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Abstract

We prove that the binomial transform T (a) of a Dold sequence a is a Dold sequence
itself. We also show that if a and T (a) are bounded Dold sequences then they are both
periodic with period 6.

1 Introduction

Let a = (an)n≥0 be a sequence of complex numbers. The binomial transform of the sequence
a is the sequence T (a) = (T (a)n)n≥0 defined in [16] by

T (a)n =
n
∑

i=0

(−1)i
(

n

i

)

ai, n ≥ 0.

The binomial transform is a linear involution and the original sequence a can be recovered
from the relation

an =
n
∑

i=0

(−1)i
(

n

i

)

T (a)i, n ≥ 0.

We say that a sequence of integers a = (an)n≥0 is a Dold sequence [11] if

∑

k|n

µ(k)an/k ≡ 0 (mod n), n ≥ 1, (1)
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where µ : N → Z is the Möbius function given by

µ(n) =











1, if n = 1;

(−1)k, if n = p1 · · · pk, pi, distinct primes;

0, otherwise.

It is easy to verify that a sequence of integers a is a Dold sequence a if and only if for every
prime p and natural numbers m,α such that gcd(p,m) = 1 we have

ampα ≡ ampα−1 (mod pα).

We will say that a sequence of integers a is a weak Dold sequence if for every prime number
p

ap ≡ a1 (mod p).

Obviously a Dold sequence is a weak Dold sequence. Babienko and Bogatyi proved
that if a Dold sequence is bounded, then it is periodic [11]. Among the Dold sequences,
the Lefschetz sequences play an important role from the point of view of applications in
dynamical systems. A sequence of integers a is a Lefschetz sequence if there exist a compact
ENR (i.e., Euclidean neighborhood retract) X and a continuous map f : X → X such that
an is the Lefschetz number L(fn) of the n-th iteration of f . Let us recall that a Lefschetz
number of f is defined by

L(f) =
∑

k≥0

(−1)ktrHk(f),

where Hk(f) : Hk(X) → Hk(X) is the endomorphism induced by f on the k-th singular
homology of X (with rational coefficients). One can prove [11] that a Dold sequence a =
(an)n≥1 is a Lefschetz sequence if and only if there are integer matrices A ∈ Mk(Z), B ∈
Mm(Z) such that

an = trAn − trBn, n ≥ 1.

In the sequel we will treat a Lefschetz sequence a = (an)n≥1 as a sequence a = (an)n≥0 with

a0 = trA0 − trB0.

If a is a Lefschetz sequence with B = 0 then we call it a sequence of traces of integer matrix,
i.e., an = trAn.

The aim of this note is to study the binomial transforms of Dold sequences. We show
that a is a Dold sequence if and only if its binomial transform T (a) is a Dold sequence
(Theorem 7). The proof of Theorem 7 is trivial if a is a Lefschetz sequence. Indeed, if a is
a sequence of traces then we have a closed formula for its binomial transform T (a), namely

T (a)n =
n
∑

i=1

(−1)i
(

n

i

)

trAi = tr (I − A)n,

2



so T (a) is a sequence of traces. In particular, binomial transform of the sequence of traces
is a Dold sequence. Obviously the same argument works in the case of a Lefschetz sequence
a with matrices A and B. Then T (a) is a Lefschetz sequence itself with matrices I −A and
I − B. Unfortunately, there are Dold sequences that are not Lefschetz sequences. Let us
observe that if a is a Lefschetz sequence then |an| ≤ kρn, where ρ is the spectral radius of
H(f) and k is a dimension of H(X). In particular, the sequence an =

∑

k|n k
k cannot be

obtained as a Lefschetz sequence although it is Dold sequence [11].
We also prove that if a is a Dold sequence such that a and T (a) are bounded then both

a and T (a) are 6-periodic. In particular, if a is l-periodic (non-constant) Dold sequence
with l 6= 6 then T (a) is unbounded (Theorem 9). This result has interesting consequences
from the point of view of the geometric method for detecting chaotic dynamics generated
by non-autonomous periodic in time ordinary differential equations based on the notion of
isolating segments [19, 20, 15, 17]. The above method gives a sufficient conditions for the
existence of the compact invariant set I for the Poincaré map P such that P restricted to I is
semi-conjugated to the shift map σ : Σ2 → Σ2 where Σ2 = {0, 1}Z i.e., there is a continuous
surjective map g : I → Σ2 such that g ◦P |I = σ ◦ g. The important dynamical question is if
for n-periodic sequence c ∈ Σ2 there exists n-periodic point x of the Poincaré map P such
that x ∈ g−1(c), i.e., trajectory of x is coded by the sequence c. In the context of results in
[20] it appears that there is a Dold sequence a with the property that T (a)k 6= 0 implies that
g−1(c) contains n-periodic point of P for every n-periodic sequence c ∈ Σ2 with k-symbols 1.
Our Theorem 9 guarantees the existence of infinitely many periodic points of the Poincaré
map.

It seems that the results we obtained can be also interesting from the point of view of
elementary number theory and combinatorics, because many classical integer sequences are
Dold sequences. For example, the k-Lucas sequences [6, 18], the generalized k-Fibonacci
sequences [5], sequences generated by Lucas functions [4, 6], and sequences generated by
Tchebycheff polynomials of the first kind [6, 9]. In particular, the classical Lucas sequence
L given by

Ln =

(

1 +
√

5

2

)n

+

(

1 −
√

5

2

)n

,

is a Dold sequence (even sequence of traces with the matrix A =

[

1 1
1 0

]

) and the following

congruences

1. if p is odd prime then L2p ≡ 3 (mod p),

2. for k ≥ 1 we have L2k ≡ 3 (mod 4).

3. if r ≥ 2 then L2r ≡ 7 (mod 8).

considered by the authors in [1, 12, 13] easily follow by Eq. (1).
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We will finish this paper with the results concerning the sequences of the form

an(l, r) =
∑

s≡r (mod l)

(−1)s
(

n

s

)

, bn(l, r) = lan(l, r), n ≥ 0.

where l ≥ 2 and r ∈ {0, . . . , l−1} are fixed. The congruences related to these sequences were
studied in [21, 22]. As the application of Theorem 7 we get that for l ≥ 2 and r ∈ {0, . . . , l−1}
the sequence b(l, r) is a Dold sequence exactly if one of the following conditions holds

1. l ≥ 2 and r = 0,

2. l = 2r and r ≥ 1.

We also show that an(l, 0) = 0 if and only if l is odd and n
l
∈ 2N + 1. It is easy to check

that if a is l-periodic then T (a)n =
∑l−1

r=0 aran(l, r). We prove that if a is l-periodic (weak)
Dold sequence and l is prime then

T (a)n = an(l, 0)(a0 − a1), n ≥ 0.

2 Main results.

Lemma 1. Let a be a sequence of integers. Then a is a weak Dold sequence if and only if
T (a) is a weak Dold sequence.

Proof. Since T is an involution so it is sufficient to show that T (a) is a weak Dold sequence
provided a is a weak Dold sequence. We have

T (a)1 = a0 − a1, T (a)2 = a0 − 2a1 + a2,

and a1 ≡ a2 (mod 2) so

T (a)2 ≡ a0 + a2 ≡ a0 + a1 ≡ a0 − a2 ≡ T (a)1 (mod 2).

Let p be odd prime. Then

T (a)p =

p
∑

i=0

(−1)i
(

p

i

)

ai ≡ a0 − ap ≡ a0 − a1 ≡ T (a)1 (mod p),

because p|
(

p
i

)

for i = 1, . . . , p− 1.

Lemma 2. Let a be a l-periodic weak Dold sequence (l ≥ 2). If gcd(n, l) = 1 then an = a1.
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Proof. It follows by Dirichlet’s theorem that there exist infinitely many primes in the se-
quence kl + n. Let p be a prime of the form kl + n such that p > |an − a1|. Since a is a
l-periodic weak Dold sequence, we have

an = ap ≡ a1 (mod p).

Hence p|an − a1 and consequently an = a1.

Corollary 3. Let a be a l-periodic weak Dold sequence with l prime. Then

T (a)n = an(l, 0)(a0 − a1), n ≥ 0,

where an(l, 0) =
∑

s≡0 (mod l)(−1)s
(

n
s

)

.

Proof. It follows by Lemma 2 that the l-periodic sequence a has the form

a1 = . . . = al−1, a0 = al,

hence

T (a)n =





∑

s≡0 (mod l)

(−1)s
(

n

s

)



 a0 +





∑

s 6≡0 (mod l)

(−1)s
(

n

s

)



 a1

= an(l, 0)(a0 − a1)

because
∑n

s=0(−1)s
(

n
s

)

= 0.

We recall the characterization of Dold sequences given in [6]. Let us note that Dold
sequence in [6] is called a generalized Fermat sequence. Let c = (cn)n≥1 be a sequence of
integers. We say that sequence a is a Newton sequence generated by c if

an = c1an−1 + c2an−2 + · · · + cn−1a1 + ncn, n ≥ 1.

Remark 4. Assume that c is a finite sequence, i.e., there exists m ≥ 1 such that cn = 0 for
n > m. One can check [6] that then

an = trMn
m, n ≥ 1

where Mm is the companion matrix of the polynomial xm−c1x
m−1−c2x

m−2−· · ·−cm−1x−cm,
i.e.,

Mm =















0 0 · · · 0 cm
1 0 · · · 0 cm−1

0 1 · · · 0 cm−2
... 0

. . . 0
...

0 · · · 0 1 c1















∈ Mm(Z)
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Proposition 5. Let a = (an)n≥1 be a sequence of integers. Then a is a Dold sequence if and
only if there exists an integer sequence c such that a is a Newton sequence generated by c.

Proof. It follows by [6, Thm. 5, Thm. 6].

Lemma 6. Let a = (an)n≥1 be a sequence of integers. Then a is a Dold sequence if and only
if for every m ≥ 1 there exists a matrix Am ∈ Mm(Z) such that

an = trAn
m, 1 ≤ n ≤ m.

Proof. We first prove the part “if”, so we assume that a is a Dold sequence. Let c be a
sequence of integers such that a is a Newton sequence generated by c. Let m ≥ 1 be fixed.
Let us consider a finite sequence c(m) such that

c(m)n =

{

cn, if 1 ≤ n ≤ m;

0, otherwise.

Let b be a Newton sequence generated by c(m). Then

bn = trMn
m, n ≥ 1,

and an = bn for 1 ≤ n ≤ m by definition of the Newton sequence, so the result follows.
We now prove the “only if” part. We have to show that a is a Dold sequence. Let m ≥ 1

be fixed. We show that
∑

k|m

µ(k)am/k ≡ 0 (mod m).

By assumption there exists a matrix Am ∈ Mm(Z) such that

an = trMn
m, 1 ≤ n ≤ m.

Let b be a sequence defined by bn = trAn
m, n ≥ 1. Then b is a Dold sequence and an = bn

for 1 ≤ n ≤ m. In particular,

∑

k|m

µ(k)am/k =
∑

k|m

µ(k)bm/k ≡ 0 (mod m),

so the proof is complete.

Theorem 7. Assume that a = (an)n≥0 is a sequence of integers. Then a is a Dold sequence
if and only if T (a) is a Dold sequence.

Proof. Since T is an involution, it is sufficient to show that T (a) is a Dold sequence provided
that a is a Dold sequence. Let m ≥ 2 be fixed. We have to show that

∑

k|m

µ(k)T (a)m/k ≡ 0 (mod m).
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By Lemma 6 there exists a matrix Am ∈ Mm(Z) such that

an = trAn
m, 1 ≤ n ≤ m.

Let ã be a sequence defined by
ãn = trAn

m.

Then
a1 = ã1, am = ãm, ã0 = m,

and T (ã) is a Dold sequence given by

T (ã)n = tr (I − Am)n, n ≥ 0.

In particular,
∑

k|m

µ(k)T (ã)m/k ≡ 0 (mod m).

Let 1 ≤ n ≤ m. Then

T (ã)m =
n
∑

i=0

(−1)i
(

n

i

)

ãi = m− a0 +
n
∑

i=0

(−1)i
(

n

i

)

ai = m− a0 + T (a)m.

Consequently, we get that

∑

k|m

µ(k)T (a)m/k =
∑

k|m

µ(k)T (ã)m/k + (m− a0)





∑

k|m

µ(k)





=
∑

k|m

µ(k)T (ã)m/k ≡ 0 (mod m),

because
∑

k|m µ(k) = 0 for m ≥ 2. The proof is complete since m ≥ 2 was arbitrary.

Let a be a Lefschetz sequence with matrices A and B. We call a complex number λ ∈ C

an essential eigenvalue of the pair (A,B) if the algebraic multiplicity of λ as the eigenvalue
of A is different from the algebraic multiplicity of λ as the eigenvalue of B. By σess(A,B) we
denote the set of all essential eigenvalues of (A,B). Let ρess := ρess(A,B) be the essential
spectral radius of (A,B), i.e.,

ρess = max{|λ| : λ ∈ σess(A,B)}.

Remark 8. Assume that a Dold sequence a = (an)n≥0 is bounded. It follows by [11, Theorem
3.1.26] that a is a periodic Lefschetz sequence with l-periodic matrices A and B. We treat
a as the sequence (an)n≥0 with a0 = trA0 − trB0. Then a0 = al and binomial transform of
a is given by

T (a)n = tr (I − A)n − tr (I − B)n, n ≥ 0.
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Theorem 9. If a is a Dold sequence and a, T (a) are bounded then (an)n≥1, (T (a))n≥1 are
6-periodic.

Proof. Since a is bounded Dold sequence, it follows by [11, Theorem 3.1.26] that a is l-
periodic Lefschetz sequence with l-periodic matrices A, B (i.e., Al = Ik, Al = Im). In
particular,

σ(A), σ(B) ⊂ {1, ω, . . . , ωl−1},
where ω = e

2πi

l is a primitive root of unity. We treat a as a sequence

an = trAn − trBn, n ≥ 0,

so
T (a)n = tr (I − A)n − tr (I − B)n, n ≥ 0.

Observe that λ ∈ σess(A,B) if and only if 1 − λ ∈ σess(I − A, I − B) and T (a) is
periodic, because it is a bounded Dold sequence. Let 1 − λ ∈ σess(I − A, I −B) ∩ S

1. Then

|λ| = |1 − λ| = 1, so one can easily check that λ = e±
πi

3 . Observe that then 1 − λ = λ. It
follows that

σess(A,B) ∩ (S1 \ {1}) = σess(I − A, I −B) ∩ S
1 ⊂ {e±πi

3 }.
Suppose that ρ := ρess(I − A, I − B) > 1. Then there exists exactly one pair λ, λ ∈

{1, ω, . . . , ωl−1} such that
|1 − λ| = |1 − λ| = ρ.

Then

lim
n→∞

T (a)n
ρn

= g 6= 0,

so T (a) is unbounded, a contradiction. So we get that ρ ≤ 1. We show that

σess(I − A, I − B) ⊂ {0, e±
πi

3 }.

We have that

T (a)n =
∑

1−λ∈σess(I−A,I−B)∩{0,e±
πi
3 }

(1 − λ)n +
∑

1−λ∈σess(I−A,I−B)∩{z:0<|z|<1}

(1 − λ)n,

so the sequence
∑

1−λ∈σess(I−A,I−B)∩{z:0<|z|<1}

(1 − λ)n

is the periodic integer sequence that converge to 0, so we get that

σess(I − A, I −B) ∩ {z : 0 < |z| < 1} = ∅.

Corollary 10. If a is l-periodic (non-constant) Dold sequence with l 6= 6 then T (a) is
unbounded.
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3 Applications to binomial sums

Assume that l ≥ 2 and r ∈ Z. We define the l-periodic sequence a[l, r] = (an[l, r])n≥0 by

an[l, r] =

{

1, if n ≡ r (mod l);

0, otherwise.

Then a(l, r) = (an(l, r))n≥0 = T (a[l, r]) is its binomial transform where

an(l, r) =
∑

s≡r (mod l)

(−1)s
(

n

s

)

, n ≥ 0.

We define
b[l, r] := la[l, r], b(l, r) := la(l, r).

Remark 11. It follows by Corollary 3 we have

T (a) = a(l, 0)(a0 − a1), n ≥ 0,

if a is l-periodic Dold sequence with l prime. Moreover, by Eq. (1)

a0 = al ≡ a1 (mod l),

so T (a) = kb(l, 0) for some k ∈ Z.

Remark 12. The sequence b(l, r) is particularly interesting from the point of view of applica-
tions in the detection of chaotic dynamics [19, 20]. It turns out that it is closely related to the
sequence of indices of fixed points allowing to understand the nature of symbolic dynamics
for the Poincaré mapping associated with the periodic in time ordinary differential equations
[15, 17]. More specifically, let P be the Poincaré map for the planar periodic equation

ż = zk(1 + |z|2eiκt), z ∈ C.

For sufficiently small κ > 0 there exist a compact invariant set I for P and a continuous
surjective map g : I → Σ2 such that

g ◦ (P |I) = σ ◦ g,

where σ : Σ2 → Σ2 is the shift map [20]. It follows by [20] that if bn(k + 1, 0) 6= 0 and
c ∈ Σ2 is m-periodic sequence with n-symbols 1 then the Poincaré map P has m-periodic
point x ∈ I such that g(x) = c.

In this section we apply Theorem 7 to prove that for l ≥ 2 and r ∈ {0, . . . , l − 1} the
sequence b(l, r) is a Dold sequence if and only if l ≥ 2 and r = 0 or l = 2r and r ≥ 1.
We also prove Glaisher-type congruences for the sequence a(l, r). Moreover, we show that
an(l, 0) = 0 if and only if l is odd and n is an odd multiplicity of l.
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Remark 13. Let us observe that

bn(l, r) =
l−1
∑

t=0

ω−tr(1 − ωt)n, n ≥ 0,

where ω = e
2πi

l is a primitive l-root of unity. Indeed, it is well-known that

l−1
∑

t=0

ωts =

{

l, if l|s;
0, otherwise.

so we get that

l−1
∑

t=0

ω−tr(1 − ωt)n =
l−1
∑

t=0

ω−tr

n
∑

k=0

(−1)n−k

(

n

n− k

)

ωt(n−k)

=
n
∑

k=0

(−1)n−k

(

n

n− k

)

(

l−1
∑

t=0

ωt(n−k−r)

)

=
n
∑

s=0

(−1)s
(

n

s

)

(

l−1
∑

t=0

ωt(s−r)

)

= bn(l, r).

Theorem 14. The sequence b(l, 0) = (bn(l, 0))n≥0 is a sequence of traces. In particular,
b(l, 0) is a Dold sequence.

Proof. Let l ≥ 2 and ω = e
2πi

l . We consider the matrix Al ∈ Ml(Z) given by

Al =















0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
... 0

. . . 0
...

0 · · · 0 1 0















∈ Ml(Z).

One can check that Al has eigenvalues 1, ω, . . . , ωl−1, hence

tr (I − Al)
n =

l−1
∑

t=0

(1 − ωt)n = bn(l, 0).

Theorem 15. Let l ≥ 2 and r ∈ {1, . . . , l − 1}. The sequence b(l, r) is a Dold sequence if
and only if l = 2r.

Lemma 16. If l = 2r then b(2r, r) is a Dold sequence (even a Lefschetz sequence).
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Proof. For l = 2r and ω = e
2πi

l we have

bn(2r, r) =
l−1
∑

t=0

ω−tr(1 − ωt)n =
l−1
∑

t=0

(−1)t(1 − ωt)n

=
∑

t even

(1 − ωt)n −
∑

t odd

(1 − ωt)n.

Let us observe that 1, ω2, . . . , ωl−2 are roots of the polynomial λr−1 = 0 and the eigenvalues
of the matrix

A =















0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
... 0

. . . 0
...

0 · · · 0 1 0















∈ Mr(Z)

and ω, ω3, . . . , ωl−1 are roots of the polynomial λr + 1 = 0 and the eigenvalues of the matrix

B =















0 0 · · · 0 −1
1 0 · · · 0 0
0 1 · · · 0 0
... 0

. . . 0
...

0 · · · 0 1 0















∈ Mr(Z)

hence
bn(2r, r) = tr (I − A)n − tr (I −B)n,

so b(2r, r) is a Dold sequence (even Lefschetz sequence).

Remark 17. If n > 2 then there exists a prime number p < n such that gcd(n, p) = 1.
Indeed, if n is odd then one can take p = 2. If n = 2k is even then by Bertrand’s postulate
there is a prime p such that k < p < 2k.

Lemma 18. If l > 2 and r ∈ {1, . . . , l− 1} then the sequence b(l, r) is a weak Dold sequence
if and only if gcd(r, l) > 1. In particular, b(l, 1) is not a Dold sequence for l > 2.

Proof. Assume that l > 2. Since b(l, r) = T (b[l, r]), so by Theorem 7 it is sufficient to show
that b[l, r] is a weak Dold sequence if and only if gcd(r, l) > 1. Assume that gcd(r, l) > 1.
In particular, r > 1 so b1[l, r] = 0 by definition of the sequence b[l, r]. Since gcd(r, l) > 1,
there is no prime p of the form kl + r. Hence bp[l, r] = 0 for every prime p, and b[l, r] is a
weak Dold sequence.

Assume that b[l, r] is a weak Dold sequence and suppose that gcd(r, l) = 1. If r > 1 then
b1[l, r] = 0 and br[l, r] = l by definition. On the other hand b1[l, r] = br[l, r] by Lemma 2,
a contradiction. Let r = 1. Then b1[l, 1] = l by definition. By Remark 17 there is a prime
number p such that p < l and gcd(l, p) = 1. Then bp[l, 1] = b1[l, 1] = l by Lemma 2 and
bp[l, 1] = 0 by definition, a contradiction.
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Lemma 19. Let l > 2 and r ∈ {1, . . . , l − 1}. If b(l, r) is a Dold sequence then r > 1 and
r|l.

Proof. Assume that b(l, r) = la(l, r) is a Dold sequence. We may assume that gcd(r, l) > 1.
In particular, 2 ≤ r < l − 1. Then for 1 ≤ n < r we have bn(l, r) = 0 and br(l, r) = (−1)rl.
By Eq. (1) we get that

(−1)rl = br(l, r) =
∑

k|r

µ
( r

k

)

bk(l, r) ≡ 0 (mod r),

so the result follows.

Lemma 20. Assume l > 2 and r ∈ {1, . . . , l − 1}. If b(l, r) is a Dold sequence then l = 2r.

Proof. It follows by Theorem 7 that b[l, r] is a Dold sequence. By Lemma 19 we may assume
that r|l, so l = mr for some m > 1. By definition we have that br[l, r] = l and bn[l, r] = 0
for n ∈ {1, . . . , r(m + 1) − 1} \ {r}. Let p < m be a prime number. It follows by Eq. (1)
with n = pr that

∑

k|n

µ(k)bn/k[l, r] = br[l, r] = l ≡ 0 (mod n).

Hence pr|l = mr, and p|m. By Remark 17 we get that m = 2.

Proof of Theorem 15: It follows by Lemmas 16 and 20.

Lemma 21. The sequence bn(l, r) has properties

1. bn+1(l, r) = bn(l, r) − bn(l, r − 1) for n ≥ 0,

2. bn(l, r) = bn(l, r + l) for n ≥ 0.

Proof. A direct calculation shows that

bn+1(l, r) =
l−1
∑

t=0

ω−tr(1 − ωt)n+1 =
l−1
∑

t=0

ω−tr(1 − ωt)n −
l−1
∑

t=0

ω−t(r−1)(1 − ωt)n

= bn(l, r) − bn(l, r − 1).

Since ωl = 1 so

bn(l, r + l)) =
l−1
∑

t=0

ω−t(r+l)(1 − ωt)n = bn(l, r).

12



Theorem 22. Let l ≥ 2. Assume that q > 1 and k ≥ 1 are such that

ak+1(l, r) ≡











1 (mod q), if r ≡ 0 (mod l);

−1 (mod q), if r ≡ 1 (mod l);

0 (mod q), if r ≡ s ∈ {2, . . . , l − 1}.

Then for every r ∈ Z we have

an+k(l, r) ≡ an(l, r) (mod q), n > 0.

Proof. We have

a1(l, r) =











1, r ≡ 0 (mod l);

−1, r ≡ 1 (mod l);

0, otherwise,

so the result holds for n = 1. Assume that it holds for some n ≥ 1. Then by inductive step
and Lemma 21 we have

an+1+k(l, r) = an+k(l, r) − an+k(l, r − 1)

≡ an(l, r) − an(l, r − 1) = an+1(l, r) (mod q).

Example 23 (Glaisher). Assume that p is prime and b ≥ 1 is such that pb ≡ 1 (mod l).
Then for k = pb − 1 and q = p we get

an+pb−1(l, r) ≡ an(l, r) (mod p).

In particular, for l = p− 1 and b = 1 we get Glaisher’s congruence

an+p−1(p− 1, r) ≡ an(p− 1, r) (mod p), n > 0.

Example 24. Assume that q > 1 is an integer relatively prime to l ∈ Z
+. Let q =

∏t
s=1 p

αs

s ,
where p1, . . . , pt are distinct primes and αs ∈ Z

+. Put

νl(q) = LCM
(

pα1−1
1 (pβ1

1 − 1), . . . , pαt−1
t (pβt

t − 1)
)

,

where βs is the smallest positive integer with pβs

s ≡ 1 (mod m). Then we have [22]

a1+νl(q)(l, r) ≡











1 (mod q), if r ≡ 0 (mod l);

−1 (mod q), if r ≡ 1 (mod l);

0 (mod q), if r ≡ s ∈ {2, . . . , l − 1}.

Lemma 25. For n ≥ 0 and k ∈ Z we have
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1. b2n(l, n + k) = b2n(l, n− k),

2. b2n+1(l, n + k + 1) = −b2n+1(l, n− k).

Proof. The result is obvious for n = 0, because b0(l,m) = bl(0,−m) and

b0(l, r) =

{

l, r = kl;

0, otherwise.

For n ≥ 1 we get

b2n(l, n + k) =
l−1
∑

t=0

ω−t(n+k)(1 − ωt)2n =
l−1
∑

t=0

ω−t(n+k)(1 − 2ωt + ω2t)n

=
l−1
∑

t=0

ω−t(n+k)(ωtωt − 2ωt + ω2t)n =
l−1
∑

t=0

ω−tk(ωt + ωt − 2)n.

Since b2n(l, n + k) ∈ Z and ωt + ωt − 2 ∈ R, so

b2n(l, n + k) = bl(2n, n + k) =
l−1
∑

t=0

ωtk(ωt + ωt − 2)n = b2n(l, n− k).

By Lemma 21 and just proved formula we get

b2n+1(l, n + k + 1) = b2n(l, n + k + 1) − b2n(l, n + k)

= b2n(l, n− k − 1) − b2n(l, n− k)

= −(b2n(l, n− k) − b2n(l, n− k − 1)) = −b2n+1(l, n− k),

so the result follows.

Corollary 26. For n ≥ 0 we have bn(l, n) = (−1)nbn(l, 0).

Lemma 27. If l is even then (−1)rbn(l, r) > 0 for n ≥ 0.

Proof. If l is even then

(−1)rbn(l, r) = (−1)rl
∑

s≡r (mod l)

(−1)s
(

n

s

)

= (−1)rl
∑

s≡r (mod l)

(−1)r
(

n

s

)

= l
∑

s≡r (mod l)

(

n

s

)

> 0.

Lemma 28. If l is odd and n−2r
l

∈ 2N + 1 then bn(l, r) = 0.

14



Proof. Assume that n−2r
l

= 2k + 1. It follows that n − 1 is even, so by Lemma 25 with
k = r − n−1

2
we get that

bn−1(l, r) = bn−1(l, n− 1 − r).

By Lemma 21 we have

bn−1(l, r − 1) = bn−1(l, n− 1 − r + (2r − n))

= bn−1(l, n− 1 − r − (2k + 1)l) = bn−1(l, n− 1 − r)

hence by Lemma 25 we get

bn(l, r) = bn−1(l, r) − bn−1(l, r − 1)

= bn−1(l, n− 1 − r) − bn−1(l, n− 1 − r) = 0.

We will finish this paper with the result obtained in [17].

Theorem 29. Assume that l is odd. Then for n ≥ l − 1

(−1)rbn(l, r)











= 0, if n−2r
l

∈ 2N + 1;

> 0, if n−2r
l

∈ (4k − 1, 4k + 1);

< 0, if n−2r
l

∈ (4k + 1, 4k + 3).

Proof. We will use the induction with respect to n. Let n = l − 1. Observe that since l is
odd hence n−2r

l
cannot be an odd number. By definition

(−1)rbl−1(l, r) = (−1)s+rl

(

l − 1

s

)

= (−1)s−rl

(

l − 1

s

)

,

where s ∈ {0, . . . , l − 1} is such that s ≡ r (mod l). If l is odd then (−1)s−r = (−1)
r−s

l , so

(−1)rbl(l − 1, r) > 0 ⇔ r − s

l
∈ 2N ⇔

[r

l

]

∈ 2N

r

l
∈ [2m, 2m + 1) ⇔ l − 1 − 2r

l
∈
(

−4m− 1 − 1

l
,−4m + 1 − 1

l

]

.

Since l − 1 is even, so

l − 1 − 2r

l
/∈ (−4m− 1 − 1

l
,−4m− 1 +

1

l
),

hence

l − 1 − 2r

l
∈
(

−4m− 1 − 1

l
,−4m + 1 − 1

l

]

⇔ l − 1 − 2r

l
∈ (−4m− 1,−4m + 1).
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Similarly,

(−1)rbl−1(l, r) < 0 ⇔ l − 1 − 2r

l
∈
(

−4m + 1 − 1

l
,−4m + 3 − 1

l

]

⇔ l − 1 − 2r

l
∈ (−4m + 1,−4m + 3),

so the result is true for n = l − 1.
Assume that the conclusion is true for n− 1. We consider three cases. If n−2r

l
= 2k + 1

then it follows by Lemma 28 that bn(l, r) = 0.
Let n−2r

l
∈ (4k − 1, 4k + 1). Then the numbers

(n− 1) − 2(r − 1)

l
=

n− 2r

l
+

1

l
,

(n− 1) − 2r

l
=

n− 2r

l
− 1

l

lie in the interval [4k−1, 4k+ 1] and at least one of them is in the interior of [4k−1, 4k+ 1].
It follows by the inductive step that

(−1)r−1bn−1(l, r − 1) ≥ 0, (−1)rbn−1(l, r) ≥ 0

and at most one of them is an equality. Hence

(−1)rbn(l, r) = (−1)rbn−1(l, r) + (−1)r−1bn−1(l, r − 1) > 0.

In a similar way, for n−2r
l

∈ (4k + 1, 4k + 3), we get that

(−1)rbn(l, r) = (−1)rbn−1(l, r) + (−1)r−1bn−1(l, r − 1) < 0.

Corollary 30. Let l ≥ 2. Then bn(l, 0) = 0 if and only if l is odd and n
l
∈ 2N + 1.
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