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Abstract

A recent analysis of returns and hills of generalized Dyck paths is carried over to
the language of t-ary trees, from which, by explicit bivariate generating functions, all
the relevant results follow quickly and smoothly. A conjecture about the (discrete)
limiting distribution of hills is settled in the affirmative.

1 Introduction

In a recent paper in this journal [2], generalized Dyck paths where investigated: they have
an up-step u = (1,1) and a down-step d = (1, —t + 1), where ¢t > 2, start at the origin, end
on the z-axis, and never go below the z-axis. A general reference for such lattice paths is an
encyclopedic paper by Banderier and Flajolet [1].

Two parameters were investigated (with the help of Riordan arrays): the number of
returns to the z-axis (the origin itself does not count), and the number of (contiguous)
subpaths of the form u’~'d, that sit on the z-axis.

In the present note, I would like to emphasize that the language of trees, in particular
t-ary trees, is favorable here, because it allows one to write the relevant generating functions
with ease, without any mentioning of Riordan arrays, and also leads to settling a conjecture
mentioned in the recent paper mentioned before [2].

The family of t-ary trees is recursively described: such a tree is either an external node
(depicted as a square), or a root (an internal node, depicted as a circle), followed by subtrees
(in this order) Ti,...,T;. For this and many other concepts, we refer to the universal book
by Flajolet and Sedgewick [3]. The generating function T'(2) = )" ., a,2", where a, is the
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number of trees of size n (n internal nodes) is, following the recursive definition, given by
T(z) =1+ 2T"(z). Extracting coefficients is efficiently done by setting z = u/(1 + u)*, thus
T =1+ u, and contour integration; the method is closely related to the Lagrange inversion
formula. Here is an example:

T4 = 5 § e T

- 2mi
1 du(1 +u — tu)(1 + w)t D ) L
= o (1 + w)tHiynt! (1+u)

= [u"](1 + u — tu)(1 + w)mHrt
_ (m+k—1> —(t—1)(m+k_1>
n n—1
_k(ftn+k—1
B n( n—1 >
This produces in particular (for £ = 1) the numbers a,, = %(ntfl).

There is a natural bijection between the family of generalized Dyck paths and the family
of t-ary trees. It is based on the decomposition of paths according to the first return to
the z-axis. The first part of the Dyck paths is (recursively) responsible for the first ¢ — 1
subtrees, and the rest of the Dyck path for the remaining ¢-th subtree. It is then apparent
that the number of down-steps is the same as the number of internal nodes of the associated

tree. Here is the situation depicted for ¢ = 3.
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Figure 1: The decomposition of generalized Dyck paths leading (recursively) to a ternary
tree with subtrees 17,715, T5.

Now a little reflection convinces us that the number of returns is the same as the number
of (internal) nodes on the path from the root to the rightmost leaf. And, further: the number
of hills is the number of nodes on this rightmost path with the property that its first ¢t — 1
subtrees are empty (are the empty subtree, consisting only of an external node).



Figure 2: A ternary tree with 10 (internal) nodes. It has 6 returns and 3 hills.

In what follows, we will analyze these parameters in terms of t-ary trees. In particular,
we will freely speak about returns and hills of t-ary trees.
Cameron and McLeod [2], defined the negative binomial distribution via

k—1

r—1

P{Y =k} = ( )p’“(l —p)

This is somewhat in contrast with the book Analytic Combinatorics [3] and Wikipedia, as
it is a shifted version, and the roles of p and 1 — p are interchanged from the more common
definitions. Nevertheless, we will stick to this definition here, for the reason of comparisons.
The numbers r and p are called the parameters of the distribution.

2 The number of returns on t-ary trees

Let F(z,v) be the generating function with respect to the size and the number of returns,
i. e., the coefficient of z"v* is the number trees with n internal nodes and & returns. Then
we find the equation

F(z,v) =1+ 2T (2)vF(z,v).

Since 27" 1(2) = T(z);l, this leads to the explicit form

T(z
1
F(z,v) | It
T(z)
Therefore T(2) - 1k i
o= (Cr) = ()
[V*]F (2, v) T T u



Furthermore
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Division by a, gives the probability that a random tree of size n has k returns:

("5 k1)
tn

PRy T

fixed k&, n — oo.

In order to compute the d-th (factorial) moment, we evaluate

ad
— =d! — 14 =g d
(%dF(Z’ v) . dT(2)(T(z) — 1) =dl(1+ u)u”.
Furthermore,
0" d t
n__ = n— ' —_ n
[z ]avdF(z,v) L [u" " dN (1 4+ u — tu)(1 + u)

:d!(ntfd) —d!(t—l)(n_t?_d) :W(n—?—d)'

For the expected value, we consider d = 1 and divide by a,,, with the result
(t+1)n ot
nt—1)+4+2 ¢t-1
The second factorial moment is obtained via d = 2, with the result
2(2t+ 1)n(n —1) N 2(2t + 1)
(tn—n+3)(tn—n+2) (t—1)2"

This leads to the variance:
n(t—1)(n—1)(tn+1) 2t
(tn—n+3){tn—n+2)2  (t—1)%
This section reproved and extended the results of [2] on the number of returns. Note that
the quantity k(ttkjrll)Q is P{Y = k + 1}, where Y is a random variable, distributed according

to the negative binomial distribution for r = 2 and p = %
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3 The number of hills on t-ary trees

Let G(z,v) be the generating function with respect to the size (variable z) and the number
of hills (variable v). Then we find the recursion

G(z,v) = 1+ 2T 1(2)G(z,v) + z(v — 1)G(z,v).
Since 27" !(2) =1 —1/T(z), we find the explicit solution
_ 1(z) _ _ \kkktl
G(z,v) = = 1T Z(v )27 (2).

k>0

By d-fold differentation, followed by setting v = 1, we get the generating function of the d-th
factorial moments (apart from normalization):

dlZ0T(2).
Furthermore,
d! dz
n drpd+1 o d+1
d [ du(l+u— tu)(1 4 w)tnm DT
o ynti-d

= dl[u" (1 +u — tu)(1 + u)' =0+
(") ()
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For d = 1, this leads to the expected value:

n 2 (tn—t—i—l) 2tn —t+ Dltn —n+ 1)1 2t —1)"2

("™ Yn—1 = —
(" )n—1\ n-2 t(tn — D(tn —n —t + 3)! -1

The variance evaluates to

n 6 (tn—2t+2) 2(tn —t+ D)!(tn —n + 1)! {2(tn—t+1)!(tn—n+1)!2
)n 2

(. n—3 titn — )!(tn —n —t + 3)! ttn —Dl(tn—n—t+3)! |’
which we do not attempt to simplify any further.
Writing

G(z,v) = Zgnykz"vk,
n,k



it is possible to derive an explicit form for the coefficients g, 5, but they are not as nice as
the corresponding quantities in the previous section:

G(z,v) =Y (v —1)FFTH(2)

k>0
k+1[(tn—(t—1)k
_ n - k
—Zz Z(v D n—k( n—1—k )
n>0 k>0

ST 5 (e (et

n>0 k>0 0<j<k J

w5 (Yt ()

J<k<n

This leads to

The limiting distribution of g, ;/a,, for j fixed, must thus be determined in a different
way.

We need a crash course in asymptotic tree enumeration here; all this can be found in
Flajolet and Sedgewick’s book [3], but compare also an older paper by Meir and Moon [4], in
particular the notion of simply generated families of trees. The procedure that we describe
here is closely related to the discussion in [3, Section IX-3], where very similar parameters
were analyzed.

We start from u = z¢(u), with ¢(u) = (1 4+ u)". The quantity 7 is determined via the
equation ¢(7) = 7¢/(7). In our case this leads to 7 = 7. Then there is the quantity
p= ﬁ, which here evaluates to
(t _ 1)t71

o

Then one knows by general principles that the function u(z) has a square-root singularity
around z = p, with the local expansion

p:

U~T—

o (7) 1—2z/p.

This is here

T(z):1+u~ti1— (tftl)gx/l—z/p.

This expansion will now be used inside of G(z,v), with the result (Maple):

2232
G(z,v) ~a— sV 1—2/p,

(t—1)32( 1+ (= 1)2 — (t — 1)20)




with a being an unimportant constant. Note that

V/212t-3/2

(t _ 1)3/2 (tt—l + (t _ 1)t—2 _ (t _ 1)t_21})2 -

2t
(t—1)%

Thus, the limiting distribution is given by the probability generating function

t2t—2
(tt_1+(t71)t_2)2

(tt—l (1) — (- 1)t—2v)2 a (1 _ (t1)t—2t_2v>2'

t?t—2

I (t—1)
The coefficient of v* in it given by

t2t_2 (t _ 1)(t—2)k‘

(k+1) (t1 + (t — 1)-2)F+2

which is P{Y = k + 2}, for a random variable Y, which follows the negative binomial

distribution with parameters r = 2 and p = %, as conjectured in [2].
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