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Abstract
In this short note, we prove a Ramanujan-type congruence modulo 5% (o > 1) for
As(n), which counts the number of 5-core bipartitions of n.

1 Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive integers
A1, Ao, ..., A, such that Z:Zl Ai = n. The \; are called the parts of the partition. For
example, the partitions of 4 are 4,3+ 1,2+2,24+ 1+ 1,14+ 1+ 1+ 1.

Given a partition [A] = A\; + Ao + -+ + A\, of n, where \y > Xy > -+ > A\, the Ferrers-
Young diagram of [A] is an array of nodes with \; nodes in the i** row. The (i, ) hook is the
set of nodes directly below, together with the set of nodes directly to the right of the (i, j)
nodes, as well as the (7, j) node itself. The hook number of (i, 7), denoted by H(i,j), is the
total number of nodes in the (7, j) hook. For a positive integer ¢ > 2, a partition of n is said
to be t-core if it has no hook numbers that are multiples of .

Example 1. The Ferrers-Young diagram of the partition A =5+ 3 + 2 of 10 is
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The nodes (1,1), (1,2),(1,3), (1,4),(1,5),(2,1),(2,2),(2,3),(3,1) and (3, 2) have hook num-
bers 7,6,4,2,1,4,3,1,2 and 1, respectively. Therefore A is 5-core. Note that A is t-core for
t>8.

A bipartition of n is a pair of partitions (A, x) such that the sum of all the parts of A and
i equals n. A bipartition with t-core of n is a bipartition (A, i) of n such that A and p are
both t-cores. Let A;(n) denote the number of bipartitions with ¢-cores of n. The generating
function for A;(n) is given by
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Here and throughout this note, we assume that |¢| < 1 and we follow standard g-series

notation:
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Motivated by the work of Ramanujan on congruences for unrestricted partition function p(n),
many mathematicians considered the function A;(n) and studied its congruence properties.
For example, Lin [3] established several congruences for As(n). Soon after, Xia [8] and Yao
9] extended the list of congruences for Az(n).

The main aim of this note is to prove the following Ramanujan-type congruence modulo
5% (a > 1) for As(n):

A5(5%n +5*—=2)=0 (mod 5%), a>1.

The following 5-dissection formula for (¢;¢)s was first stated by Ramanujan [4, p. 212]
without proof.

Lemma 2. [/, p. 212] We have
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Watson [5] presented a proof of (2) using the quintuple product identity.

Lemma 3. [2, eq. (7.4.14), p. 165 ] We have
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The following lemmas are useful to prove our main congruence for As(n):

Lemma 4. Let Y7 ja(n)q" = —%+. Then
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Proof. In view of (3), we have
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Extracting the terms involving ¢ n (5), dividing by ¢* and replacing ¢° by ¢, we obtain
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Berndt [2, Thm. 7.4.4] proved the following identity:
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Employing (7) in (6), we obtain (4). O

In a similar way, we have the following:
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Theorem 7. Let o be a integer > 1. Then
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Proof. From (1) and Lemma 5, we have
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which is same as (8) with a = 1. Suppose that (8) holds for some o > 1. From (8), Lemmas
4 and 6, we deduce
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That is, (8) holds for o + 1. This completes the proof by induction of (8). ]

From (8), we have the following congruence relation:

Theorem 8. For all integers n > 0 and a > 1,

As(5°n+5%—=2)=0 (mod 5%). (9)
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