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Abstract

Hofstadter’s Q-sequence remains an enigma fifty years after its introduction. Ini-

tially, the terms of the sequence increase monotonically by 0 or 1 at a time. But the

12th term exceeds the 11th by two, and monotonicity fails shortly thereafter. In this

paper, we add a third term to Hofstadter’s recurrence in the most natural way. We

show that this new recurrence, along with a suitable initial condition that naturally

generalizes Hofstadter’s initial condition, generates a sequence whose terms all increase

monotonically by 0 or 1 at a time. Furthermore, we give a complete description of the

resulting frequency sequence, which allows the nth term of our sequence to be efficiently

computed. We conclude by showing that our sequence cannot be easily generalized.

1 Introduction

The Hofstadter Q-sequence [4] is defined by the nested recurrence Q(n) = Q(n−Q(n−1))+
Q(n − Q(n − 2)) with the initial conditions Q(1) = Q(2) = 1. The first 11 terms of this
sequence, A005185 in the OEIS [9], are

1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, . . .

These terms increase monotonically with successive differences either 0 or 1. But, Q(12) = 8,
ending the successive difference property. Not long thereafter, Q(15) = 10 and Q(16) = 9,
ending the monotonicity. Calculating more terms leads one to the resignation that the
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Hofstadter Q-sequence is anything but well-behaved. While there appear to be some patterns
in the sequence, all such observation are as-yet purely emprical. Essentially nothing has been
rigorously proven about this sequence. Most critically, nobody has been able to prove that
Q(n) even exists for all n. If Q(n− 1) ≥ n for some n, then evaluating Q(n) would require
knowing Q(k) for some k ≤ 0. Since Q is only defined for positive indices, Q(n) (and all
subsequent terms) would fail to exist in this case. If a sequence is finite because of behavior
like this, we say that the sequence dies.

Hofstadter and Huber [5, 1] investigated the following familiy of recurrences, which gen-
eralize the Hofstadter Q-recurrence. For integers 0 < r < s, define

Qr,s(n) = Qr,s(n−Qr,s(n− r)) +Qr,s(n−Qr,s(n− s)).

They explored these recurrences experimentally for various initial conditions. This work led
them to conjecture that the sequences reulting from an all-ones initial condition always die,
except for (r, s) ∈ {(1, 1), (1, 4), (2, 4)}. The case (1, 1) is the Q-sequence, and the case (2, 4),
often called the W -sequence, displays even wilder behavior than the Q-sequence (A087777
in the OEIS). The sequence resulting from (r, s) = (1, 4), on the other hand, behaves much
more regularly. This sequence, known as the V -sequence (A063882 in the OEIS), was proven
to be monotone increasing by 0 or 1 at a time [1]. This growth property is known in the
literature as slow.

There has been substantial research concerning slow Hofstadter-like sequences. The most
famous example is perhaps the Hofstadter-Conway $10000 Sequence (A004001 in the OEIS),
given by A(n) = A(A(n − 1)) + A(n − A(n − 1)) with A(1) = A(2) = 1. Conway notably
offered a $10000 prize for an analysis of the behavior of this sequence. Colin Mallows solved
this problem a few years later [8]. Another prototypical example is Conolly’s [2] recurrence
C(n) = C(n − C(n − 1)) + C(n − 1 − C(n − 2)) with C(1) = C(2) = 1 as the initial
condition (A046699 in the OEIS). There are many examples of slow sequences that gener-
alize Conolly’s recurrence [3, 7], some of which have combinatorial interpretations involving
counting leaves in tree structures [7]. In addition, given a slow Hofstadter-like sequence, it
is possible to generate an infinite family of slow sequences with similar recurrences [6].

Most of the known examples of slow sequences have at least one of the following proper-
ties:

• An inner recursive call with a positive coefficient (like the firstA(n−1) in the Hofstadter-
Conway recurrence).

• A “shift” in at least one of the recurrence terms (like the −1 in the second term in
Conolly’s recurrence).

In fact, the only ones that have neither property are the V -sequence and sequences con-
structed from it [6]. We decided to search for additional slow, Hofstadter-like sequences
without these properties. The investigation of Hofstadter and Huber empirically rules out
two-term recurrences, so we began our search by considering the generic 3-term recurrence

Qr,s,t(n) = Qr,s,t(n−Qr,s,t(n− r)) +Qr,s,t(n−Qr,s,t(n− s)) +Qr,s,t(n−Qr,s,t(n− t))
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with integers 0 < r < s < t. The all-ones initial condition proved fruitless in our investi-
gation. However, the initial conditions V (1) = 1, V (2) = 2, V (3) = 3, V (4) = 4 generate
the V -sequence as well (offset by 3 terms) [1]. Thus, we focused our search on slow se-
quences with initial conditions of the form Qr,s,t(i) = i for i ≤ t. This allowed us to find
the sequence with (r, s, t) = (1, 2, 3). In this paper, we prove that this sequence is slow. In
fact, we completely characterize the terms of this sequence and exhibit an efficient algorithm
(polylogarithmic in the index n; polynomial bit complexity) for computing the nth term. In
particular, each term of this sequence appears at most twice, in contrast to the V -sequence,
whose terms appear at most three times [1]. In Section 2, we examine this sequence and
prove our results about it. Then in Section 3, we discuss some future directions, and we
show that one potential generalization of our sequence fails to yield other slow sequences.

2 Our sequence

We consider the sequence defined by the recurrence

B(n) = B(n− B(n− 1)) + B(n−B(n− 2)) + B(n−B(n− 3))

and the initial conditions B(1) = 1, B(2) = 2, B(3) = 3, B(4) = 4, B(5) = 5. The first few
terms of this sequence (A278055 in the OEIS) are

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 21, 21, . . .

The main thing we wish to prove is the following:

Theorem 1. For all n, B(n) − B(n− 1) ∈ {0, 1}. In other words, the sequence (B(n))n≥1

is slow.

We actually prove considerably more than just Theorem 1. We completely determine
the structure of this sequence. In the terms listed above, each positive integer appears no
more than twice (and at least once). We show that this is the case for all numbers, and we
completely characterize which numbers repeat.

We make use of the following auxiliary sequence (ai)i≥1
. Let a1 = 3, and for i ≥ 2, let

ai = 3ai−1 − 1. (This is sequence A057198 in OEIS.) This sequence has the closed form
ai =

5

2
3i−1 + 1

2
. Also, define a sequence of sets Si = {k · 3i + ai : k > 0, k ∈ Z}, and let

S =
⋃

i≥1

Si.

We have the following theorem.

Theorem 2. Let m be a positive integer. If m ∈ S, then m appears in the B-sequence twice.
Otherwise, m appears once. Furthermore, the B-sequence is monotone increasing.
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Theorem 2 implies Theorem 1, since Theorem 2 asserts both that the sequence is mono-
tone and that each positive integer appears in the sequence. Throughout the rest of this
section, we will end up proving Theorem 2, and consequently Theorem 1, by induction.
In doing so, we frequently assume that Theorem 2 holds up to some point. To make this
clear, we define the following indexed families of propositions (where m and n are positive
integers):

• Let Pm denote the proposition “For all integers 1 ≤ m′ ≤ m, ifm′ ∈ S, thenm′ appears
in the B-sequence twice. Otherwise, m′ appears once. Furthermore, the B-sequence is
monotone increasing as long as its terms are at most m.” In this way, Pm is essentially
the statement “Theorem 2 holds through value m.”

• Let Tn denote the proposition “The first n terms of the B-sequence are monotone
increasing. Furthermore, for all m appearing as one of these first n terms, if m ∈ S,
then m appears in these first n terms twice (unless this second occurrence would be
in position n + 1). Otherwise, m appears once.” In this way, Tn is essentially the
statement “Theorem 2 holds through index n.”

It should be clear from these definitions that the following three statements are equivalent:

• Theorem 2 is true.

• Pm holds for all m ≥ 1.

• Tn holds for all n ≥ 1.

We first show that the sets Si are pairwise disjoint.

Lemma 3. Let i and j be positive integers. If i 6= j, then Si ∩ Sj = ∅.

Proof. Suppose for a contradiction that, for some integers i, j ≥ 1 with i 6= j, k1 · 3
i + ai =

k2 · 3
i+j + ai+j. Then

ai+j − ai = k1 · 3
i − k2 · 3

i+j = 3i(k1 + k2 · 3
j).

In particular, ai+j − ai must be divisible by 3i.
But, using the closed form,

ai+j − ai =

(

5

2
· 3i+j−1 +

1

2

)

−

(

5

2
· 3i−1 +

1

2

)

=
5

2

(

3i+j−1 − 3i−1
)

=
5

2
· 3i−1

(

3j − 1
)

.

This is clearly not divisible by 3i, a contradiction. Therefore, no such i and j can exist, so
there is at most one i ≥ 1 such that m ≡ ai (mod 3i), as required.
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For a value m, we examine the number of values less than m that are repeated. Define
R(m, i) = max

(

0,
⌊

m−ai−1

3i

⌋)

. This floored quantity counts the pairs (k, i) such that k · 3i +
ai < m. If Pm holds, then this is also the number of repeated values m′ < m with m′ ∈ Si.
If we now let

R(m) =
∞
∑

i=1

R(m, i),

we have that R(m) is the total number of repeated values less than m (provided that Pm

holds.) This sum converges because only the logarithmically many terms with ai − 1 ≤ m
are nonzero.

We now have the following lemmas.

Lemma 4. Let m be a positive integer. Suppose Pm−1 holds. Then B(m+R(m)−1) = m−1,
and B(m + R(m)) ≥ m. (In other words m + R(m) − 1 is the last index in our sequence
with value at most m− 1.)

Proof. The number of terms before the first occurrence of a term greater than or equal to
m is at least m− 1, since each number smaller than m must appear at least once. The first
occurrence of such a term is “delayed” by 1 index for every smaller value that is repeated.
The number of such repeated values is R(m). So, there are m− 1 +R(m) terms before the
first occurrence of a term greater than or equal to m. This means that the last occurrence
of m− 1 is in position m+R(m)− 1, as required.

An immediate consequence of Lemma 4 is that B(m+R(m)) in fact equals m, provided
that Pm holds.

Lemma 5. Let m be a multiple of 3. If m−1 ∈ Si for i ≥ 2, then R(m, i) = R
(

m
3
, i− 1

)

+1.
Otherwise, R(m, i) = R

(

m
3
, i− 1

)

.

Proof. The lemma is clearly true if ai + 1 ≥ m, so we can assume without loss of generality
that ai + 1 < m and thereby ignore the max in the definition of R(m, i) when proving this
lemma.

We have

R(m, i) =

⌊

m− ai − 1

3i

⌋

=

⌊

m

3i
−

ai + 1

3i

⌋

and

R
(m

3
, i− 1

)

=

⌊ m
3
− ai−1 − 1

3i−1

⌋

=

⌊

m

3i
−

ai−1 + 1

3i−1

⌋

.

Since ai =
5

2
· 3i−1 + 1

2
,

ai + 1

3i
=

5

6
+

1

2 · 3i

and
ai−1 + 1

3i−1
=

5

6
+

1

2 · 3i−1
.
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The first of these definitely smaller, so R(m, i) ≥ R
(

m
3
, i− 1

)

. Furthermore, the above
fractions differ by 1

3i
, so R(m, i) ≤ R

(

m
3
, i− 1

)

+ 1.
The only way they can be unequal is if there is some integer ℓ such that

m

3i
−

ai−1 + 1

3i−1
< ℓ ≤

m

3i
−

ai + 1

3i
.

Since the bounds differ by 1

3i
and they have common denominator 3i, this can only happen

if ℓ = m
3i
− ai+1

3i
. This gives that m − ai + 1 = ℓ · 3i, or m − 1 = ℓ · 3i + ai for some integer

ℓ. Since ai + 1 < m, we must have ℓ ≥ 1. So, for R(m, i) = R
(

m
3
, i− 1

)

+ 1, we obtain that
m− 1 ∈ Si, as required.

Lemma 6. Let m be a multiple of 3. Then

m

3
+R

(m

3

)

=

{

R(m) + 1, if m− 1 ∈ S;

R(m) + 2, if m− 1 /∈ S.

Proof. As a consequence of Lemma 5 and Lemma 3,

R(m) =

{

R(m, 1) +R
(

m
3

)

, if m− 1 /∈ S;

R(m, 1) +R
(

m
3

)

+ 1, if m− 1 ∈ S.

We also have

R(m, 1) =

⌊

m− a1 − 1

3

⌋

=

⌊

m− 4

3

⌋

=
m

3
− 2.

Substituting this into the above and rearranging terms gives the required form.

Lemma 7. Let m be a multiple of 3. Then m− 1 ∈ S if and only if m
3
∈ S.

Proof. (=⇒) Suppose m− 1 ∈ S. Then m− 1 = k · 3i + ai for some positive integers k and
i. Then m = k · 3i + ai + 1. But, ai = 3ai−1 − 1, so m = k · 3i + 3ai−1. This means
that m

3
= k · 3i−1 + ai−1, so

m
3
∈ Si−1 ⊆ S.

(⇐=) Suppose m
3

∈ S. Then m
3

= k · 3i + ai for some positive integers k and i. Then
m = 3k · 3i + 3ai. But, ai+1 = 3ai − 1, so m = k · 3i+1 + ai+1 + 1. This means that
m− 1 = k · 3i+1 + ai+1, so m− 1 ∈ Si+1 ⊆ S.

Lemma 8. Let m ≥ 6 be a multiple of 3. Suppose Pm−1 holds. Then if m − 1 repeats we
have B(R(m) + 1) = m

3
. If m − 1 does not repeat we have B(R(m) + 1) = m

3
− 1. In both

cases we have
{

B(R(m) + 2) = m
3
;

B(R(m) + 3) = m
3
+ 1.

Proof. We look at the two cases separately.
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m− 1 repeats: Then m− 1 ∈ S. So, by Lemma 6, R(m) + 1 = m
3
+ R

(

m
3

)

. By Lemma 4,
B(R(m)+1) = m

3
. Furthermore, by Lemma 7, m

3
∈ S (and hence repeats), so B(R(m)+

2) = m
3
as well. Since values appear at most twice, we then have B(R(m)+3) = m

3
+1,

as required.

m− 1 does not repeat: Then m − 1 /∈ S. So, by Lemma 6, R(m) + 2 = m
3
+ R

(

m
3

)

. By
Lemma 4, B(R(m) + 2) = m

3
and B(R(m) + 1) = m

3
− 1. Furthermore, by Lemma 7,

m
3
/∈ S (and hence does not repeat), so B(R(m) + 3) = m

3
+ 1.

We are now ready to prove Theorem 2.

Proof. The proof is by induction on n, the index in the sequence. For the base case, observe
that each term in the initial condition appears once, and no such term in in S.

Now, suppose that Tn−1 holds, and suppose that we wish to show that B(n) = m for
some m ≥ 6. Also, suppose that Pm−1 holds. There are seven cases to consider, which cover
all possibilities. (Note that no repeated term is congruent to 1 mod 3, since a1 is divisible
by 3 and ai ≡ 2 (mod 3) for all i ≥ 2.)

m ≡ 0 (mod 3), first occurrence, m− 1 not repeated: In this case, m− 1 /∈ S and, by
Lemma 4, n = m+R(m). We have (using Lemma 8)

B(n) = B(n− B(n− 1)) +B(n−B(n− 2)) + B(n−B(n− 3))

= B(m+R(m)− (m− 1)) + B(m+R(m)− (m− 2))

+ B(m+R(m)− (m− 3))

= B(R(m) + 1) + B(R(m) + 2) +B(R(m) + 3)

=
(m

3
− 1

)

+
m

3
+
(m

3
+ 1

)

= m,

as required.

m ≡ 0 (mod 3), first occurrence, m− 1 repeated: In this case,m− 1 ∈ S and, by Lemma 4,
n = m+R(m). We have (using Lemma 8)

B(n) = B(n− B(n− 1)) +B(n−B(n− 2)) + B(n−B(n− 3))

= B(m+R(m)− (m− 1)) + B(m+R(m)− (m− 1))

+ B(m+R(m)− (m− 2))

= B(R(m) + 1) + B(R(m) + 1) +B(R(m) + 2)

=
m

3
+

m

3
+

m

3
= m,

as required.
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m ≡ 0 (mod 3), second occurrence, m− 1 not repeated: In this case, m− 1 /∈ S and,
by Lemma 4, n = m+R(m) + 1. We have (using Lemma 8)

B(n) = B(n− B(n− 1)) +B(n−B(n− 2)) + B(n−B(n− 3))

= B(m+R(m) + 1−m) + B(m+R(m) + 1− (m− 1))

+ B(m+R(m) + 1− (m− 2))

= B(R(m) + 1) + B(R(m) + 2) +B(R(m) + 3)

=
(m

3
− 1

)

+
m

3
+
(m

3
+ 1

)

= m,

as required.

m ≡ 0 (mod 3), second occurrence, m− 1 repeated: In this case,m− 1 ∈ S and, by Lemma 4,
n = m+R(m) + 1. We have (using Lemma 8)

B(n) = B(n− B(n− 1)) +B(n−B(n− 2)) + B(n−B(n− 3))

= B(m+R(m) + 1−m) + B(m+R(m) + 1− (m− 1))

+ B(m+R(m) + 1− (m− 1))

= B(R(m) + 1) + B(R(m) + 1) +B(R(m) + 2)

=
m

3
+

m

3
+

m

3
= m,

as required.

m ≡ 1 (mod 3): In this case, m − 1 is divisible by 3 and therefore definitely repeats (since
a1 = 3). This also means that R(m − 1) = R(m) − 1. By Lemma 4, n = m + R(m).
We have (using Lemma 8)

B(n) = B(n−B(n− 1)) + B(n−B(n− 2)) + B(n− B(n− 3))

= B(m+R(m)− (m− 1)) + B(m+R(m)− (m− 1))

+ B(m+R(m)− (m− 2))

= B(R(m) + 1) + B(R(m) + 1) + B(R(m) + 2)

= B(R(m− 1) + 2) + B(R(m− 1) + 2) + B(R(m− 1) + 3)

=
m− 1

3
+

m− 1

3
+

(

m− 1

3
+ 1

)

= m,

as required.
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m ≡ 2 (mod 3), first occurrence: In this case,m−2 is divisible by 3 and therefore definitely
repeats. This also means that R(m − 2) = R(m) − 1. By Lemma 4, n = m + R(m).
We have (using Lemma 8)

B(n) = B(n−B(n− 1)) + B(n−B(n− 2)) + B(n− B(n− 3))

= B(m+R(m)− (m− 1)) + B(m+R(m)− (m− 2))

+ B(m+R(m)− (m− 2))

= B(R(m) + 1) + B(R(m) + 2) + B(R(m) + 2)

= B(R(m− 2) + 2) + B(R(m− 2) + 3) + B(R(m− 2) + 3)

=
m− 2

3
+

(

m− 2

3
+ 1

)

+

(

m− 2

3
+ 1

)

= m,

as required.

m ≡ 2 (mod 3), second occurrence: In this case, m ∈ S, so R(m + 1) = R(m) + 1. Also,
R(m− 2) = R(m)− 1. By Lemma 4, n = m+R(m) + 1. We have (using Lemma 8)

B(n) = B(n−B(n− 1)) + B(n− B(n− 2)) + B(n− B(n− 3))

= B(m+R(m) + 1−m) +B(m+R(m) + 1− (m− 1))

+ B(m+R(m) + 1− (m− 2))

= B(R(m) + 1) + B(R(m) + 2) + B(R(m) + 3)

= B(R(m− 2) + 2) +B(R(m− 2) + 3) + B(R(m+ 1) + 2)

=
m− 2

3
+

(

m− 2

3
+ 1

)

+

(

m+ 1

3

)

= m,

as required.

We have the following corollary.

Corollary 9. We have

lim
n→∞

B(n)

n
=

2

3
.

Proof. If B(n) = m, then n = m+R(m) or n = m+R(m) + 1. So, it suffices to show that

lim
m→∞

m

m+R(m)
=

2

3
,
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for which it is sufficient to show that

lim
m→∞

R(m)

m
=

1

2
.

For each i ≥ 1, we have

lim
m→∞

R(m, i)

m
=

1

3i
.

So,

lim
m→∞

R(m)

m
= lim

m→∞

1

m

∞
∑

i=1

R(m, i)

=
∞
∑

i=1

lim
m→∞

R(m, i)

m

=
∞
∑

i=1

1

3i

=
1

2
,

as required.

To prove Corollary 9, it would have sufficed to prove that the limit exists. Based on the
form of the recurrence defining the B-sequence, this limit must be 2

3
if it exists [3].

2.1 Algorithm for computing the sequence

Theorem 2 leads to an efficient algorithm for calculating B(n). For a given m and i, com-
puting R(m, i) requires only elementary arithmetic operations. So, R(m, i) can be computed
in polynomial time in the number of bits representing m and i. Since only logarithmically
many terms in the sum for R(m) are nonzero, this means that R(m) itself can be computed
efficiently.

To compute B(n), we seek an m such that n = m + R(m). It may be the case that no
such m exists, in which case we need to be able to say that no such m exists, and we need
to find m such that n = m + R(m) + 1. This task can be done efficiently using a binary
search. We know that B(n) ≤ n, so for an initial upper bound on m we can use n (and
we can use 1 as a lower bound). So, in at most O(log(n)) steps, we can either find an m
so that n = m + R(m) or show that none exists. In the latter case, the final lower bound
we find for m is such that n = m + R(m) + 1. The total running time of this algorithm is
polylogarithmic in n, or, equivalently, polynomial in the number of bits used to represent n.
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3 Beyond our sequence

According to the work of Isgur et al. [6], our B-sequence is the fundamental member of
an infinite family of slow sequences with similar recurrences. (The next one satisfies the
recurrence B′(n) = B′(n−B′(n−2))+B′(n−B′(n−4))+B′(n−B′(n−6)).) As mentioned
in the introduction, this family and the family resulting from the V -sequence comprise the
only known examples of slow Hofstadter-like sequences with all recurrence terms of the form
D(n − D(n − i)) for some i. The author has conducted a search for other such sequences
without finding another (nontrivial) example. An obvious idea would be to generalize the
B-recurrence to the k-term recurrence

Bk(n) =
k

∑

i=1

Bk(n− Bk(n− i)) (1)

(where B3 is the B-recurrence and B2 is the Q-recurrence). If k = 1, the initial condition
B1(1) = 1 generates the all-ones sequence, which, while technically slow, is not particularly
interesting. Unfortunately, we have the following result:

Theorem 10. The B-sequence is the only nontrivial slow sequence resulting from a recur-
rence Bk with an initial condition of the form Bk(i) = i for all i ≤ N for some N .

The bulk of the Theorem 10 follows from the following proposition:

Proposition 11. Suppose k ≥ 4. The sequence generated by Equation (1) with the initial
condition Bk(i) = i for all i < k2+k

2
satisfies

Bk

(

1

2
k3 +

1

2
k2 + 2k + 1

)

= Bk

(

1

2
k3 +

1

2
k2 + 2k

)

+ 2.

In particular, the sequence has a jump of difference 2, so it is not slow.

Proof. For simplicity of notation, let N = k2+k
2

. We now show that, for 1 ≤ r ≤ k + 1 and
−k ≤ qk + r < (N − k)(k + 1)

Bk(N + q(k + 1) + r) = N + qk + r − 1.

We observe that the last k terms of the initial condition correspond to q = −1 and r = 1
through r = k. These all satisfy Bk(N + q(k + 1) + r) = N + qk + r − 1, as required. We
also have, when q = −1 and r = k + 1,

Bk(N) =
k

∑

i=1

Bk(N −Bk(N − i)) =
k

∑

i=1

Bk(N − (N − i))

=
k

∑

i=1

Bk(i) =
k

∑

i=1

i = N,
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as required.
Now, let q(k + 1) + r > 0 and suppose inductively that

Bk(N + q′(k + 1) + r′) = N + q′k + r′ − 1

for all −k ≤ q′(k+1)+ r′ < q(k+1)+ r < (N − k+1)(k+1). Using Equation (1), we have

Bk(N + q(k + 1) + r)

=
k

∑

i=1

Bk(N + q(k + 1) + r −Bk(N + q(k + 1) + r − i))

=
r−1
∑

i=1

Bk(N + q(k + 1) + r −Bk(N + q(k + 1) + r − i))

+
k

∑

i=r

Bk(N + q(k + 1) + r − Bk(N + q(k + 1) + r − i))

=
r−1
∑

i=1

Bk(N + q(k + 1) + r − (N + qk + r − i− 1))

+
k

∑

i=r

Bk(N + q(k + 1) + r − (N + (q − 1)k + (r − i+ k + 1)− 1))

=
r−1
∑

i=1

Bk(q + i+ 1) +
k

∑

i=r

Bk(q + i).

Since q ≤ N − k (and, if q = N − k, then r ≤ k), this equals

r−1
∑

i=1

(i+ q + 1) +
k

∑

i=r

(i+ q) = r − 1 + qk +
k

∑

i=1

i = N + qk + r − 1,

as required.
Now, for simplicity of notation, let A = (N − k + 1) (k + 1). We now show that, for

0 ≤ r ≤ k − 2, Bk(N + A + r) = N + (N − k + 1) k + r − 1. (Note that these values are 1
less than they would be if the previous pattern continued.) Inductively, suppose this holds

12



for all r′ < r. We now apply Equation (1) to calculate

Bk(N + A+ r)

=
k

∑

i=1

Bk(N + A+ r −Bk(N + A+ r − i))

=
r

∑

i=1

Bk(N + A+ r −Bk(N + A+ r − i))

+
k

∑

i=r+1

Bk(N + A+ r −Bk(N + A+ r − i))

=
r

∑

i=1

Bk(N + A+ r − (N + (N − k + 1) k + r − i− 1))

+
k

∑

i=r+1

Bk(N + A+ r − (N + (N − k) k + (k + 1 + r − i)− 1))

=
r

∑

i=1

Bk(A+ i+ 1− (N − k + 1) k) +
k

∑

i=r+1

Bk(A+ i− (N − k + 1) k)

=
r

∑

i=1

Bk(N − k + i+ 2) +
k

∑

i=r+1

Bk(N − k + i+ 1)

= N +
r

∑

i=1

(N − k + i+ 2) +
k−1
∑

i=r+1

(N − k + i+ 1)

= N + (N − k + 1) k + r − 1,

as required. The above calculation is also valid for r = k− 1, except that Bk(N − k+ i+ 2)
would be Bk(N + 1) when i = k − 1. Recall that Bk(N + 1) = N , rather than N + 1. So,
we obtain Bk(N + A+ k − 1) = N + (N − k + 1)k + k − 3.

13



We now apply Equation (1) to compute

Bk(N + A+ k)

=
k

∑

i=1

Bk(N + A+ k − Bk(N + A+ k − i))

= Bk(N + A+ k − Bk(N + A+ k − 1))

+
k

∑

i=2

Bk(N + A+ k −Bk(N + A+ k − i))

= Bk(N + A+ k − (N + (N − k + 1) k + k − 3))

+
k

∑

i=2

Bk(N + A+ k − (N + (N − k + 1) k + k − i− 1))

= Bk(A− (N − k + 1) k + 3) +
k

∑

i=2

Bk(A− (N − k + 1) k + i+ 1)

= Bk(N − k + 4) +
k

∑

i=2

Bk(N − k + i+ 2)

= Bk(N − k + 4) +
k−2
∑

i=2

Bk(N − k + i+ 2) +Bk(N + 1) + Bk(N + 2)

= N − k + 4 +
k−2
∑

i=2

(N − k + i+ 2) + 2N + 1

= N + (N − k + 1) k + k − 1.

(Observe that these calculations are only valid because k ≥ 4, as otherwise N − k+4 would
be larger than N .) So, we have Bk(N + A + k) = Bk(N + A + k − 1) + 2. Recalling the
values of N and A, we have that N + A+ k = 1

2
k3 + 1

2
k2 + 2k + 1, as required.

We now complete the proof of Theorem 10.

Proof. Fix a positive integer N . Consider Equation (1) with the initial condition Bk(i) = i
for 1 ≤ i ≤ N . Suppose that the sequence we obtain is slow. Clearly, we need N ≥ k, or
else Bk(N + 1) is undefined. Supposing that N ≥ k, we have

Bk(N + 1) =
k

∑

i=1

Bk(N + 1−Bk(N + 1− i))

=
k

∑

i=1

Bk(N + 1− (N + 1− i)) =
k

∑

i=1

Bk(i) =
k

∑

i=1

i =
k2 + k

2
.
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So, unless N ∈
{

k2+k
2

− 1, k
2+k
2

}

, we would not have Bk(N+1)−Bk(N) ∈ {0, 1}. According

to Proposition 11, N = k2+k
2

− 1 does not result in a slow sequence for k ≥ 4. Similarly,

N = k2+k
2

does not result in a slow sequence for k ≥ 4, as this sequence is identical to the

one for N = k2+k
2

− 1 (since the first N terms are the same). So, we must have N ≤ 3. The
case N = 1 results in a trivial sequence, N = 2 give the Hofstadter Q-sequence (which is not
slow), and N = 3 gives our B-sequence. Therefore, the B-sequence is the only nontrivial
slow sequence resulting from Equation (1) with an initial condition of the form Bk(i) = i for
all i ≤ N for some N , as required.
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