(n) = K2(n− 1) + 2 ·K2(n− 2), where K2(0) = 1 and K2(1) = 3.

Proof. Let n ≥ 2. Every non-attacking king position on a 2× n chessboard is in one of two
cases: there is no king or one king in the last column of the chessboard. See Figure 8. Thus,
K2(n) = K2(n− 1) + 2 ·K2(n− 2).

K

K

Figure 8: The possible cases for a non-attacking king position on a 2× n chessboard, where
n ≥ 2.

The sequence K2(n) appears as a subsequence of (A001045) in [3]. See Table 5. There,
we see the generating function

K2(x) =
x

1− x− 2x2
= x+ x2 + 3x3 + 5x4 + 11x5 + 21x6 + 43x7 + 85x8 + · · ·
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n K2(n)
0 1
1 3
2 5
3 11
4 21
5 43

Table 5: The number of non-attacking king positions on a 2× n chessboard, where n ≥ 0.

Thus, the generating function for K2(n) is

K2(x) =
1

x2
·

(

x

1− x− 2x2
− x

)

=
1 + 2x

1− x− 2x2
=

∞
∑

n=0

K2(n)x
n.

Theorem 9. For n ≥ 0, the number of non-attacking king positions on a 2 × n chessboard

is K2(n) =
1
3
(2n+2 − (−1)n).

Proof. Using Lemma 8, we will establish the claim with strong mathematical induction. Let
P (n) be the statement: K2(n) = 1

3
(2n+2 − (−1)n) is a solution to the recurrence relation

K2(n) = K2(n− 1) + 2 ·K2(n− 2), where K2(0) = 1 and K2(1) = 3.

• Base Case. Note that 1 = K2(0) =
1
3
(20+2 − (−1)0). Thus, P (0) is true.

• Inductive Step. Assume P (n) is true, for all n ≤ k. Then,

K2(k + 1) = K2(k) + 2 ·K2(k − 1)

=
1

3
(2k+2 − (−1)k) +

2

3
(2k+1 − (−1)k−1)

=
1

3
· 2k+2 −

1

3
(−1)k +

2

3
· 2k+1 −

2

3
(−1)k−1

=
1

3
· 2k+2 +

1

3
· 2k+2 +

1

3
(−1)k+1 −

2

3
(−1)k+1

=
1

3
(2 · 2k+2 + (−1)k+1 − 2(−1)k+1)

=
1

3
(2(k+1)+2 − (−1)k+1).

Hence, P (n) is true, for all n ≥ 0.

For n ≥ 1, an extended 3× n chessboard has an extra square attached (in the horizontal
direction) to the lower righthand corner of the board. Let KE(n) denote the number of non-
attacking king positions on an extended 3× n chessboard. We set KE(0) = 2. Furthermore,
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let K3(n) denote the number of non-attacking king positions on a 3× n chessboard. We set
K3(0) = 1. A direct calculation yields K3(1) = 5.

Lemma 10. For n ≥ 1, KE(n) = K3(n) +KE(n− 1).

Proof. Let n ≥ 1. Every non-attacking king position on an extended 3× n chessboard is in
one of two cases: there is either no king or a king on the extended square of the chessboard.
See Figure 9. Thus, KE(n) = K3(n) +KE(n− 1).

K

Figure 9: The two cases for a non-attacking king position on an extended 3× n chessboard,
where n ≥ 1.

Lemma 11. For n ≥ 2, K3(n) = K3(n− 1) + 2 ·K3(n− 2) + 2 ·KE(n− 2).

Proof. Let n ≥ 2. Every non-attacking king position on a 3×n chessboard is in one of several
cases: there is either no king, one king or two kings in the last column of the chessboard.
See Figure 10. Thus, K3(n) = K3(n− 1) + 2 ·K3(n− 2) + 2 ·KE(n− 2).

K

K

K

K

K

Figure 10: The possible cases for a non-attacking king position on a 3×n chessboard, where
n ≥ 2.
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The sequence KE(n) appears as a subsequence of (A046672) in [3]. See Table 6. There,
we see the generating function

KE(x) =
1

1− 2x− 3x2 + 2x3
= 1 + 2x+ 7x2 + 18x3 + 53x4 + 146x5 + · · ·

Thus, the generating function for KE(n) is

KE(x) =
1

x
·

(

1

1− 2x− 3x3 + 2x3
− 1

)

=
2 + 3x− 2x2

1− 2x− 3x2 + 2x3
=

∞
∑

n=0

KE(n)x
n.

n KE(n)
0 2
1 7
2 18
3 53
4 146
5 415

Table 6: The number of non-attacking king positions on an extended 3×n chessboard, where
n ≥ 0.

The sequence K3(n) appears as a subsequence of (A054854) in [3]. See Table 7.

n K3(n)
0 1
1 5
2 11
3 35
4 93
5 269

Table 7: The number of non-attacking king positions on a 3× n chessboard, where n ≥ 0.

There, we see the generating function

K3(x) =
1− x

1− 2x− 3x2 + 2x3
= 1 + x+ 5x2 + 11x3 + 35x4 + 93x5 + · · ·
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Thus, the generating function for K3(n) is

K3(x) =
1

x
·

(

1− x

1− 2x− 3x3 + 2x3
− 1

)

=
1 + 3x− 2x2

1− 2x− 3x2 + 2x3
=

∞
∑

n=0

K3(n)x
n.

Theorem 12. For n ≥ 0, the number of non-attacking king positions on a 3× n chessboard

is the coefficient of the xn-th term in K3(x).

3 Cylindrical chessboards

Let a cylindrical m×n chessboard be represented by identifying the left and right edges with
each other. Hence, n is even. We assume that a black square is in the upper left-hand corner
of the board and that the board is fixed in position and orientation. Let K1(n) denote the
number of non-attacking king positions on a cylindrical 1×n chessboard. For the degenerate
case (n = 0), we set K1(0) = 1.

Recall the Fibonacci sequence described by the recurrence relation: F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2, for all n ≥ 2.

Lemma 13. For even n ≥ 2, K1(n) = Fn−1 + Fn+1.

Proof. Let K1(n) denote the number of non-attacking king positions on a regular 1 × n

chessboard. For all n ≥ 1, it is known that K1(n) = Fn+2 [1, p. 510, Exercise 26]. Now, let
n ≥ 2 and even. Every non-attacking king position on a cylindrical 1 × n chessboard is in
one of two cases. See Figure 11. Thus,

K1(n) = K1(n− 3) +K1(n− 1)

= Fn−3+2 + Fn−1+2

= Fn−1 + Fn+1.

C C

K

Figure 11: The possible cases for a non-attacking king position on a cylindrical 1× n chess-
board, where n ≥ 2 and even.

The sequence K1(n) is connected to (A219233) in [3]. See Table 8. Let us find the
generating function for K1(n), where n ≥ 0 is even. Mathematica 11 gives the generating
function

F(x) =
1− x

1− 3x+ x2
=

∞
∑

k=0

F2k+1x
k.
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n K1(n)
0 1
2 3
4 7
6 18
8 47
10 123

Table 8: The number of non-attacking king positions on a cylindrical 1×n chessboard, where
n ≥ 0 and even.

Then,

F(x2) =
1− x2

1− 3x2 + x4
=

∞
∑

k=0

F2k+1x
2k.

Also,

x2F(x2) =
x2(1− x2)

1− 3x2 + x4
=

∞
∑

k=0

F2k+1x
2k+2.

Thus,

K1(x) = F(x2) + x2F(x2)

=
∞
∑

k=0

F2k+1x
2k +

∞
∑

k=0

F2k+1x
2k+2

= [F1x
0 + F3x

2 + F5x
4 + · · · ] + [F1x

2 + F3x
4 + F5x

6 + · · · ]

=
∞
∑

k=0

K1(2k)x
2k =

1− x4

1− 3x2 + x4
.

Theorem 14. For even n ≥ 0, the number of non-attacking king positions on a cylindrical

1× n chessboard is the coefficient of the xn-th term in K1(x).

For even n ≥ 0, let B2(n) denote the number of non-attacking bishop positions on a
cylindrical 2× n chessboard. For the degenerate case (n = 0), we set B2(0) = 1. Using the
Cfinite Maple package [5], we calculate the Hadamard product K1(x) ⊙ K1(x). This gives
the generating function for B2(n), namely

B2(x) =
1 + x2 − 15x4 + 3x6

1− 8x2 + 8x4 − x6
=

∞
∑

k=0

B2(2k)x
2k.

15



Theorem 15. For even n ≥ 0, the number of non-attacking bishop positions on a cylindrical

2 × n chessboard is B2(n) = (Fn−1 + Fn+1)
2. The generating function for B2(n) is the

Hadamard product B2(x) = K1(x)⊙K1(x).

Proof. The configuration of the black squares is completely symmetric to the configuration
of the white squares. Bishops on white squares cannot attack bishops on black squares. The
result follows immediately from Lemma 13.

n B2(n)
0 1
2 9
4 49
6 324
8 2209
10 15129

Table 9: The number of non-attacking bishop positions on a cylindrical 2 × n chessboard,
where n ≥ 0 and even.

We note that the sequence B2(n) does not appear in [3]. See Table 9.

Let B3(n) denote the number of non-attacking bishop positions on a cylindrical 3 × n

chessboard, for even n ≥ 2. We set B3(0) = 1. For odd n ≥ 3, a doubly truncated 3 × n

chessboard has missing black squares in the lower lefthand and lower righthand corners of
the board. Let bDT (n), for odd n ≥ 3, denote the number of non-attacking bishop positions
on the black squares of a doubly truncated 3× n chessboard. In the degenerate case where
n = 1, we set bDT (1) = bT (1) = 2.

Lemma 16. For odd n ≥ 3, bDT (n) = wT (n− 1) + bDT (n− 2).

Proof. Let n ≥ 3 and odd. Any non-attacking bishop position on the black squares of a
doubly truncated 3 × n chessboard is in one of two cases: there is either no bishop or a
bishop in the last column of the chessboard. See Figure 12. Thus, bDT (n) = wT (n − 1) +
bDT (n− 2).

The sequence bDT (n) does not appear in [3]. See Table 10. From Lemma 16, we see that
bDT (n) = 2+wT (2)+wT (4)+ · · ·+wT (n−1), for odd n ≥ 3. Using this, along with WT (x

2),
we obtain the generating function for bDT (n), namely

16



B

Figure 12: The possible cases for a non-attacking bishop position on the black squares of a
doubly truncated 3× n chessboard, where n ≥ 3 and odd.

n bDT (n)
1 2
3 5
5 15
7 47
9 150
11 481

Table 10: The number of non-attacking bishop positions on the black squares of a doubly
truncated 3× n chessboard, where n ≥ 1 and odd.

BDT (x) = x

(

WT (x
2)

1− x2
+

1

1− x2
− 2

)

+ 2x

=
−2x+ 3x3 + x5 − x7

−1 + 4x2 − 2x4 − 2x6 + x8
=

∞
∑

k=0

bDT (2k + 1)x2k+1.

For even n ≥ 2, let b3(n) denote the number of non-attacking bishop positions on the
black squares of a cylindrical 3 × n chessboard. We set b3(0) = 1. Note that b3(2) =
1 (zero bishops) + 3 (one bishop) = 4. For b3(4), there are two cases to examine. There is
either no bishop or a bishop on the black square in the “last” column of a cylindrical 3× 4
board. See Figure 13. Thus, b3(4) = b(2) + 2 + 2 + 1 (no bishop) + 2 (one bishop) = 12.

Lemma 17. For even n ≥ 6, b3(n) = b(n− 2) + w(n− 3) + w(n− 5) + 2 · bDT (n− 3).

Proof. Let n ≥ 6 and even. Any non-attacking bishop position on the black squares of a
cylindrical 3 × n chessboard is in one of two cases: there is either no bishop or a bishop in
the “last” column of the chessboard. See Figure 14. Thus, b3(n) = b(n − 2) + w(n − 3) +
w(n− 5) + 2 · bDT (n− 3).

17
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Figure 13: The possible cases for a non-attacking bishop position on the black squares of a
cylindrical 3× 4 chessboard.

The sequence b3(n) does not appear in [3]. See Table 11.
Using Lemma 17, along with G(x), J (x) and BDT (x), we obtain the generating function for
b3(n), namely

b3(x) = x2G(x2) + x3 · xJ (x2) + x5 · xJ (x2) + 2x3BDT (x) + x4 + 3x2 + 1

=
−1 + 2x4 + 4x6 − 3x8

−1 + 4x2 − 2x4 − 2x6 + x8
=

∞
∑

k=0

b3(2k)x
2k.

Using the Cfinite Maple package [5], we calculate the Hadamard product b3(x) ⊙ b3(x).
This gives the generating function for B3(n), namely

B3(x) =

−1− 2x2 + 45x4 + 252x6 − 1090x8 + 644x10 + 802x12 − 740x14 + 35x16 + 86x18 − 15x20

−1 + 14x2 − 35x4 − 48x6 + 198x8 − 112x10 − 78x12 + 72x14 − 5x16 − 6x18 + x20
.

Theorem 18. For even n ≥ 0, the number of non-attacking bishop positions on a cylindrical

3 × n chessboard is B3(n) = (b3(n))
2. The generating function for B3(n) is the Hadamard

product B3(x) = b3(x)⊙ b3(x).
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Figure 14: The possible cases for a non-attacking bishop position on the black squares of a
cylindrical 3× n chessboard, where n ≥ 6 and even.

Proof. The configuration of the black squares is completely symmetric to the configuration
of the white squares. Bishops on white squares cannot attack bishops on black squares.

We note that the sequence B3(n) does not appear in [3]. See Table 12.

For even n ≥ 2, let K2(n) denote the number of non-attacking king positions on a
cylindrical 2 × n chessboard. For the degenerate case (n = 0), we set K2(0) = 1. Clearly,
K2(2) = 5.

Lemma 19. For even n ≥ 4, K2(n) = K2(n− 1) + 2 ·K2(n− 3).

Proof. Let n ≥ 4 and even. Any non-attacking king position on a cylindrical 2×n chessboard
is in one of two cases: there is either no king or a king in the “last” column of the chessboard.
See Figure 15. Thus, K2(n) = K2(n− 1) + 2 ·K2(n− 3).

The sequence K2(n) is a subsequence of (A092896) in [3]. See Table 13.

Theorem 20. For even n ≥ 0, the number of non-attacking king positions on a cylindrical

2× n chessboard is K2(n) = 2n + 1.

Proof. Using Lemma 19 and Theorem 9, we see that
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n b3(n)
0 1
2 4
4 12
6 34
8 108
10 344

Table 11: The number of non-attacking bishop positions on the black squares of a cylindrical
3× n chessboard, where n ≥ 0 and even.

n B3(n)
0 1
2 16
4 144
6 1156
8 11664
10 118336

Table 12: The number of non-attacking bishop positions on a cylindrical 3× n chessboard,
where n ≥ 0 and even.

K2(n) = K2(n− 1) + 2 ·K2(n− 3)

=
1

3
(2n−1+2 − (−1)n−1) + 2(

1

3
(2n−3+2 − (−1)n−3))

=
1

3
· 2n+1 −

1

3
(−1)n−1 +

2

3
· 2n−1 −

2

3
(−1)n−3

=
2

3
· 2n +

1

3
· 2n −

1

3
(−1)n−1 −

2

3
(−1)n−3

= 2n +
1

3
(−1)n +

2

3
(−1)n

= 2n + (−1)n

= 2n + 1,

since n ≥ 2 is even.

For n ≥ 1, a doubly extended 3 × n chessboard has an extra square attached (in the
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Figure 15: The possible cases for a non-attacking king position on a cylindrical 2× n chess-
board, where n ≥ 4 and even.

n K2(n)
0 1
2 5
4 17
6 65
8 257
10 1025

Table 13: The number of non-attacking king positions on a cylindrical 2 × n chessboard,
where n ≥ 0 and even.

horizontal direction) to the lower lefthand and righthand corners of the board. Let KDE(n)
denote the number of non-attacking king positions on a doubly extended 3× n chessboard.
We set KDE(0) = 3, since a doubly extended 3 × 0 chessboard can be viewed as a regular
1 × 2 chessboard. Observe that KDE(1) = 1 (zero kings) + 5 (one king) + 4 (two kings) +
1 (three kings) = 11. See Figure 16.

For even n ≥ 2, let K3(n) denote the number of non-attacking king positions on a
cylindrical 3 × n chessboard. We set K3(0) = 1. Observe that K3(2) = 1 (zero kings) +
6 (one king) + 4 (two kings) = 11. See Figure 17.

Lemma 21. For n ≥ 2, KDE(n) = K3(n) + 2 ·KE(n− 1) +KDE(n− 2).

Proof. Let n ≥ 2. Any non-attacking king position on a doubly extended 3×n chessboard is
in one of several cases: there is either no king, one king or two kings on the extended squares
of the chessboard. See Figure 18. Thus, KDE(n) = K3(n)+ 2 ·KE(n− 1)+KDE(n− 2).

The sequence KDE(n) does not appear in [3]. See Table 14. Using Lemma 21 (and
generating functions K3(x) and KE(x)), let us find the generating function for KDE(n).
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Figure 16: Non-attacking positions with two or three kings on a doubly extended 3 × 1
chessboard.
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Figure 17: Non-attacking positions with two kings on a cylindrical 3× 2 chessboard.

KDE(x) =
∞
∑

n=0

KDE(n)x
n = 3 + 11x+

∞
∑

n=2

KDE(n)x
n

= 3 + 11x+
∞
∑

n=2

(K3(n) + 2 ·KE(n− 1))xn +
∞
∑

n=2

KDE(n− 2)xn

= 3 + 11x+
∞
∑

n=2

(K3(n) + 2 ·KE(n− 1))xn +
∞
∑

j=0

KDE(j)x
j+2

= 3 + 11x+
∞
∑

n=2

(K3(n) + 2 ·KE(n− 1))xn + x2 ·KDE(x).

Solving for KDE(x) yields

KDE(x) =
1

1− x2
·

(

3 + 11x+
∞
∑

n=2

(K3(n) + 2 ·KE(n− 1))xn

)

.
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Figure 18: The possible cases for a non-attacking king position on a doubly extended 3× n

chessboard, where n ≥ 2.

n KDE(n)
0 3
1 11
2 28
3 82
4 227
5 643

Table 14: The number of non-attacking king positions on a doubly extended 3×n chessboard,
where n ≥ 0.

Hence,

KDE(x) =
1

1− x2
· (3 + 11x+ (K3(x)− 1− 5x) + 2(x ·KE(x)− 2x))

=
−3− 8x− 2x2 + 4x3

−1 + x+ 5x2 + x3 − 2x4
=

∞
∑

n=0

KDE(n)x
n.

Lemma 22. For even n ≥ 4, K3(n) = K3(n− 1) + 2 ·K3(n− 3) + 2 ·KDE(n− 3).

Proof. Let n ≥ 4 and even. Any non-attacking king position on a cylindrical 3×n chessboard
is in one of several cases: there is either no king, one king or two kings in the “last” column of
the chessboard. See Figure 19. Thus, K3(n) = K3(n−1)+2 ·K3(n−3)+2 ·KDE(n−3).

The sequence K3(n) does not appear in [3]. See Table 15. Using Lemma 22 (and
generating functions K3(x) and KDE(x)), let us find the generating function for K3(n).
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Figure 19: The possible cases for a non-attacking king position on a cylindrical 3× n chess-
board, where n ≥ 4 and even.

K3(x) = x ·

(

K3(x)⊙
x

1− x2

)

+ 2x3 ·

(

K3(x)⊙
x

1− x2

)

+

2x3 ·

(

KDE(x)⊙
x

1− x2

)

+ 6x2 + 1.

Using the Cfinite Maple package [5], we see that

K3(x) =
1− 27x4 + 42x6 − 12x8

1− 11x2 + 27x4 − 21x6 + 4x8
=

∞
∑

k=0

K3(2k)x
2k.

Theorem 23. For even n ≥ 0, the number of non-attacking king positions on a cylindrical

3× n chessboard is the coefficient of the xn-th term in K3(x).

4 Concluding remarks

The On-line Encyclopedia of Integer Sequences [3] is an invaluable resource for mathemati-
cians working in the areas of discrete mathematics and combinatorics. During our research
project, we encountered various sequences which we checked in [3], hoping to gain further
insight into our combinatorics problem. Some of these sequences did not appear within [3].
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n K3(n)
0 1
2 11
4 67
6 503
8 3939
10 31111

Table 15: The number of non-attacking king positions on a cylindrical 3 × n chessboard,
where n ≥ 0 and even.

The sequences B3(n), B2(n), B3(n) and K3(n), along with contextual information, recur-
rence relations and generating functions, have been submitted for entry into this dynamic
database of integer sequences.

For additional information on non-attacking chess pieces and other variants, the inter-
ested reader is directed to [2].
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