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Abstract

We know that the Fibonacci numbers count the tilings of a (1×n)-board by squares
and dominoes, or equivalently, the number of tilings of a (2×n)-board by dominoes. We
use the tilings of a (2×n)-board by colored unit squares and dominoes to obtain some
new combinatorial identities. They are generalization of some known combinatorial
identities and in the special case give us the Fibonacci identities.

1 Introduction

The Fibonacci numbers (A000045), (Fn)n≥0, are the sequence defined by F0 = 0, F1 = 1,
and Fn = Fn−1 + Fn−2 for n ≥ 2 [3, 4]. It is easy to see that the tilings of a (1 × n)-board
with (1 × 1) squares and (1 × 2) dominoes can be counted by the Fibonacci numbers. In
fact, if fn counts such tilings then fn = Fn+1. From now on, we use the word “square(s)” to
mean “(1× 1) square(s)”. The Pell numbers (A000129) are defined by P0 = 0, P1 = 1, and
for n ≥ 2, Pn = 2Pn−1 + Pn−2. The Pell number Pn+1 counts the tilings of a (1 × n)-board
with dominoes and two colors of squares. Benjamin, Quinn, Plott, and Sellers [1, 2] proved
a number of combinatorial identities using these interpretations. McQuistan and Lichtman
[6] also studied the tilings of a (2×n)-board by squares and dominoes for placing dimers on
a lattice and proved that

kn = 3kn−1 + kn−2 − kn−3
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for n ≥ 3, where kn is the number of such tilings (see Cipra’s comment on (A030186) in
OEIS [7]). In following, Katz and Stenson [5] investigated the tilings of a (2× n)-board by
colored squares and dominoes. They [5] obtained the recurrence relation

ka,b
n = (a2 + 2b)ka,b

n−1 + a2bka,b
n−2 − b3ka,b

n−3 (n ≥ 3)

with the initial values ka,b
0 = 1, ka,b

1 = a2 + b and ka,b
2 = a4 + 4a2b + 2b2, where ka,b

n is the
number of tilings of a (2×n)-board by a colors of squares and b colors of dominoes. Clearly,
kn = k1,1

n . Moreover, they showed that the generating function of ka,b
n is

Ka,b(x) =
1− bx

1− (a2 + 2b)x− a2bx2 + b3x3

(see (A253265) in OEIS [7] for a comment) and proved the following combinatorial identities:

ka,b
n = (a2 + b)ka,b

n−1 + (2a2b+ b2)ka,b
n−2 + 2a2

n−3∑

i=0

bn−i−1ka,b
i ,

ka,b
m+n = ka,b

m ka,b
n + b2ka,b

m−1k
a,b
n−1 + 2a2

m−1∑

i=0

m+n∑

j=m+1

bj−i−1ka,b
i ka,b

m+n−j,

ka,b
n = (a2 + b)n +

n−2∑

i=0

ka,b
i

(

b2(a2 + b)n−i−2 + 2
(
b(a2 + b)n−i−1 − bn−i

))

.

Since k0,1
n = fn, these identities in the special case give us the Fibonacci identities [5].

In this paper, we explore the tilings of a (2× n)-board by colored squares and dominoes
and obtain some new combinatorial identities according to the style of Benjamin and Quinn
[2]. Moreover, we show that they are generalization of some famous Fibonacci identities.

2 Some combinatorial identities

Once again, consider a (2 × n)-board and, with a scissor, cut out only a square in the last
column of the top row (see Figure 1).

· · ·

· · ·

1 2 n

. . .

. . .
1 2 n

Figure 1: A (2× n)-board and a pruned (2× n)-board.

Let la,bn count the tilings of such board using a colors of squares and b colors of dominoes.
Clearly, la,b1 = a and la,b2 = a3 + 2ab. Also, l0,bn = 0. There are two cases for the tilings of a
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pruned (2× n)-board, those ending with a horizontal domino in the bottom row and those
ending with a square in the bottom row. This implies that

la,bn = bla,bn−1 + aka,b
n−1 (1)

for n ≥ 2. Replacing n by 1 in (1), we have la,b0 = 0. Moreover, (1) shows that the tilings of a
pruned (2×n)-board which end with a square in the bottom row are counted by la,bn − bla,bn−1.
Now we can obtain a recurrence relation for la,bn .

Theorem 1. For n ≥ 3, la,bn = (a2 + 2b)la,bn−1 + a2bla,bn−2 − b3la,bn−3.

Proof. By definition, there are la,bn tilings for a pruned (2 × n)-board. On the other hand,
we have five cases for the endings of these tilings:

(i) There is a domino in the ending of the bottom row. Clearly, they are counted by bla,bn−1.

(ii) There are a square in column n and a vertical domino in column n − 1. By removing
column n− 1, it is seen that these tilings correspond to the tilings of a pruned

(
2× (n− 1)

)
-

board which end with a square in the bottom row. According to the above note, we have
b(la,bn−1 − bla,bn−2) such tilings.

(iii) There are two squares in the ending of the bottom row. The number of these tilings is
a2la,bn−1.

(iv) Two horizontal dominoes are in columns n − 2 and n − 1 and a square is in column
n. If we remove these horizontal dominoes then it is seen that they are corresponded to
b2(la,bn−2 − bla,bn−3) tilings of a pruned

(
2 × (n − 2)

)
-board which end with a square in the

bottom row.

(v) The top row ends with a square and the bottom row ends with a horizontal domino
followed by a square. Here, the number of tilings is a2bla,bn−2.

Now by summing over all cases, we get the right-side of the recurrence relation. See
Figure 2.

. . .

. . .
1 2 ··· n

. . .

. . .
1 2 ··· n

. . .

. . .
1 2 ··· n

. . .

. . .
1 2 ··· n

. . .

. . .
1 2 ··· n

Figure 2: The endings for obtaining a recurrence relation for la,bn .
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It is easy to find that the generating function for la,bn is

La,b(x) =
ax

1− (a2 + 2b)x− a2bx2 + b3x3
.

The following proofs, as we shall see, are based on the double counting principle such
that one of the ways of counting breaks the problem into disjoint cases.

Identity 2. ka,b
n = a2n + b

n∑

i=1

a2(n−i)ka,b
i−1 + 2b

n∑

i=2

a2(n−i)+1la,bi−1 + b2
n∑

i=2

a2(n−i)ka,b
i−2.

Proof. Consider the tilings of a (2×n)-board with at least one domino. There are ka,b
n − a2n

such tilings. On the other hand, there are four cases for the location of the last domino as
shown in Figure 3:

· · · · · ·

· · · · · ·

i

· · · · · ·

· · · · · ·

i

· · · · · ·

· · · · · ·

i

· · · · · ·

· · · · · ·

i

Figure 3: To prove Identity 2, condition on the location of the last domino.

(i) The last domino is vertical. If the last domino occupies column i (1 ≤ i ≤ n) then cells 1
through i − 1 in the both rows can be tiled in ka,b

i−1 ways, column i must be covered by one
of the b colored dominoes and remainder cells must be covered in a2(n−i) ways. Thus, the
number of tilings in this case is

∑n

i=1 ba
2(n−i)ka,b

i−1.

(ii) The last domino is horizontal in the first row. If the last domino covers cells i− 1 and i
in the first row, where 2 ≤ i ≤ n, then cell i in the second row must be covered by a square.
So, cells 1 through i− 2 in the first row and cells 1 through i− 1 in the second row can be
together tiled in la,bi−1 ways and remainder cells must be covered by squares in a2(n−i) ways.

So, the number is
∑n

i=2 baa
2(n−i)la,bi−1.

(iii) The last domino is horizontal in the second row. This is similar to (ii).

(iv) The last domino is horizontal in the both rows. If cells i − 1 and i in the both rows
coverd by two horizontal dominoes (2 ≤ i ≤ n) then cells 1 through i− 2 can be covered in
ka,b
i−2 ways and cells i+ 1 through n in the both rows must be tiled by squares. So, there are

∑n

i=2 b
2a2(n−i)ka,b

i−2 such tilings.

Now we sum over all cases to get the identity.
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Identity 3. ka,b
n = k0,b

n + 2ab
n∑

i=2

la,bi−1k
0,b
n−i + a2

n∑

i=1

ka,b
i−1k

0,b
n−i.

Proof. The left-hand side of this identity counts the tilings of a (2×n)-board. On the other
hand, we obtain the right-hand side by conditioning on the location of the last square. There
are four cases as shown in Figure 4:

· · ·

· · ·

︸ ︷︷ ︸

no square

· · · · · ·

· · · · · ·

i

· · · · · ·

· · · · · ·

i

· · · · · ·

· · · · · ·

i

· · · · · ·

· · · · · ·

i

· · · · · ·

· · · · · ·

i

Figure 4: To prove Identity 3, condition on the location of the last square.

(i) There is no square in the tiling. Obviously, we have k0,b
n of these.

(ii) The last square is in the first row. If the last square covers column i then we have two
subcases for the second row: either cells i − 1 and i tiled by a domino (2 ≤ i ≤ n) or cells
i and i + 1 tiled by a domino (1 ≤ i ≤ n − 1). In the first subcase, cells 1 through i − 1 in
the first row and cells 1 through i− 2 in the second row can be together covered in la,bi−1 ways

and moreover, cells i+1 through n in the both rows must be tiled in k0,b
n−i ways. Thus, there

is
∑n

i=2 abl
a,b
i−1k

0,b
n−i such tilings. In the second subcase, the pruned board in columns i+ 1 to

n must be tiled in l0,bn−i ways. But l
0,b
n−i = 0 and this subcase will not occur.

(iii) The last square is in the second row. This is similar to (ii).

(iv) The last square is in the both rows. If the last square is in column i of the both rows
(1 ≤ i ≤ n) then we have no restriction in the left-hand side of column i and cells i+1 through
n in the both rows must be together tiled only by dominoes. So, there are

∑n

i=1 a
2ka,b

i−1k
0,b
n−i

of these tilings.

Now, by summing over all cases, we get the identity.
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Identity 4, as illustrated below, depends on the notion of breakability. A tiling of a
(2 × n)-board is breakable at column i if we can decompose the tiling into two tilings, one
covering columns 1 through i and the other covering columns i + 1 through n. Otherwise,
we call the tiling unbreakable.

Identity 4. ka,b
m+n = ka,b

m ka,b
n + 2bla,bm la,bn + b2ka,b

m−1k
a,b
n−1.

Proof. We know that there are ka,b
m+n tilings for a

(
2 × (m + n)

)
-board. This gives us the

left-side hand of the identity. On the other hand, let us condition on breakability at column
m. There are four cases as shown in Figure 5:

· · · · · ·

· · · · · ·

1 m

︸ ︷︷ ︸︸ ︷︷ ︸

· · · · · ·

· · · · · ·

m

· · · · · ·

· · · · · ·

m

· · · · · ·

· · · · · ·

m

Figure 5: To see Identity 4, count the (m+ n)-tilings based on breakability at cell m.

(i) An (m+ n)-tiling is breakable at column m. There are ka,b
m ka,b

n of these.

(ii) Only the first row causes the tiling be unbreakable. Thus, cells m and m + 1 in the
first row are covered by a domino. Here, we have two pruned boards, the first in columns 1
through m and the second in columns m+ 1 through m+ n. So, there are bla,bm la,bn tilings.

(iii) Only the second row causes the tiling be unbreakable. This is similar to (ii).

(iv) The both rows cause the tiling be unbreakable. Thus, there are two horizontal dominoes
covering columns m and m + 1. Therefore, cells 1 through m − 1 and cells m + 2 through
m+ n in the both rows can be tiled arbitary and we have b2ka,b

m−1k
a,b
n−1 tilings.

Now we obtain the identity by summing over all cases.

Let Ja,b
n be the number of tilings of a (1× n)-board by a colors of squares and b colors of

dominoes. It is clear that J1,1
n = fn and

J0,1
n =

{

0, if n is odd;

1, if n is even.

Identity 5. ka,b
n =

n∑

i=0

∑

x0+x1+···+xi=n−i

bi
(
Ja,b
x0

)2 (
Ja,b
x1

)2
· · ·

(
Ja,b
xi

)2
.
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Proof. There are ka,b
n tilings for a (2×n)-board. On the other hand, condition on the number

of vertical dominoes. Suppose that we have i vertical dominoes (0 ≤ i ≤ n) such that there
are x0 columns to the left of the first vertical domino, x1 columns between the first and the
second vertical dominoes, . . ., and finally, xi columns to the right of the last vertical domino
(see Figure 6).

· · · · · · · · · · · ·

· · · · · · · · · · · ·

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

x0 x1 ··· xi

Figure 6: To see Identity 5, consider all of the vertical dominoes.

Thus, x0 + x1 + · · · + xi = n − i and each (2 × xj)-subboard, where 0 ≤ j ≤ i, must be
tiled by horizontal dominoes and squares. Since the rows in these subboards are sepapately
tiled, there are bi(Ja,b

x0
)2(Ja,b

x1
)2 · · · (Ja,b

xi
)2 ways to tile the (2× n)-board. Now the assertion is

implied by summing over all cases.

In the special case (a, b) = (0, 1), Identity 2 and Identity 4 reduce to the well-known
formulas

fn = fn−1 + fn−2

and
fm+n = fm−1fn−1 + fmfn,

respectively. Moreover, in the special cases (a, b) = (0, 1) and (a, b) = (1, 1), Identity 5 gives
us the formulas

fn =
n∑

i=0

Ai,n (2)

and

kn =
n∑

i=0

∑

x0+x1+···+xi=n−i

f 2
x0
f 2
x1
· · · f 2

xi
, (3)

respectively, where Ai,n is the number of nonnegative even integer solutions to the equation
x0+x1+ · · ·+xi = n− i. By taking xi = 2yi, we can consider Ai,n as the nonnegative integer
solutions to the equation y0 + y1 + · · ·+ yi = (n− i)/2. Notice that n− i must be even since

each xi is even. Therefore, we get Ai,n =
(n+i

2

i

)
by using a standard argument [3, 4], and (2)

becomes

fn =
n∑

i=0

(
n+i
2

i

)

. (4)

Depending on the parity of n, (4) gives the following known formulas:

f2n =
n∑

k=0

(
n+ k

2k

)

and f2n−1 =
n−1∑

k=0

(
n+ k

2k + 1

)
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for n ≥ 0 and n ≥ 1, respectively [2, Identities 165–166]. Moreover, we can obtain (3) by
repeated application of

kn − (fn)
2 =

n∑

m=1

km−1(fn−m)
2,

which is due to Cipra [5, Identity 5(i)].

3 Concluding remarks

In this paper, we have considered a (2 × n)-board, examined its tilings by colored squares
and dominoes and proved four identities. Our proofs are respectively based on these ideas:
location of the last domino, location of the last square, breakability at a column and the
number of vertical dominoes. Benjamin and Quinn [2, Chap. 1] have used more ideas on a
(1× n)-board and proved several identities. This suggests that further results on the tilings
can be obtained if we can use the ideas discussed in [2] on a (2× n)-board.
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