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Abstract

We study continued logarithms, as introduced by Gosper and studied by Borwein
et al. After providing an overview of the type I and type II generalizations of binary
continued logarithms introduced by Borwein et al., we focus on a new generalization
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to an arbitrary integer base b. We show that all of our so-called type III continued
logarithms converge and all rational numbers have finite type I1I continued logarithms.
As with simple continued fractions, we show that the continued logarithm terms, for
almost every real number, follow a specific distribution. We also generalize Khinchin’s
constant from simple continued fractions to continued logarithms, and show that these
logarithmic Khinchin constants have an elementary closed form. Finally, we show that
simple continued fractions are the limiting case of our continued logarithms, and briefly
consider how we could generalize beyond continued logarithms.

1 Introduction

Continued fractions, especially simple continued fractions, have been well studied through-
out history. Continued binary logarithms, however, appear to have first been introduced
by Gosper in his appendix on continued fraction arithmetic [4]. More recently, Borwein et
al. proved some basic results about binary continued logarithms and applied experimental
methods to determine the term distribution of binary continued logarithms [2]. They con-
jectured and indicated a proof that, like in the case of continued fractions, almost every
real number has continued logarithm terms that follow a specific distribution. They then
introduced two different generalizations of binary continued logarithms to arbitrary bases.

1.1 The structure of this paper

Section 1 introduces some basic definitions and results for continued fractions, briefly de-
scribes binary continued logarithms as introduced by Gosper, and provides an overview of
results relating to the Khinchin constant for continued fractions. Sections 2 and 3 then
provide an overview of the type I and type II continued logarithms introduced by Borwein
et al. Further details on these can be found in the work of Borwein et al. [2].

Section 4 comprises the main body of the paper. In Section 4.1 we define type III contin-
ued logarithms and extend to them the standard continued fraction recurrences. Section 4.2
then proves that type III continued logarithms are guaranteed to converge to the correct
value, and that every rational number has a finite type III continued logarithm. These
are two desirable properties of continued fractions and binary continued logarithms that a
complete generalization should have. In Section 4.3 we describe how measure theory can
be used to investigate the distribution of continued logarithm terms. This is then applied
in Section 4.4 to determine the distribution, and Section 4.5 to determine the logarithmic
Khinchin constant. The main proofs of these sections are quite technical, and are separated
out into Appendices A and B, respectively. Finally, Section 4.6 derives some relationships
between simple continued fractions and the limiting case of type III continued logarithms.

Finally, we close the paper in Section 5 by briefly introducing one way to generalize past
continued logarithms.



1.2 Continued fractions

The material in this section can be found in many places, including Borwein et al. [3] and
Khinchin [5].

Definition 1. A continued fraction is an expression of the form
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For the sake of simplicity, we will sometimes denote the above as

aq (6]
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respectively. The terms «q, a1, ... are called denominator terms and the terms (1, s, . .. are
called numerator terms.

or

Definition 2. Two continued fractions

Buj, B B, B
y:ozo—l—’a—l‘—i- O + - and Yy =a,+ a}l—l—az + e

are called equivalent if there is a sequence (d,)%, with dy = 1 such that o/, = d,«,, for all
n >0 and B, = d,d,—15, for all n > 1.

The ¢, terms can be thought of as constants that are multiplied by both numerators and
denominators of successive terms.

Definition 3. The nth convergent of the continued fraction

y:a0+’§—1‘+’§—zl+~-
tn= o el B
aq (5] (67

is given by



Definition 4. The nth remainder term of the continued fraction
B b B2
Yy = Qp + ’Of—ll + o +
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is given by

The following results will be useful for generalizing to continued logarithms.

Fact 5. Suppose x = ay +'%‘+’%‘+- -+, where a,, 3, > 0 for all n. Then the convergents
1 2

are given by
_ P

4n

Tn

where
p-1=1, q¢1=0, po=ay q=1,

Pn = QnPn1+ BuPn—2 n>1,
Gn = QpQn—1 + ﬁnQn72 n > 1.

Fact 6. Suppose r = ap + ’%‘ + 52 + .-+ where a,,, 5, > 0 for all n. Then the continued
1 2

oo QAnQin+41

fraction for x converges to z if >, s
— n

= Q.

Remark 7. Throughout this paper, we will use A(A) or just AA to denote the Lebesgue
measure of a set A C R.

1.3 Binary continued logarithms

Let 1 < a € R. Let yo = a and recursively define a,, = [log, y,]. If y, — 2% = 0, then

terminate. Otherwise, set
2an
Yn+1 = m

n

and recurse. This produces the binary (base 2) continued logarithm for yo:

W 20|, 2| om
y°:20+!2a1‘+!2a2‘+!2a3‘+'“

These binary continued logarithms were introduced explicitly by Gosper in his appendix
on continued fraction arithmetic [4]. Borwein et al. [2] further studied binary continued
logarithms further, extending classical continued fraction recurrences for binary continued
logs and investigating the distribution of aperiodic binary continued logarithm terms for
quadratic irrationalities — such as can not occur for simple continued fractions.
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Remark 8. Shallit [8] proved some limits on the length of a finite binary continued logarithm.
Specifically, the binary continued logarithm for a rational number p/q > 1 has at most
2log, p + O(1) terms. Furthermore, this bound is tight, as can be seen by considering the
continued fraction for 2" — 1. Moreover, the sum of the terms of the continued logarithm of
p/q > 1is bounded by (log, p)(2log, p + 2).

1.4 Khinchin’s constant

Khinchin [5] proved that for almost every o € (0, 1), where

Ly, 1], 1],
[ Ta g

a =

Y

the denominator terms aj,as,as, ... follow a specific limiting distribution. That is, let
P,(k) = limyoeo [{n < N : a, = k}|. This is the limiting ratio of the denominator
terms that equal k, if this limit exists. Then for almost every a € (0, 1),

1
log (1 T k(k+2)>

Pa(k) - ].Og2

for every k € N. It then follows for almost every a € (0, 1) that the limiting geometric mean
of the denominator terms is given by

1 logy k
lim {/ayaz - a, = H <1+ T 2)) ~ 2.685452.

This constant is now known as Khinchin’s constant, K.

2 Type I continued logarithms

2.1 Type I definition and preliminaries

Fix an integer base b > 2. We define type I continued logarithms as follows.
Definition 9. Let a € (1,00). The base b continued logarithm of type I for a is
b— 1)b% b—1)b™ b—1)b*
(b1 ], b1 | (-1

b0 + bt ’ bz ’ bas + ..o = [bao, b , ba2, .. ']Cl1(b)7
where the terms ag, aq, ao, . .. are determined by the recursive process below, terminating at
the term b if at any point y, = b*".
Yo =
L 08, Yn] n>0
b—1)b*
Yn+1 = ( ?)a n 2 0.



The numerator terms (b — 1)b% are defined as such to ensure that y, € (1,00) for all
n. Indeed, notice that for each n, we must have b* < y, < b**!. Thus 0 < y,, — b* <
(b — 1)b%. If y, — b = 0, then we terminate, otherwise we get 0 < y,, — b < (b — 1)b",

_ (b=1)bon

SO Yn41 = b c (1,00)

Borwein et al. proved that the type I continued fraction of « € (1, 00) will converge to «
[2, Thm. 15]. Additionally, numbers with finite type I continued logarithms must be rational.
However for b > 3, rationals need not have finite continued logarithms. For example, the

type I ternary continued logarithm for 2 is [3°,3°%,3% .. Jq, ().

2.2 Distribution of type I continued logarithm terms and type I
logarithmic Khinchin constant

We now look at the limiting distribution of the type I continued logarithm terms. Consider

o = [b%,b%,0%, .. o, ). Assume that the continued logarithm for « is infinite. Furthermore,

assume (without loss of generality) that ag = 0, so that « € (1,b). These results can also be
found in Lascu [7].

Definition 10. For n € N, let
D, (k) ={a € (1,b) : a, = k}
denote the set of a € (1,b) for which the nth continued logarithm term is b*.
Definition 11. Let z = [1,0",0%,.. Ja,) € (1,b). The nth remainder term of z is r,, =

() = [b%, 0%+, . o, ), as in Definition 4. Define
o = 2n() = ;"_” = (L6, b2 v € (1,D),

M,(z) ={a € (1,b) : z,(a) <z} C (1,0),
() = TN () € (0,1),
and

m(z) = nh_}ngo m(z),

wherever this limit exists.

Notice that since 1 < z,(a) < b for all n € N and « € (1,b), we must have m,(1) =0
and m,(b) =1 for all n € N. We can now derive a recursion for the functions m,.

Theorem 12. The sequence of functions m,, is given by the recursive relationship

mole) = 1 )
my(x) = imn_l(l +(b—=1b") —m_ (1 +27(b—1)b7") n>1 (2)

for1 <ax <b.



The proof of this is similar to that of Theorem 40.
We next derive a formula for D, (k) in terms of the function m,,.

Theorem 13.
1
T A D (k) = ma(1+ (b - DbF) —my, (14 (b — 1)~ *+D),
The proof of this theorem is similar to that of Theorem 43.
Thus, if the limiting distribution m(x) exists, it immediately follows that

lim %A(Dn(k‘)) — (14 (b— Db — m(1+ (b— 1)p=+D). (3)

n—oo —

2.3 Experimentally determining the type I distribution

Now suppose b > 1 is an arbitrary integer. Let p, denote the limiting distribution function
m for the base b, assuming it exists.

We may investigate the form of u(z) by iterating the recurrence relation of Theorem 12
at points evenly spaced over the interval [1,b], starting with mg(z) = % At each iteration,
we fit a spline to these points, evaluating each “infinite” sum to 100 terms, and breaking the
interval [1,0] into 100 pieces. This is practicable since the continued logarithm converges
much more rapidly than the simple continued fraction.

We find good convergence of p,(x) after around 10 iterations. We use the 101 data points

from this process to seek the best fit to a function of the form
ar +
v+

We set 7 = 1 to eliminate any common factor between the numerator and denominator.
To meet the boundary condition (1) = 0, we must have 6 = a + 5 — 1, and to meet the

pu(x) = Clog,

boundary condition u,(b) = 1, we must have C' = ——4—=—, leaving the functional form to
b atpB+b—1
be fit as »
log;, —=*
tot6-1
() = —or5— (4)

log, a+p+b—1

We sought this superposition form when the simpler structure for simple continued frac-
tions failed.

Fitting our data to the model suggests candidate values of a = % and f = bT, from
which we get

IOg bx

() = ——. (5)
IOg =1

When we then apply (3), we get

Kk 3
log (1 + &= >
1 g ( Tl p_1)2
lim ——AD, (k) = LR




A proof of this distribution and of the type I Khinchin constant for each integer base
b, using ergodic theory, was given by Lascu [6, 7]. Additionally, it is likely that the proofs
in Appendices A and B for the type III continued logarithm distribution and logarithmic
Khinchin constant could be appropriately adjusted to prove these results.

If a type I base b Khinchin constant KL, exists (i.e., almost every a € (1,00) has
the same limiting geometric mean of denominator terms), and if a limiting distribution
D(k) = limy, 00 Dy (k) of denominator terms exists, then

1 pAD(E) 5o priptg
KLh, gb = L
This is because the limiting distribution of denominator terms (if it exists) is essentially the
“average” distribution over all numbers o € (1,b). If we then assume that almost every
a € (1,b) has the same limiting geometric mean of denominator terms, then this limiting
geometric mean (the logarithmic type I Khinchin constant) must equal the limiting geometric
mean of the “average” distribution.

Thus, if we assume L', exists and that the distribution in (3) is correct, then we must
have KL', = b4, where

o) o0

_ logb
_ . (k+1)
A= Eokb—l Eok p(L+ (b —1)b") — (1 4+ (b—1)b )] =

Y

log 57
by Theorem 13 and a lengthy but straightforward algebraic manipulation. These conjectured
type I logarithmic Khinchin constants for 2 < b < 10 are given in Table 1.

Kch,
2.656305058
2.598065150
2.556003239
2.524285360
2.499311827
2.478977440
2.461986788
2.447498976
2.434942582

© 00 1 O U i W N

—
e}

Table 1: Type I logarithmic Khinchin constants for 2 < b < 10

These conjectured values of the type I logarithmic Khinchin constants were supported by
empirical evidence, as the numerically computed limiting geometric means of denominator
terms for various irrational constants give the expected values.



Notice that the type I logarithmic Khinchin constants have a simple closed form, which
is noteworthy as no simple closed form has been found for the Khinchin constant for simple
continued fractions.

3 Type 1I continued logarithms

3.1 Type II definition and preliminaries
Fix an integer base b > 2. We define type II continued logarithms as follows.

Definition 14. Let a € R>;. The base b continued logarithm of type II for o is

Cobao ‘ Clbal ‘ Cgba2 ‘
b +’ c1b™ +’ Cob™2 +’ csb®s + = [eob™, ™, eb™, L o),
where the terms ag, ay, as, ... and cg, c1, ¢, . . . are determined by the recursive process below,

terminating at the term ¢, b if at any point y,, = ¢, b*".

Yo = &
an = [logy Y] n>0
Un J
n — | 7. >0
e |22 ">
b
Yoit = — n>0.
yn - Cnban

Remark 15. The numerator terms ¢, b** are defined to match the corresponding denominator
terms. Recall that in the type I case, the term y,, 1 could take any value in (1, 00), regardless
of the value of a,. This is no longer true, since y,, — ¢,b*" € (0,0"), S0 Yn11 € (¢, 00). We
will see later that this results in type II continued logarithms having a more complicated
distribution for which we could not find a closed form. This issue was the inspiration for
the definition of type III continued logarithms, where the numerator terms are b** instead
of ¢, b%".

Borwein et al. proved that the type II continued fraction of o € (1, 00) will converge to
a, and that a € (1,00) has a finite continued logarithm if and only if « € Q [2, Thms. 19 &
20] — unlike the situation for type I.

3.2 Distribution of type II continued logarithm terms and type 11
logarithmic Khinchin constant

We now look at the limiting distribution of the type II continued logarithm terms. Consider
a = [cob™, c1b™, cob™, .. Ja,p). Assume that a ¢ Q, so that the continued logarithm for
« is infinite. Furthermore, assume (without loss of generality) ay = 0 and ¢y = 1, so that
a € (1,2).



Definition 16. Let n € N. Let
D, (k,l) ={a € (1,2):a, = k,c, =}
denote the o € (1,2) for which the nth continued logarithm term is £b*.

Definition 17. Let z = [1, 10", 0%, .. Ja,) € (1,2) with nth remainder term 7, =
Tn(2) = [cnb™, Crnp1b* 1, .. ]y, @s in Definition 4. Define

T'n

Zp = Zn(x) = = []-a Cn+1ban+1a Cn+2ban+27 .- -]clg(b) € (17 2)a

cpbn
My(z) ={a € (1,2): z,(a) <z} C (1,2),
mn(x) = A(Mn(z)) € (0,1),
and

m(z) = nh_)rlgo m(z),

wherever this limit exists.

Notice that since 1 < z,(a) < 2 for all n € N and o € (1,2), we must have m, (1) =0
and m,(2) =1 for all n € N.
We may now derive a recursion relation for the functions m,,.

Theorem 18. The sequence of functions m,, is given by the recursive relationship

mo(z) =7 —1 (©)

oo b—1
sz” (14077 —my(max {1 + 0 %2 14+ 4+ 1)) n>1
=0 (=1
(7)
forl <ax <2.

We can now derive a formula for D,,(k, () in terms of the function m,,.

Theorem 19.
A Dypi1(k,0) = mp(1 4+ 7077 —my, (1 + (€ +1)7107F).
Thus, if the limiting distribution m(x) exists, it immediately follows that

lim (D, (k,0)) =m(1 + 7)) —m(1+ (£ +1)7'07F). (8)

n—o0
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3.3 Experimentally determining the type II distribution

Again, suppose b is arbitrary. Let u;, denote the limiting distribution function m for the base
b, assuming it exists.

We may again investigate the form of p,(z) by iterating the recurrence relation of Theo-
rem 18 at points evenly spaced over the interval [1, 2], starting with mo(z) = x — 1. At each
iteration, we fit a spline to these points, evaluating each “infinite” sum to 100 terms, and
breaking the interval [1,2] into 100 pieces. We find good convergence of y(z) after around
10 iterations. However, we have been unable to find a closed form for yu, for b > 2. It appears
that u, is a continuous non-monotonic function that is smooth on (1,2) except at z = inl
for j=2,....b—1.

If a logarithmic Khinchin constant KL, exists (i.e., almost every a € (1,00) has the
same limiting geometric mean of denominator terms), and if a limiting distribution D(k,{) =
limy, 00 Dy (k, £) of denominator terms exists, then

oo b—1

ke, =TT @ Dk, ¢).

k=0 ¢=1

This is because the limiting distribution of denominator terms (if it exists) is essentially the
“average” distribution over all numbers o € (1,2). If we then assume that almost every
a € (1,2) has the same limiting geometric mean of denominator terms, then this limiting
geometric mean (the logarithmic Khinchin constant) must equal the limiting geometric mean
of the “average” distribution.

However, since we do not know the limiting distribution, we can only approximate the
logarithmic Khinchin constants.

Kol
2.656305048
3.415974174
4.064209949
4.636437895
5.152343739
5.624290253
6.060673548
6.467518102
6.849326402

O 00 1 O O W N

—_
=)}

Table 2: Experimental type II logarithmic Khinchin constants for 2 < b < 10

This conjectured values of the type II logarithmic Khinchin constants are supported
by empirical evidence, as the limiting geometric means of denominator terms for various
irrational constants give the conjectured values.
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4 Type III continued logarithms

Fix an integer base b > 2. In this section, we will introduce our third generalization of base
2 continued logarithms. This appears to be the best of the three generalizations, as we will
show that type III continued logarithms have guaranteed convergence, rational finiteness, and
closed forms for the limiting distribution and logarithmic Khinchin constant. Additionally,
type III continued logarithms ‘converge’ to simple continued fractions if one looks at limiting
behavior as b — oc.

4.1 Type 1II definitions and recurrences

We start with some definitions, notation, and lemmas related to continued logarithm recur-
rences.

Definition 20. Let o € R>;. The base b continued logarithm of type III for o is

baO bal bGQ

Clbal +’ Cgba2 +’ Cgba3

Cobao —f-’ + = [Cgbao, Clbal, Cgbaz, .. .]013(17).

where the terms ag, ay, as, ... and cg, ¢1, ¢, . .. are determined by the recursive process below,
terminating at the term c,b% if at any point y, = ¢,0*".

Yo = &
an = |log, yn | n>0
_ y_"J >0
m |2 v
b
Yny1 = ———5— n>0
Yn — Cnban

Remark 21. We can (and often will) think of the a, and ¢, as functions ag,aq,as,... :

(1,00) = Zsp and ¢, ¢, Ca, ... = (1,00) = {1,2,...,b—1}, since the terms ag, ¢y, a1, ¢1, az, Ca, . . .
are uniquely determined by «. Conversely, given the complete sequences ag, ay, as, ... and
o, C1, C2, . . ., One can recover the value of a.

Remark 22. Let o = [cob®, c1b™, 20, . . Ja,p) € (1,00). Based on Definitions 3 and 4, the
nth convergent and nth remainder term of o are given by

e L L e
Tn(@) = cb™ +’ b +’ b +’ b ﬂw"

ban ban+1

and

rn(a)zcnban—i_’ + )

Cpy1b i | gl

respectively.
Note that the terms r, are the same as the terms y,, from Definition 20.
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Lemma 23. The nth convergent of a = [cob™, c1b, ¢2b™, .. Jeiy ) 15 given by

D
Ty = —
dn
where
pP-1 = 17 qd-1 = 07 Po = CObaoa do = 17
and forn > 1,

Pn = Cnbanpnfl + ban_lpnf%
dn = CanHQn—l + ban71Qn—2-

Proof. This follows from Fact 5, where for continued logarithms we have a,, = ¢,0* and

B = b1, [
Lemma 24. We have the following lower bounds on the denominators q,:

o g, >201/2 > 1on/2 for p >0,

e ¢, > bt tan forn > 0.

Proof. For the first bound, note that
dn = Cnban%zfl + ban_IQn72 Z (Cnban + ban_l)an2 Z 2%172-

A simple inductive argument then gives g, > 2"2%q, = 22 > 2=V/2 for even n and
g > 2=D/2g > 200=1/2 for odd n.

For the second bound, note that ¢, = ¢, q,,—1 +b**1q,,—o > b*"q,_1 from which another
simple inductive argument gives g, > bonton-1FFa1g, — part-tan O

Lemma 25. Forn > 0,

Pndn—-1 — QnPn—1 = (—1)”71ba0+”'+an—1'

Proof. For n = 0, we have
Pod-1 — Gop-1 = cb™(0) = 1(1) = =1 = (=1)7'".
Now suppose that the statement is true for some n > 0. Then by Lemma 23,

pn+1qn - Qn+1pn = (Cn—i—lbawrlpn + banpn—l)Qn - (Cn+1ban+IQn + banq"n—l)pn

= —b™ (pTLanl - annfl) = _ban(—l)nflba0+"'+an71
= (_1)nba0+“'+an.

so the result follows by induction. O

13



The following lemma is equivalent to Lemma 23, and will be used to prove Theorem 27.

Lemma 26. Let a_y = 0. Then for alln >0,

n  Pn-1 _ - Cjbaj 1
(o 50 =G o)

Proof. For n =0, we have

ﬁ Cjbaj 1 . Cobao 1 o Cgbao 1 __ (Po P-1
! b%-r 0)  \b*t 0) 1 0) do 4-1 ’
Now suppose for induction that
n—1 .
H b 1\ _ (Pn-1 Pn-2
L1\ p%=1 0 Gn-1 Gn-2)
7=0
Then by Lemma 23,

ﬁ cjbaj 1 — Pn—1 Pn—2 cnban 1 — Cnbanpnfl+ban71pn72 Pn-1 — Pn Pn—1
=0 baj_l O gn—1 Qn—2 ban71 O Cnba7lqnfl+ban71an2 dn—1 dn 4n—1 ’

as asserted. O

Theorem 27. For arbitrary 1 < k <n,

_ Pe-1Tk + pr_ob®-1
Qk—1Tk + Qr—2b™—1

[cob™, c1b™, ... 7Cnban]cls(b)

Proof. First notice that rj, = [cxb™, ..., ¢, b a0y = 2—2", where
k

P\ _ [cb™ 1 - c;b% 1\ (1
(q;@)‘( 10 ,H bt 0)\0)°
j=k+1
cb™ 1\ (1 0 cpb™ 1
bak-1 () - 0 pe-1 1 0/
Pn :ﬁ Cjbaj 1 1 :k_l Cjbaj 1 cpb™ 1 ﬁ cjbaj 1 1
dn . b*-1 0 0 ] b%-1 0 b*-1 () i=k+1 b%i-1 () 0
j=

14
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Pk—1 Pk—2 1 0 cpb™ 1 ﬁ Cjbaj 1 1
k-1 Qr—2) \O 0% r 0/ e b=t 0/ \0
‘]:

Pr-1 Pr—2b™1\ (D) _ (DPre1p) £ Pe—2b™ g,
k-1 Qr—2b™=1 ) \ q, Qe—1D) + Qe—20"1q, )

Thus
) ap—
[cob™ cnb™ ety ) = Pn _ Pr—1Py + Pr—2b™ 1 qp _ Pr—tgy 2™ _ Pe1Tk + pr_2b™ 1
s ) clz n Qk—lpk + Qk—QbakAQI/g Qk—llq)_% + (]k_Qbakﬂ Qo1Tr + qk_Qbakq )
k
as required. [l

4.2 Convergence and rational finiteness of type III continued log-
arithms

Theorem 28. The type III continued logarithm for a number x > 1 converges to x.

Proof. Suppose that the continued logarithm for z = [cob®, 1™, . .. ,cnb“”]dg(b) is finite.
From the construction, we have x = y, where

ak

Y = cpb™ +
Yk+1
for 0 < k < n — 1. From Definition 20, since the continued logarithm terminates, we have
UYn = C,b", at which point we simply have
pao p ‘ b2 bon—1

c1b™ +’ cob™ + c3bo3 Tt cpbin’

T = coh™® —i—’

This shows convergence in the case of finite termination. If the continued logarithm for x
does not terminate, then convergence follows from Fact 6, since

> O Qi1 > cpb® ey bt > u
— = = CnCpi1 b = 00,
while all terms are positive as required. [l
Lemma 29. [f
B Pl el
y==co ’ Clbal ’ Cgba2 ’ Cgba3 ’
—1lpap—a -1 —17—a -1 —17—qa
¢ b 1‘+0102b2‘+0203b3‘+_”7

%:%W+y 1 1 1

then y and y1 are equivalent. (The form y; is called the denominator-reduced continued
logarithm fory.)
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Proof. Take dy = 1 and d,, = ¢;;'b~% for n > 1 to satisfy the conditions of Definition 2. [J

Theorem 30. The type III continued logarithm for a number x > 1 will terminate finitely
if and only if x € Q.

Proof. Clearly, if the continued logarithm for x terminates finitely, then = € Q. Conversely,
suppose

b ‘+ b
Clba1 ’ Cgba2

:E:C()bag—f-’ ‘+

is rational. By Lemma 29, we can write

-1 ~17-a -1 ~11—a
iIZ‘ICObao (1_'_’00 Cllb 1‘_|_’CI c2lb 2‘+...)_

Let y, denote the nth tail of the continued logarithm, that is,

—-1,.—-1 p—an+1 ‘ -1 —1 1—an4o ‘
Cn cn—i—lb " Cn+1cn+2b "

Notice that L
cores b 9nt
n+1
yn:1+ - 5
yn+l
S0 1,.-1
B
Cp Cpyq b7

Yn — 1
Since each y,, is rational, write y, = . for positive relatively prime integers u, and wv,,.
Hence

Yn+1 =

-1.-1 1—a
Upy1 - Cp Cppr 0 Up
— Intl — Up—V - )
Uni1 ntn CrCry 109+ (Uy — Vy,)

or equivalently,
a.
Cnanrlb e (un - vn>un+1 = UnUn+1-

Notice that since y, > 1 for all n, u, — v, > 0, so each multiplicative term in the above
equation is a nonnegative integer. Since u,.; and v, are relatively prime, we must have
Unt1 | Uny SO Upyr1 < v, < u,. If at any point we have w,,1 = v, = u,, then y, =
Z—: = 1 and the continued logarithm terminates. Otherwise, u,11 < u,, so (u,) is a strictly
decreasing sequence of nonnegative integers, so the process must terminate, again giving a
finite continued logarithm. m
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4.3 Using measure theory to study the type III continued loga-
rithm terms

We now look at the relative frequency of the continued logarithm terms. Specifically, the
main theorem of this section places bounds on the measure of the set

alzkl, a2:k2, ceey an:kn, a/nJrl:k}

01261, 02262, ceay angn, Cn+1:€

{x €(1,2):
in terms of the measure of the set

{ZL’E(]_,Q)I alzkla a2:k27 SR an:kn}

Clzglu 022627 SR CTL:gn

and the value of £ and ¢. From that, we can get preliminary bounds on the measure of
{r e (1,2):a, =k,c, =L} in terms of k and /.

Consider av = [cob™, c16™, c2b2, .. Jo1, ). Assume that o ¢ Q, so that the continued loga-
rithm for « is infinite. Furthermore, assume ag = 1 and ¢y = 1, so that a € (1,2). Notice that
in order to have a; = k; and ¢; = {1, we must have 1+ (¢;+1)b~% < o < 1+£,b7%1. Thus we

can partition (1, 2) into countably many intervals J; <$> L J (g) R A <b E 1) ,J G) , J1 (;) .

such that a; = k; and ¢; = /¢4 for all « € J; F . This gives, in general,

41

K | |
_ (1 1 .
& (zl) ( st Elbkl)

We call these intervals the intervals of first rank.
k1

b

Now fix some interval of first rank, J; , and consider the values of ay and ¢y for

a € J; (;&) One can show that we have a; = ki, ¢; = {1, ay = ko, and c3 = f5 on the
1

ki, k 1 1
(i )= (4 et )
’ 0%+ o 0%+ e
These are the intervals of second rank. We may repeat this process indefinitely to get the

intervals of nth rank, noting that each interval of rank n is just a subinterval of an interval
of rank n — 1.

interval

Definition 31. Let n € N. The intervals of nth rank are the intervals of the form
kla k?a EIR) kn o . a/lzkla a2:k2a ceey an:kn
Jn<€1, gg, ey en)—{a€<1’2) Clzgl, 02262, ey angn}’
where ki, ko, ..., ky € Z>o and £y, 0y, ..., 0, € {1,2,...,b—1}.

17



Remark 32. The intervals of nth rank will be half-open intervals that are open on the left
if n is odd and open on the right if n is even. However, for simplicity, we will ignore what
happens at the endpoints and treat these intervals as open intervals. This will not affect the
main theorems of this paper, as the set of endpoints is a set of measure zero.

Definition 33. Suppose m,n € N with m > n. Let ay,41,...,an € Z>o and cp41,...,0p €
{1,...,b—1}. Let f be a function that maps intervals of rank m to real numbers. Then we

define
=) al, «a a >
1, 2y -y m _
OV CA G I EDY
and similarly we define
" ay, a a e o al, «a a
1, 2y e m\ 1 2y ey m
UJm(cl, Coy ... cm>_U U UJm(cl, Coy ... cm>'
Definition 34. Let n € N. Let
D, (k,0) ={a € (1,2):a, =k,c, =}

denote the set of points where the nth continued logarithm term is /b

Remark 35. The set D, (k,{) is a countable union of intervals of rank n, specifically,

(n—1)
- a1, Az, ..., Qap-1, k
Dn(k.ag) N U Jn (Ch Coy ..+ Cp—1, g) ‘
ay, ag, ..., Qp . .
Lemma 36. Let J, (c . . ) be an interval of rank n. The endpoints of J,, are
1, 2y ey n
Pn P+ pnoab™
— and —_
Qn dn + Qn—lban
ay, a2, ..., Qn

Ci1, Co2y, ..., Cp
where 7,41 can take any real value in [1,00). From Theorem 27, we have

Proof. Let o € J, < > be arbitrary. Note that a = [1, 16", ..., ¢, b, rpy1lasv),

o = DnTn+1 + pn—lban
Qnrn+1 + Qn—lban

Notice that

o — & _ PnTn4+1 +pn—1ban _ <ann—1 - ann—l)ban
qn GnTnt+1 + 10 Qn(QnTn+1 + anlban>

Y

18



aq (05} Ce a . .
and on J, <c ’ . ’ ’ C"), all of p,, @n, Pn_1, Gn_1, a, are fixed. Thus « is a monotonic
1 2y ey n

a, ags, ..., Qap

€1, C2, ..., Cp
Pntpn—1b%7

function of 7,1, so the extreme values of o on J, ( ) will occur at the

extreme values of 7, ;. Taking r,.1 = 1 gives a = and letting 7,1 — oo gives

qntqn_1b9n"’
a = 22 Thus the endpoints of J,, e I
n C1, C2y ..., Cp
Pn Pn + pn—lban
— and _
qn dn + Qn—lba"
as claimed. [l

Theorem 37. Suppose n € N, ay,as,...,an,k € Z>o, and c1,¢a,...,cp, 0 € {1,...,0—1}.
Let a = (ay,...,a,) and c = (c1,...,¢,). Then

1 a a, k 2 a
_ < ’ < — .
IS <c> S Aduit (c, E) e (c)

Proof. From Lemma 36, we know that the endpoints of J, (i) are

Dn Dn + pnflban
— and EE——
An Adn + Qn—lban

. ) k
Now in order to be in J, 1 <2’ 6)’ we must have a,,1 = k and ¢, = £, so (bF < r, g <

Y

(¢ + 1)b*. Thus the endpoints of J,, (‘Z‘ ’;) will be

pnﬁbk -+ pn,lba” and pn(ﬁ -+ 1)bk + pn,lb""
qnlbF + qp_1b% g (€ + 1)VF 4 g1 b

Thus
\J (a) e PaA pacab™ | Pagn1b™ — pro1gnb®™
"\c G0 Qo+ Gu1b™ Gn(Gn + qn—1b"")
part--tan part--tan
B n\Gn + Qn— ban) 2 < Qn—lb“”>’
( ! ) qn 1 + qn
and

PulbF + p, b pu(C+ 1)VF + ppq b

@bk + b g (04 1)bF + g, bon

, k
A1 (‘;‘ €> =
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PrGn—100""TF + pp_1q, (0 + )0 — prgn_1 (0 + 1)0"F — p, 1, 06T+
(qnfbk + qn_lb“")(qn(ﬁ + 1)bk + qn_lb“n

par+-tan+k

n—1b%n n—1b%n
0(0 + 1)bhg2 (1 } dmtle ) (1 + m)
ba1+ +an

{6+ 1)brq (1 + = ;,’j,f) (1 + —q"wi’;‘;bk)

a, k
Anta (c, Z) 14 St
N n—1b%n notbon )
A\, (Z‘) é(é—i— 1)bk ( + 1 zbk > (1 + q(é_il_l)bk>

) 1 bOn o
Now notice that n = CnbaRQn 1+ ban_IQn—2 Z bQWQn—la so 0 S qq+ S 17 0 < ! ;bk S 17
and 0 < 2= < 1 and thus

SO

Gn (£+1)bF
1 + qn—1b1
i S - qn - S 2
(1 o) (14 )
Therefore . )
a a, k a
—AJ, < \J, ’ < —AJ, ,
e () e (80 < e (0)
and we are done. O

Corollary 38. Letn € N, k € Zsg, and £ € {1,...,0—1}. Then

1 2

m < )\( n+1(k g)) = m

Proof. Note that any two distinct intervals of rank n are disjoint. Thus we can add up the
above inequality over all intervals of rank n, noting that

(n)
ar, ..., Qan\ _
UJn <Cl, .. Cn) - (1’2)’

)

SO .
> M, (‘“’ a”)z/\(l,Z)zl,
C1, ..., Cp
and that
() a a k
1y, - -» mny _
U (22 0 8) = Dratin



SO

Cly ..., Cp, L

") a an, k
ZAJnH(l’ o T ):)\Dn+1(k,£).

This gives
1

k 2
— <D, L —
4000+ 1)pe = 7 (12> =0+ 1)bk
as needed. O

4.4 Distribution of type III continued logarithm terms

Definition 39. Let x = [1, 0", ¢, .. Ja,0) € (1,2) and ry, = rp(x) = [cnb, g1 b4, L elav),
as per Remark 22. Define

Tn
Zn = zp(x) = o Cn+ 1 =[1,crp1 0", crpad™*2, . Ja,m) € (1,2),

M,(z) ={a € (1,2): z,(a) <z} C (1,2),
mp(z) = AM,(x) € (0,1),
and

m(z) = nh_g)lo m(z),

wherever this limit exists.

We now get a recursion relation for the sequence of functions m,.

Theorem 40. The sequence of functions m,, is given by the recursive relationship

mo(a) = — 1 (9)

oo b—1

szn VA4 —mp (L4 (40— 1)) n>1 (10)

=0 (=1
forl <x <2.

Proof. Notice that 7o(a) = a, ap = 0, and ¢y = 1, s0 z(a) = 3% — o + 1 = a and thus

My(x) ={a e (1,2) : zo(a) <z} ={a e (1,2) ra <z} = (1,2),

so mo(z) = x — 1. Now fix n > 1. Since a,, € Z>p and ¢, € {1,...,b— 1}, we have
oo b—1
mp(x) = Ma € (1,2) : 2, <x}:)\U U{ae (1,2) : 2z, < x,a, = k,c, = (}.
k=0 (=1
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Fix z € (1,2) and let
Apo={a e (1,2): 2z, < z,a, = k,c, =}

for k € Zsp and ¢ € {1,...,b—1}. By Definition 39, z, < x if and only if

T'n

lan —c,+ 1<z
Notice that
Zn1 = [1, 0™, cp 6 ) = (1 Tnles ) = 1+ o
so z, < x if and only if
1

—— — Gt 1 <u,

bl —1) TS
or equivalently

Zp1 > 14+ (x4, =) =14 (z4+£0—-1) 7107k (11)

Additionally, in order to have a, = k and ¢, = ¢, we must have (" < r, < (¢ + 1)bk, or

equivalently,
T+ (+D) 0 <z <14+ (12)

Now notice that since z < 2,
I+ (+1D)" " <14 (@+0-1D""7F,

and thus the left hand inequality in (12) is implied by (11). Therefore z, < = with a, = k
and ¢, =/ if and only if

I+ @+ l—1)"" <z <1+ (13)

Thus
Ape={ac(1,2): 1+ (@+l—-1)""F <z, <1+0F) (14)

Now suppose ki, ke € Z and (1,0 € {1,...,b— 1} with (ky,¢1) # (ka,¢2). We claim that
A, ¢, and Ay, o, are disjoint. Consider two cases:

Case 1: k1 # ko. Suppose (without loss of generality) that ky < ki, so ko — ky < —1.
Also note that 1 </y <b—1and z <250 ¢y +2—1<b. Then we have

Ll = Tk ke < 14 gk < 14 b 10k < 14 (fp 4o — 1) 1072, (15)

Case 2: ky = kg, {1 # l5. Suppose (without loss of generality) that ¢; > /5, so indeed
1 > ly+ 1. Then since x — 1 < 1,

L+ ™M =140 <1+ (l+1) 0™ <14 Uy +a—1)" 107 (16)
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Now suppose a; € Ag, 4, and ay € Ay, ¢, By (14) and either (15) or (16),
a ST+ <14 (b +0— 177" < ay,

so ay # ay and thus Ay, », and Ay, s, must be disjoint. Therefore

oo b—1 oo b—1
x):)\UUAkvz_ZZMAkZ (17)
k=0 (=1 0 (=1
Finally, since m,,_;(z) = M{a € (1,2) : z,-1 < x}, by (14) and (17) we can conclude
oo b—1
=N (M (L) =y (T+ (@4 €= 1)7'07F))
k=0 (=1
which proves the recursion (10), and completes the proof of the theorem. O]

Theorem 41. There exist constants A, X > 0 such that

lOg x—i—b

log 25 b+1

< Ae MWV

‘mn(x) -

for alln >0 and z € (1,2).

The proof of this theorem, which is based on the Khinchin’s proof [5, Sec. 15] for simple
continued fractions, is lengthy and somewhat technical. It is provided in appendix A, and
the following corollary immediately follows.

Corollary 42. We have
bx

log ———
N z+b—1
2b
b+1

for all x € (1,2).
Theorem 43. We have

A D1 (b, 0) = mp(L+ (0+1)7'07F) —my, (1 + 7 17F).
Proof. Suppose that « € D, 11(k, ). Then a, 41 =k and ¢,,41 = ¢, so

1

= [1,£bk,7'n+2] =1+ PR

bk +

Tn+2
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where 7,0 can take any value in (1,00). Clearly z, is a monotonic function of 7, for

fixed k, /¢, so the extreme values of z, on D, i(k,¢) will occur at the extreme values of

Tnio. Letting 7, — 1 gives 2, = 1 + 75ior = 1 + (¢ + 1)~ and letting r, — oo gives

Wk ok
2 =1+ m = (~'p~%. Thus

Dypi(k, ) ={a e (1,2) : 1+ + 1) " < z,(a) <14+ L7107}
= M,(1+ ™)\ M,(14+ (£ + 1)),

SO
ADp1(ky0) = mp (14 0707%) —my (1 (€4+1)7107F).

Theorem 44. There exist constants A, X > 0 such that

(k1) ((e+1)bR+1 4 1)
\D. (k. log (@R T 1) (D5 T) Ao WATT
b+1

for allk € Zso,0 € {1,2,...,b— 1} and n € Z>y.

We then immediately get the following limiting distribution.

Notice that like with type II continued fractions, the distribution is non-monotonic.
This is due to the gaps in possible denominator terms. For example, for base 4, the possible
denominator terms are 1,2,3,4,8,12,.... The jump from 4 to 8 causes a spike in the limiting
distribution.

Corollary 45. We have

1 (6% +1) ((£+1)bF+141)

. O8 (@F 1) (((+ )oF +1)
A ADu(k, ) = =0
& hr1

fork € Zso and £ € {1,2,...,b—1}.

4.5 Type 1II logarithmic Khinchin constant

We now extend the Khinchin constant to type III continued logarithms. Note that we only
gave an overview for type I and type II, but here we will be much more rigorous.

Definition 46. Let o € (1, 00) have type III continued logarithm [cob®, c16%1, 202, . . Jei, ).
Let k € Zsp and £ € {1,2,...,b—1}. We define

N:a,=k,c, =/
Pa(k,f):]\}i_}rr})o‘{ne aN c H

to be the limiting proportion of continued logarithm terms of « that have a,, = k and ¢,, = ¢,
if this limit exists.
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Note that for the theorems which follow, we will restrict our study to (1,2) instead
of (1,00). The results can be easily extended to (1,00) by noting that every a € (1, 00)
corresponds to an ' € (1,2) in the sense that the continued logarithm of o is just the
continued logarithm of a with the first term replace by 1. Since we are looking at limiting
behavior over all terms, changing the first term will have no impact.

The following two theorems are proved in Appendix B. The proofs are based on the
analogous proofs for simple continued fractions given by Khinchin [5, Sec. 15 & 16].

Theorem 47. For almost every a € (1,2) with continued logarithm [1, 0, cob®, .. ] oy m)
we have
log (L0 F) (b+(e41) "o F)
p (k ﬁ) _ (b+£=10=F)(14-(£41)~ 10— F)
(0% 9 2b
log 71

for allk € Zsy and ¢ € {1,2,...,b—1}.

Theorem 48. For almost every o € (1,2) with continued logarithm [1,c,b, b, .. .|,
we have
N 1/N
1 an — Ap
dim (Hl(cnb )> b,
where

b
1 1 1

e Nl (1->V)1og (14>,
A logblogl”—lzog( ﬁ) og(+€)

2b (=2

The values of the Khinchin constant given by the above formula for 2 < b < 10 are shown
in Table 3.

Ko,
2.656305058
2.666666667
2.671738848
2.674705520
2.676638451
2.677992355
2.678991102
2.679757051
2.680362475

O 00 O O i W N

—
]

Table 3: Type III logarithmic Khinchin constants for 2 < b < 10

Remark 49. Notice that Theorem 47 is similar to Corollary 45. However, Corollary 45 is
about the limiting proportion of numbers o € (1,2) that have a,, = k and ¢,, = ¢, whereas
Theorem 47 is about the limiting proportion of terms of a number « € (1, 2) for which a,, = k
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and ¢, = £. The fact that these two limits are the same is not a coincidence: one can show
that Corollary 45 is a consequence of Theorem 47.
Based on Theorem 48, we denote

]CEIH[) — bAb,

where A, is as in Theorem 48.

4.6 Type III continued logarithms and simple continued fractions

Now suppose b is no longer fixed. Let p;, denote the limiting distribution for a given base b,
as shown in Corollary 42. That is,

log

,Uvb(x) _ x+b

log b+1

Furthermore, let L™, denote the base b logarithmic Khinchin constant, as in Remark 49,

and let K denote the Khinchin constant for simple continued fractions, as in Section 1.4.
We now have an interesting relationship between these logarithmic Khinchin constants

and the Khinchin constant for simple continued fractions, based on the following lemma.

Lemma 50 ([1], Lemma 1(c)).

- 1 1
Zlog (1 — Z) log (1+z) = —log Klog 2.

{=2

Theorem 51.
lim K:EHI(, == K:

b—o0

Proof. We will show that lim, . log L™, = log K, from which the desired limit immedi-
ately follows.
lim log L™, = lim log b = lim (log b).A,
b—o0 b—o0 b—o0
b
log b 1
= lim ————— 1 1——]1 1
e log blog b;bl kz; og( k) og( +k:)
1 1
= blglolo log (] Zlog ( — E> log (1 + k)
1 1 1
= log|1——)log(1+
limy_, log (%i 5 g( k> g( k)

2b k=2
b k=
1 il | 1+1 log IC
= — o) 0 — | =log K.
log2k:2 & & k &




Furthermore, as b — oo, the distribution function p;, approaches the appropriately shifted
continued fraction distribution p.. The continued fraction distribution function is given by

prei(7) = logy(1 + ) z € (0,1).

(See Borwein et al. [3, Section 3.4].) Since the continued fraction for a number will be
unchanged (except for the first term) when adding an integer, we can shift this distribution
to the right and think of it as a distribution over (1,2) instead of (0, 1), in order to compare
it to pp. We define the shifted continued fraction distribution

pa(x) = palz — 1) = logy « z € (1,2).
We then have
Jog &+b=1 log (3 +1—7%) logl —logx
li — i bx — i b z br) __ T —1 — x )
bggo ,Ub(a:) bgg; log b;r_bl bggo log (%le) log % —log2 OgQ(x) :Ucf(x)

This shows that, in some sense, as we let b — oo for type III continued logarithms, we
get in the limit simple continued fractions.

5 Generalizing beyond continued logarithms

A natural question that arises is how one can define something more general than continued
logarithms. Consider the following definition of generalized continued fractions.

Definition 52. Let (c,)2, be an increasing sequence of natural numbers with ¢ = 1. Let
a € (1,00). The generalized continued fraction for o determined by (¢,)5%, is

bO ‘ bl ‘ b2 ‘ B
ao*"’al +’CLZ +’a3 +..._[a0,a17a2,...]gcf7
where the the terms ag, a1, . .. and by, by, . . . are determined by the following recursive process,

terminating at the term a,, if y, = a,.

Yo = &
Jn =max{j:¢; < yn} n>0
an = ¢j, n >
bn = Cjui1 — ¢, n=0
b Ci —C;
Ynt+1 = R Zntl n > 0.
Yn — Ap Yn — Cj,

Remark 53. This is a generalization of simple continued fractions, and of type I and type
IIT continued logarithms. Indeed, for simple continued fractions, the term sequence (¢,)5%,
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consists of the natural numbers. For type I continued logarithms, the term sequence consists
of the powers 0°, b, b2, . ... For type III continued logarithms, the term sequence consists of
terms of the form ¢b*, where k € Z>g and £ € {1,...,b— 1}.

Recall from Remark 15 that type II continued logarithms did not have the property that
Ynt1 could take any value in (1, 00), regardless of the values of a,, ¢,. This is a desirable prop-
erty to have, since it uniquely determines the numerator terms based on the corresponding
denominator terms. We have defined generalized continued logarithms so that they have this
property, and for that reason they are not a generalization of type II continued logarithms.

Remark 54. As per Definitions 3 and 4, the nth convergent and nth remainder term are
given by

Tp, = [a0, @1, - - ., Q) get and Tn = [Gns Gty Gng2s - - -Jgefs
respectively. Note that the remainder terms r,, and the terms y, from Definition 52 are in
fact the same.

We can derive various results for generalized continued fractions that are similar to those
for continued logarithms. Most notably, we get the following sufficient criteria for guaranteed
convergence and rational finiteness.

Theorem 55. Suppose there is a constant M > 0 such that cj11 —c; < Mc; for all j. Then
every infinite continued fraction with term sequence (c,)5%, will converge.

Theorem 56. Suppose (¢n41 — ¢n) | ¢ for alln > 1. Then for every a > 1, the continued
fraction of « is finite if and only if a € Q.

We are also able to extend some of the measure-theoretic results to generalized continued
fractions, though details are not provided here. We conjecture that the main results that
we derived for the distribution and Khinchin constant of continued logarithms would extend
(likely with some additional restrictions on the sequence (¢,)22 ) to our generalized continued
fractions.
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A Proof of the type III continued logarithm distribu-
tion

This appendix is devoted to proving Theorems 41 and 44.
These proofs are based extensively on the proof presented in Section 15 of Khinchin [5],
which proves similar statements for simple continued fractions.
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Lemma A.1. Forx > 1,

e 1 1
]; —(+ -1 (1+ b4+ —1)"Hb+bFz+l—1)"1) - r(r+b—1)
Proof.
i O 1
pr iy (x+0—=1204+bFax+—-1)"1)b+bFax+0-1)"1)
oo b—1 bk
- kz_o L (Wr(w+ 0= 1)+ DO+ = 1) + 1)
b—1 oo
1 bF bt
C1- ;;bk(xw—nﬂ bz 0—1) +1
b—1
1 1 b
1— ; (x—l—é kgfobk(;cw—nﬂ)
L (1
S l-bE e+l -1
B 1 y 1 1-0 B 1
S l-b\z+b-1 ) 1-b\z(x+b-1)) a@+b-1)
O
Theorem A.2. The sequence of functions m, (r) = d—imn(.r) s giwen by the recursive rela-
tionship
mg(z) =1 (A1)
oo b—1
=3 b Fa+e—10)ml (L4 @+ e-1)7 n>1 (A.2)
k=0 ¢=1
for1 <ax <2.

Proof. Equation (A.1) follows immediately from (9). Notice that (A.2) is the result of
differentiating both sides of (10). In general, if m;,, is bounded and continuous for some n,
then the series on the right hand side of (A.2) will converge uniformly on (1,2). Thus the
sum of the series will be bounded and continuous and will equal m/_ , so (A.2) follows by
induction, since my, is clearly bounded and continuous. O

We will now prove a number of lemmas and theorems about the following classes of
sequences of functions, to which (m/,)7°, belongs.
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Definition A.3. Let fy, f1, ... be a sequence of functions on (1,2). We will say (f,)>2, € A*
if for all x € (1,2) and n > 0,

oo b—1 _ b_k
(e ZZZHH () (A3

=0 (=1

Furthermore, we say that (f,)>>, € A*™ if (f,)>2, € A* and there exist constants M, u > 0
such that for all z € (1,2), we have 0 < fo(z) < M and |fi(x)| < p.

Lemma A .4.
() pao-+--+an

> ):1.

Qn(Qn + ba" Gn—1

Proof. Since the intervals of rank n are disjoint and

(n)
a1, ..., Qp\
UJn<Cl, ce C)_(1’2)7
we have that

(n)
S M, (‘“’ a") = \(1,2) = 1.
Cly ... Cn

Now notice that by Lemma 36 and Lemma 25,
Ay, (ah S a”) _|Pn_ Pn T b pp—1
Ci, ..., Cp

G Qo+ b G
(_1>n—lbao+~--+an

‘b“" (PnGn—1 — @nPn—1)
Qn(Qn + ban(]nfl)
baO“F""‘FU«n

B Qn(Qn + baTLQTL—l)’

Qn(Qn + banQn—l)

and thus
ba0+"'+an

(n) (n)
ap ce e (7%
= Ap ’ ’ = 1.
Z Qn(qn + ban(bz—l) Z <cla ) cn)

Lemma A.5. If (f,)5>, € A* then for n > 0,

(n) n )
.+ b, _ h2i=0 %
:Zfﬂ (p + 0" poa (@ 1)) ( . (A.4)

Gn + b4 qn_1(xz — 1) ) (gn + 0" gy (x — 1))

Proof. For n =0, we just have a single interval, so

0
0 qo + b%q_1(x —1) ) (qo + b%q_1(z —1))2
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1+(1)(1)(x—1 1
(L0 1) = s
1+ 1)0)(z = 1)/ (1+ (1)(0)(z — 1))
Now suppose (A.4) holds for n. Then
fn+1 (ZL’)
oo b—1
bfk bfk
=22 (x+0— 1) 3/ <1+x—|—€—1)
k=0 (=1
oo b— n a —k T a;
—k
k=0 ¢=1 (x +0- 1)2 In + banqn—l(l + #) (Qn + ba"Qn 1(1 + r+z 1))2
R i — f <pnb"“(x +0—1)+ b“"pn_1> b2i=0 %
S N g (e L= 1)+ bng ) (gabF (e = 1)+ bngy )
B g):f: b—1 f <€bkpn + banpn 1+ b pn( 1)) bZ?:oajbk
B — 0\ O g+ b gy + V(0 — 1) ) (0 gy + gy + Vg (= 1))2
("Z“) ; (cnﬂb Dy A B,y b, (2 — 1)) pi=0 s fints
0 CnJrlba"Jrlq + banQn 1+ ba"+1q (:C - 1) (Cn+1ba"+1Qn + ban(]nfl + ba"+IQn(x - 1))2
("*” (p + b, (x — 1)) P e
Int1 + ba”“q (2 = 1) ) (gu+1 + b1gn(z — 1))
so the result follows by induction. O

Lemma A.6. If (f,)32, € A*, then forn >0,

Fo()] < oty + 40

Pn+ba”17n—1(x—1)

gn+bngn_1(z—1)" to get

Proof. Differentiate (A.4) termwise, letting u =

Zf )n 1b2Z] 0@j Zf ba"qnfle?:oaj
" (gn +banq 1z —1)) (G + b g (v — 1))F

The validity of termwise differentiation follows from the uniform convergence of both sums
on the right hand side for 1 < x < 2. Notice that

(A.5)

)12 0 L b2==0 9 Q2 i=0 %
( ) J | < q jl < i J (A6)
(qn + b o1 (z — 1)) an 200=D/2q,, (g, + b gn—1)
by Lemma 24, Lemma 23, and the fact that ¢, + 6**'q,_1 < 2q,. Additionally,
an S ag an S aj ST a4
b g1 b>3=0% <b Gn—1b Y 2b2~i=0% (A7)

(Gn + b g (x —1))3 — a = (g + b gnr)
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since b*q¢,—1 < ¢, and ¢, + b ¢n—1 < 2q,. Since (f,)22, € A**, we have by Definition A.3
that |fo(x)| < M and |fi(x)| < p for all z € (1,2). Thus we have by (A.5), (A.6), (A.7),
and Lemma A 4,

b anle?:O %
(qn + b*qn1(z —1))3

(n) n—1p2>" a;
/ / ( ) lb I=07
z)| < E U
)| — |f0( )| qn+banqn—1(x

+22:|fo

(n) nooa (n) noo
szzo a; bZ]:O a;
+4M
- 2(” 1)/2 Z n(@n + 0% Gy1) 2 Gn(Gn + 0 qn1)
2 2v2p 3
—W—FZIM— oz +4M < 2/2+4M.
[
Lemma A.7. If (f,)32, € A* and for some constants T >t > 0,
< folz) < Q Vr e (1,2)
x(zr+b—1) ni® z(r+b—-1) ’ e
then
L e pe—— Ve € (1,2)
—— < fan(r) < ——— x ,2).
z(zr+b—1) i z(zr+b—1)
Proof. By (A.3) and Lemma A.1 we have
ot S )
prr iyt q:—I—E—l) r+0—1
y i e t
ce i (=12 (14 (x+ =17 F)(b+ (x+L—1)717F)
_ t
S z(z+b—1)
and a similar derivation shows
T
fopi(x) < m,

from which the result follows.

Lemma A.8. If (f,)3, € A* then for alln >0,

/12 Fulz) dz = /12 folz) dz
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Proof. Notice that
oo b—1

2= JUYJa+ e+ 140,

k=0 =1
where the intervals are pairwise disjoint. We then have, by (A.3) that

2 OO - — b—k
/1fn(2)dz—/ e (“m) .

00 1+(€+1) Ip—k
/ —fno1(u) du

k: 0 (=1 “lo—k
OO b—1  iqp-1p—k
/ fo—1(u)du
k A (ARl
_ / Fos () du
1

from which the result follows by induction.

]

Lemma A.9. Suppose (f,)52, € A™ and there are constants g,G > 0 such that for all

€ (1,2),
g G
z(x+b—1) < folz) < r(x+b—1)
Then there exist n € N and g1, G1 > 0 such that
g1 Gy
r(x+b—1) < Julz) < r(lx+b-1)

g< g1 <G <G,

and
Gi—g1 < (G—9)d+2"*(u+G),

_ 1 2
where 6 =1 — mlogm
Proof. First define
G

_ 9 _
on(x) = fulz) — 2rtb_1) Un(r) = T bh=1) fu(),

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

which are both positive functions by (A.8) and Lemma A.7. Notice that for the functions

h(z) = m and H(x) = % we have by Lemma A.1 that
oo b-1 _
ha)=—2—=%" b g
z(z+b-—1) pr iy (x4+ =121 +bFax+l—-1)"Hb+bFa+l—-1)"1)

33



oo b—1

—k b—k
ZZ (x4 0—1)2 h<1+x+€—1)’

k=0 ¢=1
and similarly
_ H———)
= x+£—1 r+0—-1
Thus for n > 1, we have

Ony1(z) = fup1(x) — h(z)

oo b—1 b_k b_k oo b-1 b_k b_k
:kzzoe=1 <x+£_1)2fn (1+x+€—1> _kzzoezl mh(l+m)
0o b-1 - -
:;zﬁ <x+€_1)2¢n(1+x+€—1>’

and similarly
e (z+0—1)2"" r+0—-1)"

Thus ()5, (Vn)5, € A*, so by Lemma A.5, setting u = %, we get

(n) n . (n)
b}:],oaj 1 bE:J 0%
= - A.13
#n() 2900(“) (qn + b qn_1(z — 1)) 42 ( )
and similarly
sz 0%
Un(r) =2 5 Zzpo (A.14)
since
Gn + 0" 1 (x — 1) < 2¢, Vo € (1,2).
On the other hand, the mean value theorem gives
1 bE:?—o“j
2)dz = A15
/ Z o) e T )’ (8.15)
and
bz:?foaj
)dz = A.16
/% 2= Z% ROt (A.16)
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Pn PntbTpn_1
qn’ qntb*ngn_1
bE?:O a5

where for each interval ( ) of rank n, u; and wuy are points in the interval and

the length of the interval is From (A.13) and (A.15) we then get

(n) " a;
]- 2 ]. bZ]:OG‘J
() — = - U , A.17
on() 4 / =1 2_ (ole) = eolew) Gn(Gn + b Gn—1) (A.17)
and from (A.14) and (A.16), we get
bZ?:o aj

L / bo(z)dz > & Zwo() Yo(2)) (A18)

Qn(Qn + ban(]n—l) '

Now for 1 <z < 2, we have |¢(2)] < |fo(e)| +g < p+g and [(x)] < |fye)| + G < p+G,
so it follows by Lemma 24 that

b>i=0 % ptg _optyg
— < — < < <2 A.19
[po(ur) = wo(u)] < (1 + g)lur —ul < (u+g)qn<qn e S o Siam (A.19)
and similarly
+G
o(uz) —vo(w)] < 25 (A.20)
Then by Lemma A.4, (A.17) and (A.19) give
(n) "
1 2 1 szzoaj
n(T) > — dz — — —
enl@)> 7 [ o)z =7 3 (olon) = o)
(n) " ay
1 b2i=0 %
>0 —— -
= 4 Z ’@0(“1) @0<u)|qn(qn + banQn71>
(n) " a;
1 p2i=o® 1
25——M+gz i _y_irtg_ _,u_—kgj
2 271/2 qn(qn-i*b“"qn—ﬂ 2 2n/2 2n/2+1
where ( = ; f1 ¢o(z) dz. Similarly, (A.18) and (A.20) give
G+p
Un(x) = L - CTYEASE
where L = § f1 Yo(2) dz. Now by (A.12), we have
g g Htg
- _J 4 ETS
fn(l‘) $($+b—1) +90n<x) > 1‘(:L‘+b—1) + 2n/2+1
_ 27n/271
g+1¢ ntg) o1 (A21)
r(rx+b—1) z(x+b—1)
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where g1 = g+ £ —272(u + g), and
G G uw+G

Jal@) = z(r+b—1) ~ ¥nle) < x(z+b—1) — b
G—l+2"2 Y u+ @) Gy
= r(r+b—1) Cz(r+b-1) (A.22)

where G1 = G — L+ 2727} + G). Now since ¢, L > 0, we can choose n sufficiently large
so that 277/271( + g) < £ and 2727} (u + G) < L, so that we get

g<qg1 <G <. (A.23)

Thus by (A.21), (A.22), and (A.23), we have found ¢;,G1, and n that satisfy (A.9) and
(A.10). Notice that we also have

Gi—g=G—g—(L+0)+27" ' 2u+g+G) <G —g— (L+0)+27"(u+G). (A.24)

Now since

1 2 G—g 1 2b
(vL=-| — "9 _qe=(G- 1
* 4/1 warb—n =G T

(A.24) becomes

1 2b
— 1— 1 — 2~ "/2 =6(G — 9~ n/2
Gy g1<< T ong)(G 9)+ (h+G)=0(G—g)+ (k+G),
so we see that g1, Gq, and n also satisfy (A.11), completing the proof. O

Remark A.10. Notice that the value of n chosen depends only on the values of 1 and G,
and that if we make 0 < p; < p and 0 < Gy < G, the value of n chosen for p and G will
also work for p; and GGy. In other words, we can make p and G smaller without having to
increase n. This will be useful in the proof of the Theorem A.11.

Theorem A.11. Suppose (f,)5, € A™. Then there exist constants A\, A > 0 such that for
alln >0 and z € (1,2),

a
n - A —hn
'f@) z(x+b—1) =4 ’
where
b—1
fo
10gb+1 1

Proof. By assumption, fy is differentiable and continuous on [1, 2], so there is some constant
m > 0 such that m < fo(z) < M for all # € [1,2]. Then since 2(b£rl) < m(chrlbfl) < 1 for all
x € (1,2), we have

bm 20b+1)M

m<fo($)<l’($—l—b—1) Va:e(l,Z)
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Thus let ¢ = bm and G = 2(b+ 1)M and apply Lemma A.9 to fy, g, and G, to get g1, Gy,
and n such that

g1 G,
g< g1 <G <G,

and
Gy —g1 <0G —g)+27"*(u+G).

By Lemma A.6, |f/(z)] < u1 = 2‘?% + 4M, and we can arrange to have p; < p by making
p and n sufficiently large. (By Remark A.10, the results above are still valid for the new
values of p and n.) We can then apply Lemma A.9 again with f,, g1, and G instead of fj,
g, and G. This gives us new constants g, and G such that (again due to Remark A.10),

92 Go
2 gy -2 Vo € (1,2),
Py SR LG R ey gy e (12)
g< g1 <9 <Gy <G <G,

and
Gy — g2 < 0(Gh —q1) + 2_2n/2(/t1 + Gy).

Repeating this in a similar fashion gives, in general, constants g,, G such that

gr G,
x(rx+b—1) < furl) < r(rx+b—1)

Va € (1,2),
g<gl<"'<gr71<gr<Gr<Gr71<"'<G1<G7

and
Gr —gr < 5(Gr71 - grfl) + 27”1/2(/%71 + Grfl),

where 1,1 is a constant such that |f;,,_,)(z)| < py—1 for all z € (1,2). By Lemma A.G, we

can take p, = QST“/? + 4M , and then can choose rq € N such that p,_; < 5M for all r > ry.
Then since G, < G =2(b+ 1)M, we have

GT —gr < 5(Gr_1 - gr_l) + <2b + 7)M2—nr/2 = (5(GT_1 - gr_l) + M12—m'/27 <A25)

for all » > ry where M; = (20 + 7)M. We now claim that for all £ > 0,

k
Groth — Grok < 0F(G — g) + 6*M270/2 Y~ (2779/26577), (A.26)

=0
For k = 0, from (A.25), we have

Gro = Gro < 6(Gro—1 — Gro—1) + M1277°% < (G — g) + My 27"/
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0
= 0%(G — g) + My8°27"m0/2y " 2725

=0
Now suppose (A.26) holds for k. Notice that

M12—n(7"o+k’+1)/2 _ M15k+12—nr0/22—n(k+1)/25—(k+1),
so by (A.25),

GT0+/€+1 — Jrot+k+1 < 5(Gro+k‘ - gr0+k) + M12—n(r0+k+1)/2

k
<4 ((Sk(G . g) + M15k2—m"0/2 Z(Q_nj/25_j)> + M12—n(ro+k+1)/2

=0

k
_ 5k+1(G B g) + M15k+12—m“0/2 (Z@—M’ﬂg-j) + 2—n(k+1)/25—(k+1)>
§=0
k+1
_ 5k+1(G _ g) + M15k+12—m“0/2 Z 2—nj/25—j’

J=0

o (A.26) follows by induction.
Now notice that for £ > 0,

22 ni2§=1 < Z (2"26)7 <3 (2126) 7 =y < o0,
=0
since 2126 = /2(1 — -1 108 b+1) > V2(1— tlog2) > 1. (A.26) then becomes

Grotk = Grork < 0°(G — g+ My27"%7) = d¥c,
where ¢ > 0 is a constant. Then for r > ry, we have
G, — g, <6 c=6(60"c)=d"4d,

where again, d > 0 is a constant. Finally, since 6 < 1, we can choose B, A > 0 such that
G, — g» < Be™". Thus there is clearly some common limit

a= lim g, = hm G,,
T—00 r—

and we have (setting r = n) that

a —An
foz(z) — FrE— < Be™ Vo € (1,2). (A.27)
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Thus we have

2 2 a a 2b
li dz = = 1
nT300 . Jx(2) dz /1 z(x+b—1) b—1 Bht1
so by Lemma A.8, fl fo(z)dz = log b+1 and thus
b— 1
fo
log b+1 1

Now for arbitrary N > 7’3, we can choose n > ry such that n? < N < (n+ 1)2. We then
have, by (A.27),

a—2(b+1)Be " a _x a
—Be ™" 2
x(x+b—1) <:17(x+b—1) ¢ < fulr) <

for all = € (1,2). Then by Lemma A.7,

_ a+2(b+ 1)Be™ "
B An
m(:p+b—1)+ ¢ s r(z+b—-1)

—2(b+1)Be™ a+2(b+1)e

z(xr+b—1) < Julz) < zlx+b—1)
SO
a 2(b+1)Be “A A—A -
- 2(b+1)Be ™ = 2(b+1)Bete X1 < Ale VN
Iu(z) :z:(x—i—b—l)‘ r(x+b—1) (b+1)Be (b+1)Bee <4 ’

where A’ = 2(b+ 1)Be* is a constant. Now for 0 < N < 72, note that each fy is continuous
(since fy is differentiable and thus continuous and fy,1 is an absolutely convergent sum
of continuous transformations of fy). Thus we can choose Ay, Ay, ... ,Arg_l such that for
0<NKL T(Q) -1

- *
z(r+b—1)

for all z € (1,2). Finally, take A = max{Ay, A1,...,Ar,—1, A"}, so we have

fn(x) —

‘<Ane_’\\/ﬁ Vo e (1,2), VN e€{0,1,...,70 —1}

a

fn(@) - 2 tb—1)

‘ < Ae MWW Ve € (1,2) VN € Zso,

proving the theorem. [

Corollary A.12. There exist constants A\, A > 0 such that for alln >0 and z € (1,2),

/ a —-Avn
- 1< A
‘m”(x) w<x+b—1>' o
where
b—1
a=—->.
IOgbibl
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Proof. By Theorem A.2; (m )2, € A**. Then Theorem A.11 gives constants A, A > 0 such

that
a

z(x+b—1)

b—1 [? b—1 [? b—1
a:—Q_b/l7716(z)d,z:—2_b/1 1dz:—1 S

log 777 log 775 08 311

proving the corollary. O

' < Ae VP

where

Our main goals, Theorems 41 and 44, follow easily from Corollary A.12.

Proof of /1. First note that since m, (1) = 0 for all n, so by the Fundamental Theorem of

Calculus,
Thus
z -1 [® 1 —1lo log %2
/ m.,(z)dz — b 5 / dz = my(x) — b 5 gHb :mn(x)—gm—g;
1 log 77 2(z+b—1) log 2% b—1 log 377
(A.28)
Then by Theorem A.11, we have
lo b—1 1
my(z) — & ”b / m,,(2) dz
log 2% longrl 2(z+b—1)
b—1 1 v
< / my (z) — dz < / Ae~ WV
1 longrl 2(z4+b-1) 1
= (z — 1)Ae™MV" < Ae™ VN,
[

Proof of Theorem 4/. By Theorem 43,
1+¢-1p=k
D (ks ) = mn 1 (14 £7575) — oy (14 (0 4+ 1)1~ = / m(2)dz.
14+(¢+1)" 1ok

Then by Corollary A.12, it follows that there is are constants A, A > 0 such that

14+4-1p—k b . 1 140 1p—k 1
m!_(2)dz — —%/ ——dz
1+ (e41)~1pk log 325 Jiv@esry-1o-k 2(z2 +0—1)
1+~ 1p—k b—1 1
</ ml ()~ d
(1)~ 1p—F log 75 (2 +b— 1)
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1+67 1=k Ae—An—1
< / AT dz = (07 — (04 1) AT = 20
1

H(e+1) 1k ((C+ 1)0k
Finally, since
—1p- 110 F) (14 (e+1) Lo~ (-HD)
b—1 /1+e 1p—k 1 Ao = p—1 log El+f_1b7(I“)J(rl))((l+()€+l)_lb—k;
log bi_bl 1+ (e -10—k 2(2 +b—1) log bi_bl b—1
(60 +1) ((e+1)bE+141)
B log (T 1y (@ D5F )
log bi—bl ’
we have
(R 1)(E+1)6E+141) 1y
log @)y @ neF ) L+eib* . b—1 1
)\Dn(k’ g) B 2b = mn—l(z) - 2 dz
log 725 14 (0+1) 1k log 55 2(z+b—-1)
AeMWn-1
< .
00+ 1)bF

B Proof of the type III logarithmic Khinchin constant

This appendix is devoted to proving Theorems 47 and 48. Note that the proofs in this
appendix rely on certain results from Appendix A.

Definition B.1. Let n € N, j1,72,...,J, € N be distinct, ki,ks,...,k, € Z>p, and
Uy, by ... 0, €4{1,2,...,b—1}. Define

j17 j27 LR jn

E k]_, k‘27 RN l{n = {OCE (172> . ajl :kly aj2 :k27 ey ajn:kn }
gl’ 62, . gn le :gl, Cj2 262, ey Cjn :gn
jlv R jn
Remark B.2. We will always assume that j; < jo < --- < j,,inwhichcase £ | k1, ..., k,
by, oo, Uy,

is a countable union of intervals of rank j,.

Theorem B.3. There exist constants A, A > 0 such that for arbitrary m € N, j; < ... <
Jm <JEN, ki, .. km,k € Zso, and by, ... by, 0 € {1,...,b— 1}, we have

jlv RN jma ]
AE ki, ooy R, K (bbb (1)1 5 )
b, oy by ) 18 R e R - AeMVizim=1
g s Jm log 2% 00+ 1)k
AE | ki, oo,k
b, oy Uy
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Proof. First fix some interval J = J, (Izl’ Y lgm> of rank m. Let
1, -y m

M,(z) =X o€ J: zpn <z}

In order to have o € M,,(z) with @, = k and ¢4, = £, we must have 1+ (z+£—1)"107% <
Zmin—1 < 14+ £71b7F (similar to in (13)). It follows that

M, (z) = Z

b—
k=0 (=1

1
My (14075 = My (14 (o + 00— 1)),
so that (M])>2, € A*. Now by Lemma 36, an arbitrary « € J can be written as

o — PmTm+1 + bampm—l
gmTm+1 + baQO—l ’

or since 7,41 = ——,
m

_ Pm + bampmfl(zm - 1)
o = .
Gm + baQO—l(zm - 1)

To have 1 < z,, < x, we must have

(pm Pm + bampm—l(x - 1))
e —, .
dm 4dm + bam(]mfl(x - 1)

Thus —
" 4 04 D1 (2 — 1 h2ei=09m (3 — 1
M()(JI) _ p_ . p + . b 1<£L' )‘ — i (I ) ) (Bl)
dm dm + b MQm—l(l‘ - 1) %’n(Qm + b m(}m—l(m - 1))
Now define M, ()
(T
and note that (x,,)r, € A*, since (M) ), € A* and
. o b, h2i=0 %
A = [Pm PO Pmor ) - (B.2)
G G 0" G1 | G (@ + 09 G—1)

is a constant. Now by (B.1) and (B.2), we have

(Gm + 0" G—1)(x — 1)

G + b gy (v — 1)

/ Qm<Qm + baQOfl>

Xo(®) = (G + b5 g1 (x — 1))2
M) = — 2Gmb"™ -1 (qm + 0" G —1)
(Gm + b @1 (x — 1))3

Xo(z) =
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Thus for 1 < z < 2, we have y((z) < qqm =2, xy(x) > % = I, and |x{(z)| < % =4,
50 (XL,)o, € A™. It then follows from Theorem A.11 that there are constants A, A > 0 such
that

/ a —-Avn
S SR |
XalT) r(r+b—1) <A ’

for all n > 0 and x € (1,2), or equivalently there exist functions 6, : (1,2) — (—1,1) such

that
a

/ JR—
for all n > 0 and = € (1,2). We then have, for k € Z>p and ¢ € {1,...,b— 1}, that

X (1D — o (T (C+1)7107F)

146~ 1p=k
_ / Ya(z) dz
14 (6+1)—1p—F

+ 0, (x)Ae™ VP

1+0-1p—k a i
= —_—— 4+ 0, (x)Ae V" d
/1+(€+1)—1b—k x(x—i—b— 1) ( )
—1p—k —1p— 1+ 1=k
_a 10g(1+€1b k)(b+(£+1) 1b Af/ (2) da.
b—1 (b—i-g_ b~ )(1"‘(6"‘1)_() 1+(64+1)~ 1bk

Now

140~ 1p—k

1+¢~1p=k 1+¢~1p=k 1
Op(x)dz| < / 0, (x)| dz < / lde = ————,
14(£+1)~1bF 14+ (£+1)~1b—F 0+ 1)bx

so there exist functions =, : (1,2) — (—1,1) such that

/ e 0u(z) dz = —228)_

14 (¢4+1) "1k

(1)~ 15k (0 + 1)b*
1, ..., m, m+n
Then since \E [ ki, ..., kmy kman | = Mpy(1+0707%) — M, (14 (04 1)707F),
by, ooy Ay in
1, ..., m, m+n
AE | k1, o) ko, kman
O, ooy Ay Anin
(AL~ (b+(e4+1) " Th—F) — 1,...
B log T () 5 F) | Ya(z)Ae AVl \E |k ’ 7;:
B 2 00+ 1)bF Lo Bim
log b+1 gl,...,gm

Now we can sum this relationship for k; from 0 to oo and ¢; from 1 to b — 1 for certain
indices j < m. The indices we sum over will cancel from both sides, and we are left with an
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arbitrary sequence of subscripts 1 < 73 < jo < --- < j; = m. Then if we let j = m + n, we
get

j17 sy jma ]
AE | kv, ooy ki, K (L 1b ) (b (€41)-10H)
by, oy by L) log =p=m) (1 () =15=F) _ Ae MWi—im—1
Ji, ooy Jm log 2 00+ 1)k
AE | ki, ooy ki,
by, ..., Ly
completing the proof. O

Theorem B.4. Suppose f: Zso x {1,...,b—1} = R is a positive function for which there
exist constants C,0 > 0 such that

Fs,t) < C(th*)2~0

forall s € Zso and t € {1,...,b—1}. Then for almost every a € (1,2),

log (AL~ ") b+ (e+1) "1 F)

o1 e G+ 6 ) 1+ (+1) 16 F)
Jim o> Flamcn) =30 f(k,0) 7 -

n=1 k=0 ¢=1 log b1

Proof. First define
2 2
Uk, = / f(a'kv Ck’) dOZ, bk? = / (f(ak7 Ck‘) - uk)2 dOé,
1 1
2
Gik = / (f(as, ¢i) — ui)(f (ar, cx) — ux) de, Sala) = (flar, cx) — up).
1

Notice that the integral uy is finite for all k, since

oo b—1
uk—/ flag, c) da—ZZfst)\D (s,t)
s=0 t=1
oo b—1 o b—1
<S> o) @) =203 0y e )T
s=0 t=1 s=0 t=1
Furthermore,
oo b—1 oo b—1
/ Fular e da = SN F(s,0)ADu(5,8) < 303 C2 (10172 (2472%)
s=0 t=1 s=0 t=1
oo b—1
=207 "N 7N (1) * = () < o0,
s=0 t=1

44



SO

2 2 2
b, = / (f (@, cx)—ug)® da = / flag, cx)? da—Quk/ f(ag, cx) datui < Cr—uy, < Cy < o0,
1 1 1

(B.3)
and by the Cauchy-Schwarz Inequality,

up = /12 flag, cx) da < \//12 Flag, cx)? da < V/Ch. (B.4)

Furthermore, for k > 4, we have

2 oo b—-1 oo b-1 ) k
9ik = / flai, c) f(ag, c) da — wjuy = Z Z Z Z f(s1,t1) f(s2, ) AE | 81 52 | — ujug.
1 $1=0t1=1 s9=01t2=1 tl t2
(B.5)
Now by Theorem B.3 and Corollary 38,
ik log (1+tg11b::2)(b+(t2+1):1b:zz) i == i
\E S1 So o (b+t5 b 2)(1;;](t2+1) 1p=s2) \E s1 < e—lbsz)\E s
t to log 37 f ta(t2 + 1) £
1 k
< 4AeNVFTEINE [ sy | AE | s |
t to
(B.6)
and by Theorem 44 and Corollary 38,
(145 '0752) (b+(ta+1) " 1b—"2)
T\ o8 G | Ae W
AE | so | — 5T < o (B?)
ty log ;75 to(ty + 1)b*
log (45 16752) (b4 (12 +1) ~ 1o 52)
O —1,—s —13—s
Now by (B.6) and (B.7), letting v = —2° lz;(itﬁl) ) we get
b+1
vk 1 k
/\E S1 S22 — )\E S1 )\E S92
t1 to 131 to
S \NE S1 S22 — VAE S1 + VAE S1 — \F S1 \NE S92
i1ty 131 131 131 to
' 7 k
< (4Ae™VFTTL L4 A VEDAE | s | AE | 5o
131 lo
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i k
<8AeVFTINE [ s | AE [ 52 | - (B.8)
t t

Then by (B.5) and (B.8), we get

co b—1 oo b-—1 7 k
Gik — Z Z Z Z f(s1,t1) f(s2,t2)AE | s1 | AE | 52 | + wiug
s1=0t1=1 s9=01t2=1 tl tQ
oo b—1 oo b—1 7 k
< 8Ae W Z Z Z Z f(s1,t1) f(s2,t2)AE | s1 | AE | 52
$1=0t1=1 s2=01t2=1 tl tz
= 8Ae MWFT Ty . (B.9)
But since
oo b—1 oo b-1 1 k
Z Z Z Z f(Sl, tl)f(SQ, t2>/\E S1 A\E So = U; U,
s1=0t1=1 s2=0ta=1 tl t2
(B.9) is just
|\gi| < 8Ae™VFT Ty, < 8AC e AVFTITL (B.10)

From (B.3) and (B.10), we have for n > m > 0,

/1 (Su(@) — Sm(@))? da

:/12< 2”: f(ak,ck)—uk>2 da

k=m+1

n

= > (flar, o) — w)* dor + 2 z_: Z/1(f(az‘,cz‘)—Ui)(f(ak,ck)—uk)da

k=m+1 i=m+1 k=i+1
n n—1 n n—1 n
- Z b + 2 Z Z gix < C1(n —m) + 16ACY Z Z e~ AVhk—i—l
k=m-+1 i=m+1 k=i+1 i=m—+1 k=i+1
< Ci(n—m) + 16 ACY Z Z e VI = Cy(n —m) 4 16AC, (n — m) Z eI
i=m—+1 j=0 =0
= Cy(n —m), (B.11)

where Cy = C1 + 16 AC, Z;’io e~™7 is a constant. Now let £ > 0 and define

en ={a € (1,2):|Su(a)] > en}.
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Clearly
2
/ Sp(a)? da > / Sp(a)? da > ®n® e,
1

€n

so that if we let m =0 in (B.11) we get

[2S2(@)?da Gy
g2nt e2n3’

/\enz <

Thus the series >~ Ae,2 converges, so almost every o € (1,2) belongs to e,z for only
finitely many n € N. Therefore for almost every a € (1,2) and for sufficiently large n,

Sz ()

n2

<e€.

Now since € > 0 was arbitrary, we can conclude that

Spz ()

2

lim

n—oo n

~0 (B.12)

for almost every a € (1, 2).
Now let N € N be arbitrary and choose n such that n? < N < (n + 1)?, so that

/2(SN(a) — Sp2())?da < Co(N —n?) < Cy((n+1)* —=n?) = Co(2n + 1) < 3Cyn.

Let € > 0 and define
ennv ={a € (1,2) : [Sn(a) — Sp2(a)| > en®}

and

We then have for n? < N < (n + 1)? that

/1 (Sy () — Sp2(a))*da > / (Sy (@) — Sp2(a))? > 52n4)\en7N,

en,N
and )
Aey n < fl (Sn(@)? = Sp2())? 3C,
n, 24 22n3”
SO
! 3¢, 90,

AE, < Z Aepn < ((n+ 1)? —n?) = <

52713 — 5277/2'
N=n?2
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Thus the series )~ | AE,, converges, so almost every a € (1,2) belongs to E, for only finitely
many n € N. In other words, for almost every «, sufficiently large N, and n = |V N, we

have g g
[Sn(e) = Spe(@)] _
n2
Since € > 0 was arbitrary, we can conclude
S Sh
lim n() S
N—ooo N2 n?

for almost every a € (1,2), where n = |v/N|. By (B.12),

lim Sw(a)

N—oo 7?,2

=0,

where n = |V/N|. Now since 0 < SNT@ < Sﬁga), it follows that SNT@ — 0 as n — oo.
Equivalently, by the definition of Sy,

1 & 1 &
~ > Flar, o) — ~ > up—0 (B.13)
k=1 k=1

as N — oo. Now by Theorem 44,

(1461~ F) (b4-(£+1) b~ F)

f: b—1 Gk log (b0~ T F)(1+(£+1) 16 F)
oo b— (140~ 15~ %) (b4 (£+1) 16~ F)
- Z 1 f(k e) AD (k> — lOg (b+£~1b~ k)(1+(€+1)—1b—k)
k=0 ¢=1 14 log 2 bH
oo b—1 . 1
<4 Al f( : < A A/n—1
) ; £ U0+ )b ; ; BT

for some constant A;. Thus for almost every a € (1,2),

A4+~ R b+ (e+1) "1 F)

oo b—1 lOg -
nh_{go Uy = Z F(k,0) (b+£- 111 M +(e+1) b k))
k=0 (=1 0g P
so indeed,
N 0o b1 log (L0 F) (b+(e41) 10 F)

1 - — —_ —
lim — Zun = Z f(k,é) (b+£—1b k)(12-|b-(ﬁ+1) 1p k),

n=1 k=0 (=1 lOg b+1



at which point (B.13) gives

ngr;o—Zf nyCa) = )

- A+~ R b+ (41 "1~ F)
k=0 (=1 log 377

b—-1

log = =
f(k‘,f) (b+€—1b=k) (14 (¢+1)~1b=F)

Y

for almost every a € (1,2). H
We can now prove the desired theorems.

Proof of Theorem 7. Fix k € Z>o and ¢ € {1,2,...,b—1}. Let

1, ifs=kandt=7F
oo

0; otherwise.
Clearly f(s,t) < 2 < 3(tb*)*/* so f satisfies the conditions of Theorem B.4. Now

{neN:a, =k, c,="(}
N—o0 N ’

so Theorem B.4 immediately gives, for almost every « € (1,2) that

A+ R) b+ (1)~ F)
P (k 6) = lim |{7’L eN: an = k’, Cnh = €}| - log b+ T F)(1+(0+1) 1o F)
o] ) - g

N—oo N log bi—_bl

b

proving the theorem. [

Proof of Theorem 48. Define f(s,t) = log,(tb°) = s + log, . Notice that we can choose
C' > 0 such that log,(z) < Cx'/? for all z > 1. Then if we take § = 1, we get

f(s,1) = log, (tb*) < C(tb*)"/* = C(tbs)%*‘s,

so f satisfies the conditions of Theorem B.4. We then get that for almost every a € (1,2).

| 0o b—1 log A+ B b+ (e+1) 1 F)
1 k 1p—k
A}l_{n Nlogb (cb™) = E log, (¢b") G li )(H( Do (B.14)
k=0 (=1 0g b+1

Now let u(k,?) = log(1 + £71b7%) and v(k) = u(k,¢) — u(k,¢ + 1). Notice that u(k,b) =
u(k+1,1). Then

b—1 log (14710 %) (b+(04+1) b k)

i log, (£H) (= T5-F) (1 (1)~ To-F)
b %
=0 (=1 log =55
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oo b—1

10 T 2 ZZ k+log, O)[u(k, ) + u(k + 1,04+ 1) —u(k+1,¢) — u(k, 0+ 1)]
8 b+l k=0 (=1

b—1 oo
1 B
— ZZk+logb (k) —v(k+1)] = 1—21’<A+@)’

10g b+1 ¢=1 k=0 08 p11

where
b—1 oo b—1 oo oo b—1

A= kpk) — o+ D1 =D ok) =Y > ulk,0) —u(k, 0 +1)
/=1 k=0 /=1 k=1 k=1 ¢=1
oo (e.) 1

= u(k, 1) —u(k,b) => u(k,1) —u(k+1,1) = u(1,1) — lim u(k,1) = log (1 + -) :
k—o0 b

k=1 k=1

and

b—1
B = Zlogﬁz —v(k+1 Zlogﬂ(v( - hm v(k))
=1 >

—Zloﬁlo L i jog LT
PR e S TR T e R N T

b—1 1 1
:E 1 1 1+-) -1 1+ —
2 ogﬁ(og( —|—£> og< +€—|—1>)

b
1 1
= 1 1 1+- — 1 —1)1 14 -
E og/ og( ~|—€) ;:2 og (¢ )og( +£)

(=1

b—1
1 1
=logllog2 — Z (log(¢ — 1) — log ¢) log (1 + Z) —log(b—1)log (1 + 5)

(=2

= 1 1 1
= — 1 1—-1 14+-) -1 —1)1 14+-1.
;og< €> og(—kg) og(b )og(—i—b)

Thus we have

b—1 log (142710 F) (b4 (64+1) " 1b—F)

io: log gbk (10— F) (1+(64+1)~1b—F)
b 2b
k=0 (=1 log 777

1 1 1\ = 1 1
=~ |logblog [1+=) —log(b—1)log (1 log (1= = )log (1
1ogblogf—b<°g o (1) st (1) ZOg( 1) es W))

1 1 1 1 1 1
B — 1 1—-1 1 _ 1 1—-1 1 .
log blog 2% Z og( 5) og( * €> log blog 2L Z og( f) og( +£> A

b+1 (=2 2b ¢=2

~
Il
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Thus (B.14) becomes

N
1
lim — Z log, (c, ") = A,
n=1

N—oo N

from which it follows that for almost all a € (1, 2),

N—oo

N N

. i 1 N an

lim H cnban _ bth_)oo N Don=1logp(cab®n) _ b'A,
n=1

as required. H
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