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Abstract

This paper presents an extended version of the well-known Faulhaber formula,
which is used to compute the sum of the m-th powers of the first n natural numbers,
where m and n are two natural numbers. Our expression is analogous to Faulhaber’s
formula, but sums the m-th powers of the natural numbers < x for any non-negative
real number z.

1 Introduction

For two natural numbers m,n € Ny, the Faulhaber formula [1], which was found by Jacob
Bernoulli around 1700, provides a very efficient way to compute the sum of the m-th powers
of the first n natural numbers. It is given by
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where the B’s are the Bernoulli numbers.
In this paper, we will prove the analogous expression for the sum Z,Ei]o k™, where x € Ry
and m € Ny, in terms of Bernoulli polynomials By (z) instead of Bernoulli numbers By.. This
expression is given by
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Theorem 1. (extended Faulhaber formula)
For any x € Ry we have that
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We have searched this version of Faulhaber’s formula in the literature, but we have not
found it and therefore we believe that this result is new.

2 Definitions

As usual, we denote the floor of z by |x| and the fractional part of x by {z}.

Definition 2. For k € Ny we define the k-th Bernoulli polynomial By(x) via the following
exponential generating function [2]:
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Definition 3. The k-th Bernoulli number B, is defined as the value of the k-th Bernoulli
polynomial By(x) at x = 0 [2], that is

Moreover, we get from the definition of the Bernoulli polynomials [1] that
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3 Proof of the extended Faulhaber formula

In this section we will prove our extended version of Faulhaber’s formula.

Proof. Let m,n € Ny be two natural numbers. Starting from [1] the usual Faulhaber formula

i km _ zm: (m + 1) nm—k-{—l’
k=0

we obtain




Setting here n := |z| = x — {x} for some = € R}, we get
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where we have used the binomial theorem
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fora:=x,b:={z}and n:=m—Fk+ 1.
We now interchange the order of summation and use the binomial identity
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to obtain that
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If we use now the following explicit formula [3, Proposition 23.2, p. 86] for the Bernoulli

polynomials
n
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for n:=m — 1+ 1 and x := {z}, we get
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In the above formula we can change variables according tol :=m —k+1<=k=m—1+1
and use the symmetry of the binomial coefficients
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to conclude that
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Finally, if we use the fact that By(z) = 1 Va € R, we get our claimed formula
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for all z € Ry. O

Remark 4. The ordinary Faulhaber formula follows by setting x :=n € Ny in our developed



extension, because

Ln)

Skr=d o
k=0 k=0

m—+41

1 0 Buni1 1 s, m+1 .

— m —1)m E -1 B m—k+1
m+1n +(=1) m+1+m+1k1( ) k k{n)n

1 B,, R, 1
— —nm+1 + (_1)m +1 + Z(—l)k (m + >Bknmk+1

m—+1 m—+1 m+1k:1 k
= (=)= —1 Byn™ 1
( )m+1+m+1;( LU ) Ben

1 & 1
— (_1)k m+ Bknmflwrl7
m—I—lkZO k

where we have used that By ({n}) = Bx(0) = By, for all k € Ny.
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