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Abstract

We present a unified approach to construct divisibility sequences of higher orders

by using divisibility sequences of order 2.

1 Introduction

Let Z be the ring of integers. A sequence (an)n≥0 of elements in Z is called a divisibility
sequence (DS for abbreviation) if m|n implies am|an. In this paper, we discuss DSs that are
recursive sequences (an) satisfying linear homogeneous recurrence relations with constant
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coefficients, which are called linear divisibility sequences (LDSs for abbreviation). A well-
known example is the sequence of Fibonacci numbers. It has long been an open question
whether all divisibility sequences are, essentially, just termwise products of second order
recursive sequences generalizing the Fibonacci numbers. Some earlier discussion about the
question can be found in Ward [25]. Bézivin, Pethö, and van der Poorten [2] characterize all
divisibility sequences by employing the factorization theory for exponential polynomials and
a deep arithmetic result on the Hadamard quotient of rational functions. Some interesting
results of divisibility sequences of order 3 and 4 can be found in Hall [6] and Williams and
Guy [27, 28], respectively. In this paper, we will present a different unified approach to
construct LDSs of higher order by using LDSs of order 2. Of course, we are aware that in
literature the notion “divisibility sequence” need not entail that the sequence is a recursive
sequence. However, we prefer to follow the original definition to limit the LDS in the ring
of linear homogeneous recursive sequences.

We present a necessary and sufficient condition for a second order LDS in the next section.
Then, a large class of the second order number and polynomial divisibility sequences are
given. In Section 3, we will give a unified approach to construct higher order LDSs by
using second order LDSs and the Hadamard product of sequences (see, for example, Everest,
Poorten, Shparlinski, and Ward [4, p. 65]), namely, (an) ∗ (bn) = (anbn).

2 Second order linear divisibility sequences

In this section, we discuss the conditions that make a second order linear homogeneous
recursive sequence (an) an LDS. Here, a number sequence (an) is called linear homogeneous
recursive sequence of order 2, if it satisfies the following linear homogenous recurrence relation
of order 2:

an = pan−1 + qan−2, n ≥ 2, (1)

for a constant p, a nonzero constant q, and initial conditions a0 and a1. Mansour [18] call
the sequence defined by (1) a Horadam sequence, which was introduced in 1965 by Horadam
[12]. Mansour [18] also obtain the generating functions for powers of a Horadam sequence.
A survey on the Horadam sequences is given by Larcombe, Bagdasar, and Fennessey [15].
For the sake of readers’ convenience, we prove the following theorem of the second order
LDSs by using our results in [7].

Theorem 1. Let (an) be a second order linear homogeneous recursive sequence defined by
(1) with an arbitrary a1. Then (an) is an LDS if and only if the initial condition a0 = 0,
while the initial condition a1 is arbitrary.

Proof. Let α and β be two roots of the characteristic polynomial x2 − px− q of (an). They
may be the same. From [7], we have the expression of an in terms of α and β:

an =

{

(

a1−βa0
α−β

)

αn −
(

a1−αa0
α−β

)

βn, if α 6= β;

na1α
n−1 − (n− 1)a0α

n, if α = β.
(2)
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Particularly, for a0 = 0, we have

an =

{

a1
α−β

(αn − βn) , if α 6= β;

na1α
n−1, if α = β.

(3)

It is easy to check thatm|n implies am|an. Hence, (an) is an LDS, which proves the sufficiency.
For the necessity, we consider a second order linear homogenous recursive sequence (Fn),

where Fn = Fn−1 + Fn−2 with initial conditions F0 = F1 = 1. It is obvious that (Fn) is not
an LDS, as for instance F2 = 2 is not a divisor of F4 = 5. From (2), if an is an LDS and
α, β 6= 0, then a1|a2 implies

a1| (a1(α + β)− a0αβ) .

Consequently, a0 = 0 for an arbitrary a1. Similarly, for other cases one can show that a
second order linear homogenous recursive sequence (an) defined by (1) with an arbitrary a1
is an LDS, and its initial condition a0 must be zero.

Remark 2. In the articles by Florez, Higuita, and Mukherjees [5], Hilton, Pedersen, Vrancken
[8], Hoggatt and Bicknell-Johnson [9], and McDaniel [19], the GCD properties of Fibonacci
numbers and polynomials, Lucas numbers, the Morgan-Voyce polynomials, the Chebyshev
polynomials, and more general polynomials are studied, in which the condition of that the
first initial condition of the recurrence relation must be zero is not needed. Here elements in
a GCD set is a recursive sequence {an} satisfying gcd(an, am) = agcd(n,m). The collection of
all LDS is a subset of GCD set because a (recursive) LDS sequence {an} has the property
that n|m implies an|am means gcd(an, am) = an = agcd(n,m). Hence, the set of LDS is the
subset of GCD set characterized by a0 = 0.

Example 3. From Theorem 1, the Fibonacci number sequence (Fn), where Fn = Fn−1+Fn−2

(n ≥ 2) with initial conditions F0 = 0 and F1 = 1, the Pell number sequence (Pn), where
Pn = 2Pn−1 + Pn−2 (n ≥ 2) with initial conditions P0 = 0 and P1 = 1, and the Mersenne
number sequence (Mn), where Mn = 3Mn−1 − 2Mn−2 (n ≥ 2) with the initial conditions
M0 = 0 and M1 = 1 are LDSs.

Based on Theorem 1 and equation (3), we consider a class of the LDS (wn) defined by

wn = c
αn − βn

α− β
, (4)

where c, α, and β are constants, and α 6= β. We have the following result.

Theorem 4. Let α and β be distinct real (or complex) numbers, and let sequence (wn)
be defined by (4). Then (wn) is a second order linear homogenous recursive sequence with
w0 = 0 and w1 = c. Also, (wn) is an LDS of order 2.

Proof. From (3), we know that (wn) is a linear homogeneous recursive sequence with initial
values w0 = 0 and w1 = c, and the recurrence relation wn+2 = (α + β)wn+1 − αβwn. Since
w0 = 0, (wn) is an LDS.
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Example 5. It is obvious that all sequences shown in Example 3 belong to the class (wn).
Particularly, the alternative form (wn) of the Fibonacci sequence (Fn) is the Binet formula:

Fn =
1√
5

((

1 +
√
5

2

)n

−
(

1−
√
5

2

)n)

.

Remark 6. Let D = p2+4q, where p and q are the coefficients of the recurrence relation (1),
and let

(

D
r

)

be the Legendre symbol, i.e.,

(

D

r

)

≡ D(r−1)/2 (mod r),

where r is any odd prime. From Euler’s criterion,
(

D
r

)

= −1 if there is no integer x such
that D ≡ x2 (mod r), otherwise

(

D
r

)

= 1. Niven, Zuckerman, and Montgomery [21, p. 202
and p. 205] give the following results of (an) defined by (1) with a0 = 0 and a1 = 1:

(1) If
(

D
r

)

= −1, then r|ar+1.

(2) If
(

D
r

)

= 1, then ar+1 ≡ p (mod r).

(3) If
(

D
r

)

= 1, then qar−1 ≡ 0 (mod r).

(4) ar ≡
(

D
r

)

(mod r).

Thus, for k ∈ N we have the following results on the divisibility of (wn) shown in (4) with
c = 1, accordingly:

(1) If
(

D
r

)

= −1, then r|wk(r+1).

(2) If
(

D
r

)

= 1 and p ≡ 0 (mod r), then r|wk(r+1).

(3) If
(

D
r

)

= 1 and gcd(q, r) = 1, then r|wk(r−1).

(4) If r|D, then r|wkr.

The result shown in Theorem 4 has a higher order analogy. For instance, Roettger [22]
and Mülcer, Roettger, and Williams [20] use the third order linear homogenous recurrence
relation with the characteristic polynomial x3 − P1x

2 + P2x− P3 to construct the following
order 6 LDS

Cn =

(

αn − βn

α− β

)(

βn − γn

β − γ

)(

γn − αn

γ − α

)

,

where α, β, and γ are the roots of x3 − P1x
2 + P2x− P3. The results for Cn is stated more

generally in [2, Section 1.3].
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3 Higher order divisibility sequences

If an LDS satisfies a linear recurrence relation of order r, we call it an LDS of order r. Here,
r is the degree of the characteristic polynomial of the recurrence. The best known example
of such a sequence of order 2 is the Lucas sequence. In Section 2, we present some general
results on the LDSs of order 2 and many examples. In this section we use LDSs of order 2 and
the Hadamard product of sequences to discuss higher order LDSs. Some algebraic structure
of linearly recursive sequences under the Hadamard product can be found in Larson and
Taft [16].

Let (an) be an rth order linear homogeneous recursive sequence satisfying

c0an + c1an−1 + · · ·+ cran−r = 0 (5)

for 1 ≤ r ≤ n with c0, cr 6= 0. If (αk)
r
k=1 are the distinct roots of the characteristic equation

Pr(x) = c0x
r + c1x

r−1 + · · ·+ cr−1x+ cr = 0, (6)

then
an = A1(α1)

n + A2(α2)
n + · · ·+ Ar(αr)

n, (7)

where Ak are determined by the (ck) and the initial conditions. Hence, if (an) is known, then
the characteristic polynomial of (an) can be written as

Pr(x) = c0(x− α1)(x− α2) · · · (x− αr), (8)

which is equivalent to the linear homogeneous recurrence relation (5). Based on this obser-
vation, we give a unified approach of the construction of higher order linear homogeneous
recursive sequences. We start from the fourth order linear homogeneous recursive sequences.

Theorem 7. Let (an) and (bn) be two second order linear homogenous recursive sequences
defined by (1) with initials a0 = b0 = 0 and arbitrary initials a1 and b1 as well as different
recursive coefficient pairs (p1, q1) and (p2, q2). Suppose the roots of the equation x2 − p1x−
q1 = 0, denoted by α1 and β1, are distinct, and the roots α2 and β2 of the equation and
x2 − p2x − q2 = 0 are distinct. Then the sequence (anbn) is a fourth order LDS with initial
conditions aibi, 0 ≤ i ≤ 3, where a0b0 = 0.

Proof. Sequences (an) and (bn) are LDSs by Theorem 1. We may use (3) to write anbn as the
following expressions based on the different type of the roots of the characteristic equations
x2 − p1x− q1 = 0 and x2 − p2x− q2 = 0 of the sequences (an) and (bn), respectively.

anbn =























a1
α1−β1

(αn
1 − βn

1 )
b1

α2−β2

(αn
2 − βn

2 ) , if α1 6= β1, α2 6= β2;
na1b1
α1−β1

(αn
1 − βn

1 )α
n−1
2 , if α1 6= β1, α2 = β2;

na1b1
α2−β2

(αn
2 − βn

2 )α
n−1
1 , if α1 = β1, α2 6= β2;

n2a1b1α
n−1
1 αn−1

2 , if α1 = β1, α2 = β2.
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Clearly, (anbn) is also an LDS. Furthermore, we have

anbn =
a1b1

(α1 − β1)(α2 − β2)
(αn

1 − βn
1 ) (α

n
2 − βn

2 )

=
a1b1

(α1 − β1)(α2 − β2)
((α1α2)

n − (α1β2)
n − (α2β1)

n + (β1β2)
n) .

Hence, the sequence (anbn) satisfies a linear homogenous recurrence relation with the char-
acteristic equation

(x− α1α2)(x− α1β2)(x− β1α2)(x− β1β2)

= x4 − p1p2x
3 − (p21q2 + p22q1 + 2q1q2)x

2 − p1p2q1q2x+ q21q
2
2 = 0,

(9)

which implies that (anbn) is a fourth order linear homogeneous recursive sequence with initial
conditions aibi, 0 ≤ i ≤ 3, where a0b0 = 0.

Example 8. Let (Fn), (Pn), and (Mn) be the Fibonacci number sequence, the Pell number
sequence, and the Mersenne number sequence, respectively. From Theorem 7 and Example
3, all of the following sequences are fourth order LDSs:

(FnPn), (FnMn), and (PnMn)

with characteristic equations x4 − 2x3 − 7x2 − 2x + 1 = 0, x4 − 3x3 − 3x2 + 6x + 4 = 0,
and x4 − 6x3 + 3x2 + 12x + 4 = 0, and initial conditions FiPi, FiMi, and PiMi, 0 ≤ i ≤ 3,
respectively.

Using a similar argument, one may construct high even order LDSs, such as a sixth order
LDS, (FnPnMn)n≥0.

We now consider the construction of high odd order LDSs based on the following result.

Theorem 9. Let (an) be a second order linear homogenous recursive sequence defined by (1)
with initial conditions a0 = 0 and a1 = 1. Suppose the roots of the characteristic equation
x2 − px − q = 0 of (an) are distinct and denoted by α and β. Then the sequence (a2n) is a
third order LDS with the characteristic equation

x3 − (p2 + q)x2 − q(p2 + q)x+ q3 = 0 (10)

with initial conditions a20 = 0, a21, and a22.

Proof. Equation (3) implies

a2n =
(αn − βn)2

(α− β)2
=

1

(α− β)2
(

(α2)n − 2(αβ)n + (β2)n
)
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for n ≥ 2. Thus, (7) and (8) imply the following characteristic polynomial

(x− α2)(x− αβ)(x− β2)

= x3 − ((α + β)2 − αβ)x2 + αβ(α2 + β2 + αβ)x− (αβ)3

= x3 − (p2 + q)x2 − q(p2 + q)x+ q3.

Recall that αβ = −q and α+ β = p. We have that (wn = a2n) is an LDS satisfying the third
linear homogeneous recurrence relation

wn+3 = (p2 + q)wn+2 + q(p2 + q)wn+1 − q3wn, q 6= 0.

The above recurrence relation is linear homogeneous because the powers of the sequences
are 1 and it has no constant term, which completes the proof.

Example 10. Let (Fn), (Pn), and (Mn) be the Fibonacci number sequence, the Pell number
sequence, and the Mersenne number sequence, with initial conditions F0 = 0 and F1 =
1, initial conditions P0 = 0 and P1 = 1, and the initial conditions M0 = 0 and M1 =
1, respectively. Then (wn = F 2

n) is a third order LDS satisfying the linear homogeneous
recurrence relation

wn+3 = 2wn+2 + 2wn+1 − wn

with initial conditions w0, w1, and w2. The sequence (un = P 2
n) is a third order LDS with

linear homogeneous recurrence relation

un+3 = 5un+2 + 5un+1 − un

with initial conditions u0, u1, and u2. The sequence (vn = M2
n) is a third order LDS satisfying

the linear homogeneous recurrence relation

vn+3 = 7vn+2 − 14vn+1 + 8vn

with initial conditions v0, v1, and v2.

Similarly, we may construct higher odd order LDSs, such as a fifth order LDS, (F 2
nPn).

An analogy of Theorem 9 is shown below.

Theorem 11. Let (an) be a second order linear homogenous recursive sequence defined by
(1) with initial conditions a0 = 0 and a1 = 1. Suppose the roots of the characteristic equation
x2 − px − q = 0 of (an) are distinct and denoted by α and β. Then the sequence (a3n) is a
fourth order LDS with the characteristic equation

x4 − p(p2 + 2q)x3 − q
(

(p2 + 2q)2 − 2q2 − p2q
)

x2 + pq3(p2 + 2q)x+ q6 = 0 (11)

with initial conditions a30 = 0 and a3i , 1 ≤ i ≤ 3.
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Proof. Similar to the proof of Theorem 9, Equation (3) implies

a3n =
(αn − βn)3

(α− β)3
=

1

(α− β)3
(

(α3)n − 3(α2β)n + 3(αβ2)n − (β3)n
)

for n ≥ 2. Thus, (7) and (8) imply the following characteristic polynomial

(x− α3)(x− α2β)(x− αβ2)(x− β3)

= x4 − [α3 + αβ(α + β) + β3]x3 + αβ[α4 + αβ(α + β)2 + β4]x2

−α3β3[α2(α + β) + β2(α + β)]x+ (αβ)6

= x4 − (α + β)(α2 + β2)x3 + αβ
(

(α2 + β2)2 − 2(αβ)2 + αβ(α + β)2
)

x2

−(αβ)3(α + β)(α2 + β2)x+ (αβ)6

= x4 − p(p2 + 2q)x3 − q
(

(p2 + 2q)2 − 2q2 − p2q
)

x2 + pq3(p2 + 2q)x+ q6.

Recall that αβ = −q and α+ β = p. We have that (wn = a3n) is an LDS satisfying the third
order linear homogeneous recurrence relation

wn+4 = p(p2 + 2q)wn+3 + q[(p2 + 2q)2 − 2q2 − p2q]wn+2

−pq3(p2 + 2q)wn+1 − q6wn.

The proof is complete.

Example 12. Let (Fn), (Pn), and (Mn) be the Fibonacci number sequence, the Pell number
sequence, and the Mersenne number sequence, with initial conditions F0 = 0 and F1 = 1,
initial conditions P0 = 0 and P1 = 1, and the initial conditions M0 = 0 and M1 = 1,
respectively. Then (wn = F 3

n) is a fourth order LDS satisfying the linear homogeneous
recurrence relation

wn+4 = 3wn+3 + 6wn+2 − 3wn+1 − wn

with initial conditions w0, w1, w2, and w3. The sequence (un = P 3
n) is a fourth order LDS

with linear homogeneous recurrence relation

un+4 = 12un+3 + 30un+2 − 12un+1 − un

with initial conditions u0, u1, u2, and u3. The sequence (vn = M3
n) is a fourth order LDS

satisfying linear homogeneous recurrence relation

vn+4 = 15vn+3 − 70vn+2 + 120vn+1 − 64vn

with initial conditions v0, v1, v2, and v3.

Bala [1] showed the following fourth order LDS given by Williams and Guy, Wn =
Wn(P1, P2, Q) with integer parameters P1, P2, and Q:

Wn =
tn(α,Q)− tn(β,Q)

α− β
, n ≥ 1, (12)
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where α+ β = P1, αβ = −P2, and tn(x,Q) denote the nth monic Dickson polynomial of the
first kind with parameter Q. The first few monic Dickson polynomials are

t0(x,Q) = 2,

t1(x,Q) = x,

t2(x,Q) = x2 − 2Q,

t3(x,Q) = x3 − 3xQ,

...

The recurrence equation for the sequence Wn is

Wn = P1Wn−1 + (P2 − 2Q)Wn−2 + P1QWn−3 −Q2Wn−4, (13)

where the initial conditions can be found by using the Dickson polynomials shown above,
namely,

W0 =
t0(α,Q)− t0(β,Q)

α− β
=

2− 2

α− β
= 0,

W1 =
t1(α,Q)− t1(β,Q)

α− β
=

α− β

α− β
= 1,

W2 =
t2(α,Q)− t2(β,Q)

α− β
=

α2 − β2

α− β
= α + β = P1,

W3 =
t3(α,Q)− t3(β,Q)

α− β
=

α3 − β3

α− β
− 3Q

= (α + β)2 − αβ − 3Q = P 2
1 + P2 − 3Q.

Hence, we establish the following result.

Theorem 13. The Williams and Guy fourth order LDS (Wn) defined in (12) by using the
second order characteristic equation x2−P1x−P2 = 0 and the Dickson polynomial sequence
of the first kind with parameter Q is equivalent to our fourth order LDS shown in Theorem
7.

Proof. From their recurrence relation (13), we obtain the characteristic equation of (Wn) as

x4 − P1x
3 − (P2 − 2Q)x2 − P1Qx+Q2 = 0. (14)

Comparing (14) and the characteristic equation (9),

x4 − p1p2x
3 − (p21q2 + p22q1 + 2q1q2)x

2 − p1p2q1q2x+ q21q
2
2 = 0,

9



of the fourth order LDS shown in Theorem 7, we know they are equivalent when

P1 = p1p2,

P2 = p21q2 + p22q1 + 4q1q2,

Q = q1q2,

where pi = αi + βi and qi = −αiβi, i = 1 and 2. Furthermore,

W1 = 1 = a1b1,

W2 = P1 = p1p2 = (α1 + β1)(α2 + β2) =
α2
1 − β2

1

α1 − β1

α2
2 − β2

2

α2 − β2

= a2b2,

W3 = P 2
1 + P2 − 3Q = (p1p2)

2 + p21q2 + p22q1 + 4q1q2 − 3q1q2

= (p21 + q1)(p
2
2 + q2) =

(

(α1 + β1)
2 − α1β1

) (

(α2 + β2)
2 − α2β2

)

=
α3
1 − β3

1

α1 − β1

α3
2 − β3

2

α2 − β2

= a3b3.

Hence (anbn) = (Wn), completing the proof of the theorem.

Remark 14. In an attempt to extend the second order linear divisibility sequences to se-
quences of order 4, it becomes necessary to examine odd and even divisibility sequences.
Williams and Guy [28] produce some conditions under which certain divisibility sequences
of order 4 will be either even or odd.

Remark 15. Recently, B. Torrence and R. Torrence [24] point out that if (an) is any sequence
satisfying the recurrence an+1 = an + an−1, then

an+2 = 3an − an−2, (15)

which can be simply proved by substituting an+2 = an+1 + an = 2an + an−1 on the left-hand
side and reducing it to an = an−1 + an−2. The Fibonacci and Lucas number sequences, (Fn)
and (Ln), satisfy an+1 = an + an−1. Consequently, they also satisfy (15). Thus (Fn) with
F0 = 0 can be considered as an LDS of order 4. Thus, the recurrence relation (15) inspires
a way to lift the order of an LDS. We now extend this idea to lift an LDS to any order. For
instance, from an+2 = an+1 + an, we have

an+3 = an+2 + an+1 = 2an+1 + an,

which implies that (Fn) with F0 = 0 is an LDS of order 3. From an+3 = 2an+1 + an we can
also obtain

an+4 = 2an+2 + an+1 = 2an+2 + (an+2 − an) = 3an+2 − an,

which is (15). This process can continue to lift an LDS satisfying an+2 = an+1 + an with
a0 = 0 to any order.
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Remark 16. For Fibonacci sequence (Fn), Brualdi [3, p. 258] mention the following fifth
order LDS, which can be derived from the second order linear recurrence relation.

Fn = 5Fn−4 + 3Fn−5,

where F0 = 0, F1 = 1, F2 = 1, F3 = 2, and F4 = 3. It can be seen from the above formula
that 5|Fn if and only if 5|n. Similarly, 2|Fn if and only if 3|n, 3|Fn if and only if 4|n, and
4|Fn if and only if 6|n.

4 Polynomial divisibility sequences

Similar to number LDSs, we may define polynomial LDSs. Polynomial LDSs are recur-
sive polynomial sequences (an(x)) satisfying linear homogeneous recurrence relations with
constant coefficients, with the property that whenever m|n, then am(x)|an(x). We now
start from the second order divisibility polynomial sequences, i.e., divisibility polynomial
sequences satisfying linear homogeneous recurrence relations of the second order. If the co-
efficients of the linear recurrence relation of a function sequence (an(x)) of order 2 are real
or complex-value functions of variable x, i.e.,

an(x) = p(x)an−1(x) + q(x)an−2(x), (16)

where p2(x) + 4q(x) ≥ 0 is assumed, we obtain a function sequence of order 2 with initial
conditions a0(x) and a1(x). In particular, if all of p(x), q(x), a0(x) and a1(x) are polynomials,
then the corresponding sequence (an(x)) is a polynomial sequence of order 2. Denote the
solutions of

t2 − p(x)t− q(x) = 0

by α(x) and β(x). Then

α(x) =
1

2
(p(x) +

√

p2(x) + 4q(x)), β(x) =
1

2
(p(x)−

√

p2(x) + 4q(x)). (17)

Similar to Theorem 1, we have

Theorem 17. Let (an(x)) be a second order linear homogeneous recursive polynomial se-
quence defined by (16). Then (an(x)) is a divisibility sequence if and only if the initial
condition a0(x) = 0, while the initial condition a1(x) is arbitrary.

Proof. Let (an(x)) be a sequence of order 2 satisfying the linear recurrence relation (16).
Then by [7] we have

an(x) =

{

(

a1(x)−β(x)a0(x)
α(x)−β(x)

)

αn(x)−
(

a1(x)−α(x)a0(x)
α(x)−β(x)

)

βn(x), if α(x) 6= β(x);

na1(x)α
n−1(x)− (n− 1)a0(x)α

n(x), if α(x) = β(x),

11



where α(x) and β(x) are shown in (17). If a0(x) = 0, then

an(x) =

{

a1(x)
α(x)−β(x)

(αn(x)− βn(x)) , if α(x) 6= β(x);

na1(x)α
n−1(x), if α(x) = β(x),

(18)

which implies that (an(x)) is a divisibility sequence. The sufficiency is proved. Conversely,
we may prove the necessity.

Example 18. Some second order polynomial LDSs can be found in various literature. For
instance, Webb and Parberry [26] show that the second order linear homogeneous recursive
polynomial sequence (Pn(x)) defined by

Pn(x) = xPn−1(x) + Pn−2(x), n ≥ 2

with P0(x) = 0 and P1(x) = 1 is an LDS. (Pn(x)) is the Fibonacci polynomial sequence.
Obviously, when x = 1 and x = 2, the sequences (Pn(1) = Fn) and (Pn(2) = Pn) are the
Fibonacci number sequence and the Pell number sequence, respectively.

Hoggatt Jr., Bicknell, and King [10] and Koshy [14, p. 461] show the second order divis-
ibility polynomial sequence (Pn(x)) defined by

Pn(x) = xPn−1(x)− Pn−2(x), n ≥ 2,

where P0(x) = 0 and P1(x) = 1. Schur [23, p. 17] suggest the modification of the degree of
Dickson polynomials E∗

n(x, a) as follows:

E∗
n+1(x, a) = 2xE∗

n(x, a)− aE∗
n−1(x, a)

with the initial conditions E∗
0(x, a) = 0 and E∗

1(x, a) = 1, which can also be seen in Lidl,
Mullen, and Turnwald [17, p. 17 ]. Then (E∗

n(x, a)) is a second order divisibility polynomial
sequence.

The above results on the linear homogeneous recursive polynomial sequence of one vari-
able can be easily extended to the case of multivariate polynomials. Hence, a divisibility
multivariate polynomial sequence can be defined similarly. For instance, Hoggatt and Long
[11] present a bivariate second order divisibility polynomial sequence (Un(x, y)), whose ele-
ments can be written as

Un(x, y) = xUn−1(x, y) + yUn−2(x, y), n ≥ 2,

where U0(x, y) = 0 and U1(x, y) = 1.
We may use (16) to define the linear homogeneous recursive multivariate polynomial

sequence, in which the only change is to consider all functions an(x), p(x), q(x), as well
as the corresponding root functions α(x) and β(x) as the mappings from R

n to R. As an
analogy to Theorems 7 and 9, we have the following results.

12



Theorem 19. Let (an(x)) and (bn(x)) be two second order linear homogenous recursive
polynomial sequences defined by (16) of n variables with initial zero condition a0(x) = b0(x) =
0 and arbitrary a1(x) and b1(x) as well as different recursive coefficient pairs (p1(x), q1(x))
and (p2(x), q2(x)). Suppose the roots of the equation t2 − p1(x)t− q1(x) = 0 are distinct and
denoted by α1(x) and β1(x), and the roots α2(x) and β2(x) of the equation and t2 − p2(x)t−
q2(x) = 0 are distinct. Then the sequence (an(x)bn(x)) is a fourth order LDS with initial
conditions ai(x)bi(x), 0 ≤ i ≤ 3, where a0(x)b0(x) = 0.

Theorem 20. Let (an(x)) be a second order linear homogenous recursive polynomial sequence
defined by (16) with the initial zero condition a0(x) = 0 and arbitrary condition a1(x).
Suppose the roots of the characteristic equation t2 − p(x)t − q(x) = 0, q(x) 6= 0, of (an(x))
are distinct and denoted by α(x) and β(x). Then the sequence (an(x)

2) is a third order LDS
with initial conditions a20(x) = 0, a21(x), and a22(x).

The proofs of Theorems 19 and 20 are similar to the proofs of Theorems 7 and 9 and are
omitted.
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