

Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.7

Extending a Recent Result on Hyper *m*-ary Partition Sequences

Timothy B. Flowers Department of Mathematics Indiana University of Pennsylvania Indiana, PA 15705 USA flowers@iup.edu

Shannon R. Lockard Department of Mathematics Bridgewater State University Bridgewater, MA 02324 USA Shannon.Lockard@bridgew.edu

Abstract

A hyper *m*-ary partition of an integer *n* is defined to be a partition of *n* where each part is a power of *m* and each distinct power of *m* occurs at most *m* times. Let $h_m(n)$ denote the number of hyper *m*-ary partitions of *n* and consider the resulting sequence. We show that the hyper m_1 -ary partition sequence is a subsequence of the hyper m_2 -ary partition sequence, for $2 \le m_1 \le m_2$.

1 Introduction

In 2004, Courtright and Sellers [2] defined a hyper m-ary partition of an integer n to be a partition of n for which each part is a power of m and each power of m occurs at most m

times. They denote the number of hyper *m*-ary partitions of *n* as $h_m(n)$ and showed that they satisfy the following recurrence relation:

$$h_m(mq) = h_m(q) + h_m(q-1),$$
 (1)

$$h_m(mq+s) = h_m(q), \text{ for } 1 \le s \le m-1.$$
 (2)

Several of these hyper *m*-ary partition sequences can be found in the On-line Encyclopedia of Integer Sequences [7]. In particular, h_2 is <u>A002487</u>, h_3 is <u>A054390</u>, h_4 is <u>A277872</u>, and h_5 is <u>A277873</u>.

The sequence h_2 <u>A002487</u>, the hyperbinary partition sequence, is well known. It is commonly known as the Stern sequence based on Stern's work [8]. Northshield [5] gives an extensive summary of the many uses and applications of <u>A002487</u>. Calkin and Wilf [1] also studied h_2 , outlining a connection between this sequence and a sequence of fractions they defined and used to give an enumeration of the rationals. Since then, several authors have studied similar restricted binary and *m*-ary partition functions; see [3, 4, 6] for additional examples.

In this paper, we will be analyzing hyper *m*-ary partitions of *n* while also considering the base *m* representation of *n*. Thus, it will be convenient to have clear and distinct notation. In particular, for $m \ge 2$, let $(n_r, n_{r-1}, \ldots, n_1, n_0)_m$ be the base *m* representation of positive integer *n* where $0 \le n_i < m, n_r \ne 0$, and $n = \sum_{i=0}^r n_i m^i$. Also, for $2 \le m_1 < m_2$ and $n = (n_r, n_{r-1}, \ldots, n_1, n_0)_{m_1}$, we define a change of base function, $F_{m_1,m_2}(n) = (n_r, n_{r-1}, \ldots, n_1, n_0)_{m_2}$.

Next, we write a hyper *m*-ary partition of *n* as $[x_r, x_{r-1}, \ldots, x_1, x_0]_m$ where $0 \le x_i \le m$ and $n = \sum_{i=0}^r x_i m^i$. Here, we may allow any of the x_i to be 0 so that each hyper *m*-ary partition of *n* is the same length *r* as the base *m* representation of *n*. Furthermore, let $H_m(n)$ be the set of all distinct hyper *m*-ary partitions of *n*. Observe that $h_m(n)$ is the cardinality of this set.

Recently, the authors gave an identity relating h_2 to h_3 and then generalized this identity to show that h_2 is a subsequence of h_m for any m [4]. This result involved giving a bijection between $H_2(\ell)$ and $H_m(k)$, where $k = F_{2,m}(\ell)$. In this note, the authors will follow a similar process to show that h_{m_1} is a subsequence of h_{m_2} , for $2 \le m_1 \le m_2$.

2 A preliminary example

Consider the integer $37 = (1, 1, 0, 1)_3$ and use the change of base function to find the integer with the same digits in base 4. In particular, $F_{3,4}(37) = (1, 1, 0, 1)_4 = 81$. Now consider the hyper 3-ary partitions of 37 and the hyper 4-ary partitions of 81.

$$37 = 1 \cdot 3^{3} + 1 \cdot 3^{2} + 1 \cdot 3^{0}
= 1 \cdot 3^{3} + 3 \cdot 3^{1} + 1 \cdot 3^{0}
= 3 \cdot 3^{2} + 3 \cdot 3^{1} + 1 \cdot 3^{0}
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0}
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0}
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0}
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0}
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{2} + 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0} \\
= 4 \cdot 4^{1} + 1 \cdot 4^{0}$$

Adopting the notation for hyper m-ary partitions and the sets of these partitions, rewrite these partitions in the following way:

$$H_{3}(37) = \{ [1,1,0,1]_{3}, [1,0,3,1]_{3}, [0,3,3,1]_{3} \}; H_{4}(81) = \{ [1,1,0,1]_{4}, [1,0,4,1]_{4}, [0,4,4,1]_{4} \}.$$

Note that the number of hyper 3-ary partitions of 37 is the same as the number of hyper 4-ary partitions of 81. In other words,

$$h_3(37) = h_4(F_{3,4}(37)) = h_4(81).$$

We also observe that the coefficients of the partitions are similar, indicating that there is a relationship between the partitions in each set. This relationship will be further explored in the next section.

3 Bijections between hyper *m*-ary partitions and hyper (m+1)-ary partitions

We now verify the result suggested by the example in the prior section by considering hyper m-ary partitions of an integer ℓ and the hyper (m + 1)-ary partitions of $k = F_{m,m+1}(\ell)$.

Lemma 1. For a positive integer ℓ , let $k = F_{m,m+1}(\ell)$. Define $g_m : H_{m+1}(k) \to H_m(\ell)$ by mapping

$$[c_r, c_{r-1}, \ldots, c_2, c_1, c_0]_{m+1} \mapsto [b_r, b_{r-1}, \cdots, b_2, b_1, b_0]_m$$

according to the following rules:

$$c_i = 0 \longrightarrow b_i = 0$$

$$c_i = 1 \longrightarrow b_i = 1$$

$$\vdots$$

$$c_i = m - 2 \longrightarrow b_i = m - 2$$

$$c_i = m - 1 \longrightarrow b_i = m - 1$$

$$c_i = m \longrightarrow b_i = m - 1$$

$$c_i = m + 1 \longrightarrow b_i = m.$$

Then g_m is a bijection.

Proof. It is clear from the definition that g_m is a function. So we first show that g_m is oneto-one. Suppose $x = [x_r, x_{r-1}, \ldots, x_2, x_1, x_0]_{m+1}$ and $y = [y_r, y_{r-1}, \ldots, y_2, y_1, y_0]_{m+1}$ are two hyper (m + 1)-ary partitions of k such that $x \neq y$. Then there must be at least one digit that doesn't match. Let $J = \{j_1, j_2, \ldots, j_n\}$ be the set of indices such that $x_j \neq y_j$. Then we have two cases. First suppose without loss of generality that there is an index j such that $x_j \notin \{m-1, m\}$. Then the j^{th} digit of $g_m(x)$ will be different than the j^{th} digit of $g_m(y)$. Thus $g_m(x) \neq g_m(y)$.

Now suppose that $x_j \in \{m-1, m\}$ and $y_j \in \{m-1, m\}$ for all $j \in J$. Let $J_1 = \{j \in J : x_j = m-1\}$ and $J_2 = \{j \in J : x_j = m\}$. Note that $y_j = m$ for all $j \in J_1$ and $y_j = m-1$ for all $j \in J_2$. Also observe that

$$\begin{aligned} x &= \sum_{j \notin J} x_j m^j + \sum_{j \in J_1} (m-1) m^j + \sum_{j \in J_2} m \cdot m^j \\ y &= \sum_{j \notin J} y_j m^j + \sum_{j \in J_1} m \cdot m^j + \sum_{j \in J_2} (m-1) m^j. \end{aligned}$$

Since $x_j = y_j$ for all $j \notin J$,

$$\begin{aligned} x - y &= \sum_{j \in J_1} (m - 1 - m) m^j + \sum_{j \in J_2} (m - m + 1) m^j \\ &= \sum_{j \in J_2} m^j - \sum_{j \in J_1} m^j. \end{aligned}$$

Observe that x - y = 0 since x and y are two different hyper (m + 1)-ary partitions of the same number k, implying

$$\sum_{j \in J_2} m^j - \sum_{j \in J_1} m^j = 0.$$

However, since J_1 and J_2 are disjoint, this is impossible. Thus it must be the case that when $x \neq y$, one of x_j or y_j must be outside of $\{m - 1, m\}$ so that $g_m(x) \neq g_m(y)$ as seen above. Thus g_m is one-to-one.

To show that g_m is onto, consider $b = [b_r, b_{r-1}, \dots, b_2, b_1, b_0]_m \in H_m(\ell)$. We then define $c = [c_r, c_{r-1}, \dots, c_2, c_1, c_0]_{m+1}$ in the following way. If $b_i \in \{0, 1, 2, \dots, m-3, m-2\}$, then set $c_i = b_i$ and if $b_i = m$, set $c_i = m + 1$. Now suppose $b_i = m - 1$. Let v be the minimal index with v < i such that $b_v \neq m - 1$. If v does not exist, then set $c_i = m - 1$. If v does exist with $b_v = m$, then set $c_i = m$. If v exists with $b_v \in \{0, 1, 2, \dots, m-2\}$, then set $c_i = m - 1$. Notice that we may verify that $c \in H_{m+1}(k)$ by converting c into the base m + 1 representation of k. Therefore b is the image of c under g_m and thus g_m is onto.

This bijection implies that the number of *m*-ary partitions of any integer ℓ is the same as the number of (m + 1)-ary partitions of $F_{m,m+1}(\ell)$.

4 Hyper m_1 -ary partitions and hyper m_2 -ary partitions

In this section, we use the result of Lemma 1 to define a more general bijection between $H_{m_1}(n)$ and $H_{m_2}(F_{m_1,m_2}(n))$ for $m_2 > m_1 + 1$. To do this, we need the following lemma about hyper m_2 -ary partitions of an integer n.

In the following proof, observe that multiplying a partition $[x_r, x_{r-1}, \dots, x_2, x_1, x_0]_m$ by m corresponds to shifting the coefficients to the left one place and adding an additional 0 as the last coefficient.

Lemma 2. Let $m_2 > m_1 + 1$. If the base m_2 representation of an integer n contains only digits from the set $\{0, 1, 2, ..., m_1 - 1\}$, then there are no hyper m_2 -ary partitions of n which use any of the coefficients $m_1, m_1 + 1, ..., m_2 - 2$.

Proof. We will prove this by induction on n. Assume that for all q < n, when the base m_2 representation of q contains only digits from the set $\{0, 1, 2, \ldots, m_1 - 1\}$, then there are no hyper m_2 -ary partitions of n which use any of the coefficients $m_1, m_1 + 1, \ldots, m_2 - 2$.

First, consider when $n = m_2 q$ and suppose that in base m_2 the digits of n come from the set $\{0, 1, 2, \ldots, m_1 - 1\}$. This means the digits in the base m_2 representation of q also come only from this set. Now, apply the recurrence (1) to write $h_{m_2}(m_2q) = h_{m_2}(q) + h_{m_2}(q-1)$. This implies that every hyper m_2 -ary partition of n is obtained from either a hyper m_2 -ary partition of q - 1.

Observe that a hyper m_2 -ary partition of n obtained from a hyper m_2 -ary partition of q is found by multiplying the latter partition by m_2 , thereby shifting the coefficients of q and appending a 0 at the end. This results in hyper m_2 -ary partitions of n whose coefficients are the same as the coefficients of hyper m_2 -ary partitions of q, along with an additional 0. Similarly, a hyper m_2 -ary partition of n that is obtained from a hyper m_2 -ary partition of q - 1 is found by shifting the digits of the latter partition and appending an m_2 to the end. This means we may write

$$H_{m_2}(n) = \{ [x_r, x_{r-1}, \cdots, x_2, x_1, x_0, 0]_{m_2} : [x_r, x_{r-1}, \cdots, x_2, x_1, x_0]_{m_2} \in H_{m_2}(q) \} \\ \cup \{ [x_r, x_{r-1}, \cdots, x_2, x_1, x_0, m_2]_{m_2} : [x_r, x_{r-1}, \cdots, x_2, x_1, x_0]_{m_2} \in H_{m_2}(q-1) \}.$$

Since q-1 and q are less than n, by the induction hypothesis we know the coefficients of all hyper m_2 -ary partitions of q-1 and q are from the set $\{0, 1, 2, \ldots, m_1 - 1, m_2 - 1, m_2\}$. Thus, the coefficients of any hyper m_2 -ary partition of n are also from this set.

Now assume that $n = m_2q + s$, where $1 \le s \le m_2 - 1$. Observe that since the base m_2 representation of n contains only digits from the set $\{0, 1, 2, \ldots, m_1 - 1\}$, then we must have $1 \le s \le m_1 - 1$. Furthermore, when $n = m_2q + s$, apply the recurrence (2) to conclude that a hyper m_2 -ary partition of n is obtained from a hyper m_2 -ary partition of q by multiplying the latter partition by m_2 and appending s to the end, where $1 \le s \le m_1 - 1$. So,

$$H_{m_2}(n) = \{ [x_r, x_{r-1}, \cdots, x_2, x_1, x_0, s]_{m_2} : [x_r, x_{r-1}, \cdots, x_2, x_1, x_0]_{m_2} \in H_{m_2}(q) \}.$$

Since q < n, the coefficients of all hyper m_2 -ary partitions of q are in the set $\{0, 1, 2, \ldots, m_1 - 1, m_2 - 1, m_2\}$. Since s is an element of this set, we conclude that the coefficients of hyper m_2 -ary partitions of n come from the same set.

Therefore, in all cases, the hyper m_2 -ary partitions of n never contain any of the coefficients $m_1, m_1 + 1, \ldots, m_2 - 2$.

Now we are ready to prove there is a bijection between hyper m_1 -ary partitions of an integer ℓ and hyper m_2 -ary partitions of $k = F_{m_1,m_2}(\ell)$.

Lemma 3. Let ℓ be a positive integer and set $k = F_{m_1,m_2}(\ell)$. Define $\phi : H_{m_2}(k) \to H_{m_1}(\ell)$ by mapping

 $[c_r, c_{r-1}, \ldots, c_2, c_1, c_0]_{m_2} \mapsto [b_r, b_{r-1}, \cdots, b_2, b_1, b_0]_{m_1}$

according to the following rules:

$$c_i = 0 \longrightarrow b_i = 0$$

$$c_i = 1 \longrightarrow b_i = 1$$

$$\vdots$$

$$c_i = m_1 - 1 \longrightarrow b_i = m_1 - 1$$

$$c_i = m_2 - 1 \longrightarrow b_i = m_1 - 1$$

$$c_i = m_2 \longrightarrow b_i = m_1.$$

Then, ϕ is a bijection.

Proof. If $m_2 = m_1 + 1$, then the result follows immediately from Lemma 1. So, we assume that $m_2 > m_1 + 1$. From the definition of k, we know the base m_2 representation of k includes only digits less than or equal to $m_1 - 1$. So, we apply Lemma 2 to conclude that none of the hyper m_2 -ary partitions in $H_{m_2}(k)$ have any coefficients between m_1 and $m_2 - 2$, inclusive. Thus, ϕ need only specify how to map coefficients from the set $\{0, 1, \ldots, m_1 - 1, m_2 - 1, m_2\}$.

Now, using the bijection g_m given in Lemma 1, define a new function $G: H_{m_2}(k) \to H_{m_1}(\ell)$ as follows:

$$G = g_{m_1} \circ g_{m_1+1} \circ g_{m_1+2} \circ \dots \circ g_{m_2-2} \circ g_{m_2-1}$$
 .

It is clear from Lemma 1 that when we apply G to any m_2 -ary partition coefficient which is less than or equal to $m_1 - 1$, the coefficient maps to itself. When we apply G to a partition coefficient of $m_2 - 1$, we see that

$$m_2 - 1 \xrightarrow{g_{m_2-1}} m_2 - 2 \xrightarrow{g_{m_2-2}} m_2 - 3 \xrightarrow{g_{m_2-3}} \cdots \xrightarrow{g_{m_1}} m_1 - 1$$
.

Finally, when we apply G to a partition coefficient of m_2 , we see that

$$m_2 \xrightarrow{g_{m_2-1}} m_2 - 1 \xrightarrow{g_{m_2-2}} m_2 - 2 \xrightarrow{g_{m_2-3}} \cdots \xrightarrow{g_{m_1}} m_1$$
.

Thus, $G = \phi$.

We have ϕ equal to a finite composition of bijective functions. Therefore, ϕ is a bijection.

Lemma 3 leads to the following identity between values of h_{m_1} and h_{m_2} .

Theorem 4. Let $2 \leq m_1 < m_2$. For positive integer ℓ , set $k = F_{m_1,m_2}(\ell)$. Then

$$h_{m_2}(k) = h_{m_1}(\ell).$$

Proof. The values ℓ and k given here match Lemma 3 and we know that $h_{m_1}(\ell) = |H_{m_1}(\ell)|$ and $h_{m_2}(k) = |H_{m_2}(k)|$. Lemma 3 gives a bijection between these finite sets. Therefore, we conclude that the sets must have the same cardinality.

As an immediate corollary, we now state a final result regarding the relationships between hyper m-ary partition sequences for different values of m.

Corollary 5. Let $2 \leq m_1 \leq m_2$. Then h_{m_1} is a subsequence of h_{m_2} .

These theorems extend the results in [4], ultimately showing that the subsequence identity holds for any hyper m_1 -ary and hyper m_2 -ary partition sequences.

5 Acknowledgments

The authors wish to thank the referee for insightful comments and suggestions. This feedback helped us clarify the notation and improved the overall quality of the paper.

References

- N. Calkin and H. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), 360–363.
- [2] K. Courtright and J. Sellers, Arithmetic properties for hyper *m*-ary partition functions, *Integers* 4 (2004), A6.
- [3] J. Eom, G. Jeong, and J. Sohn, Three different ways to obtain the values of hyper *m*-ary partition functions, *Bull. Korean Math. Soc.* **53** (2016), 1857–1868.
- [4] T. B. Flowers and S. R. Lockard, Identifying an *m*-ary partition identity through an *m*-ary tree, *Integers* 16 (2016), A10.
- [5] S. Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly 117 (2010), 581–598.
- [6] B. Reznick, Some binary partition functions, in B. Berndt, ed., Analytic Number Theory: Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, pp. 451– 477.
- [7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2017.

[8] M. A. Stern, Über eine zahlentheoretische Funktion, J. Reine Angew. Math. 55 (1858), 193–220.

2010 Mathematics Subject Classification: Primary 05A17. Keywords: integer partition, hyper m-ary partition.

(Concerned with sequences <u>A002487</u>, <u>A054390</u>, <u>A277872</u>, and <u>A277873</u>.)

Received June 30 2016; revised versions received February 9 2017; June 13 2017; June 23 2017. Published in *Journal of Integer Sequences*, July 1 2017. Minor revision, July 30 2017.

Return to Journal of Integer Sequences home page.