
23 11

Article 15.3.4
Journal of Integer Sequences, Vol. 18 (2015),2

3

6

1

47

Abelian Complexity Function of the

Tribonacci Word

Ondřej Turek
Nuclear Physics Institute

Academy of Sciences of the Czech Republic
250 68 Řež

Czech Republic
and

Bogolyubov Laboratory of Theoretical Physics
Joint Institute for Nuclear Research

141980 Dubna
Russia

o.turek@ujf.cas.cz

Abstract

According to a result of Richomme, Saari and Zamboni, the abelian complexity of
the Tribonacci word satisfies ρ

ab(n) ∈ {3, 4, 5, 6, 7} for each n ∈ N. In this paper we
derive an automaton that evaluates the function ρ

ab(n) explicitly. The automaton takes
the Tribonacci representation of n as its input; therefore, (ρab(n))n∈N is an automatic
sequence in a generalized sense. Since our evaluation of ρab(n) usesO(logn) operations,
it is fast even for large values of n. Our result also leads to a solution of an open problem
proposed by Richomme et al. concerning the characterization of those n for which
ρ
ab(n) = c with c belonging to {4, 5, 6, 7}. In addition, we apply the same approach

on the 4-bonacci word. In this way we find a description of the abelian complexity of
the 4-bonacci word, too.

1 Introduction

The abelian complexity of a word u is a function N→ N that counts the number of pairwise
non-abelian-equivalent factors of u of length n. The term was introduced by Richomme, Saari

1

mailto:o.turek@ujf.cas.cz

and Zamboni [14] in 2009, and since then it has been extensively studied [2, 3, 6, 8, 11, 18, 19].
In one of the first papers on the subject, Richomme, Saari and Zamboni [15] examined the
Tribonacci word t A080843, which is the fixed point of the substitution 0 7→ 01, 1 7→ 02,
2 7→ 0, and they showed that ρabt (n) ∈ {3, 4, 5, 6, 7} for all n. They also characterized those
n for which ρabt (n) = 3, and proposed the following open problem: for each c ∈ {4, 5, 6, 7},
characterize those n for which ρabt (n) = c.

Explicit characterization of ρabu (n) of a given infinite word u is generally a difficult task,
particularly in case of words defined over alphabets consisting of more than two letters.
For example, despite the fact that a recurrent word over a ternary alphabet with constant
abelian complexity equal to 3 for all n ∈ N has been already constructed [14], there seems
to be no other nontrivial example to date of a recurrent m-ary word with m ≥ 3 whose
abelian complexity function has been precisely determined. In particular, the problem of
precise characterization of the abelian complexity ρabt (n) of the Tribonacci word t, which is
a ternary word, has remained open since 2009.

Recently Mousavi and Shallit [12] showed that many properties of the Tribonacci word,
such as the aperiodicity, powers, palindromes etc., could be examined purely mechanically
with the help of finite automata. Although in principle their method could also be used
for the study of the characteristics of the abelian complexity function of the Tribonacci
word, it turns out to be not computationally feasible. In this paper we propose a related
method that is particularly designed for dealing with abelian properties (primarily with
abelian complexity and the balance properties). Our approach is less general than the one
of Mousavi and Shallit, but it is efficient enough to explicitly obtain a finite automaton
that computes the function ρabt (n). The automaton in question features a very small set of
states, consisting of less than 70 elements. Consequently, it can be easily implemented on
any computer (a powerful machine is not needed), and the calculation can be even performed
by hand. The automaton takes the Tribonacci representation of n as its input, which means
that the sequence (ρabt (n))n∈N A216190 is T -automatic (or “Tribonacci-automatic”) in the
sense of Shallit [1, 16].

Our approach relies on the technique of abelian co-decomposition [19], which was origi-
nally developed as a tool for proving that the abelian complexity of a recurrent word attains
a certain value infinitely often. As a result, our construction of the automaton can be
generalized to certain other words as well.

The paper is organized as follows. In Section 2 we provide the necessary notation related
to abelian complexity, the Tribonacci word and finite automata. Section 3 summarizes basic
facts about abelian co-decomposition. Section 4 contains the core of the paper: we show
that there exists a finite number of sets Z1, . . . ,ZM such that each n ∈ N can be associated
with a certain Zq via the Tribonacci representation of n. Since each of those sets is related to
a certain value of the abelian complexity, the indices 1, . . . ,M can be regarded as states of a
finite automaton that evaluates ρabt (n). Section 5 is devoted to the first and easy application
of the findings from Section 4: we demonstrate that the abelian complexity of the Tribonacci
word takes values in {3, 4, 5, 6, 7}. Although this fact is already known [15], it illustrates the
applicability of our approach. The main result of the paper is presented in Section 6. We

2

http://oeis.org/A080843
http://oeis.org/A216190

derive a formula for evaluating the abelian complexity of the Tribonacci word on the basis
of results of Section 4. In particular, we show that the abelian complexity can be calculated
by a finite automaton with 278 states. This result is further improved in Section 7, where
the size of the automaton is reduced from 278 to 68 states. It is easy to transform this
automaton into an automaton that decides, for any n ∈ N, whether ρabt (n) attains a given
value c ∈ {3, 4, 5, 6, 7}, which provides a solution of the problem of Richomme et al. In
Section 8, we demonstrate that the method allows one to examine the abelian complexity
function of other m-bonacci words. In particular, we present results on the 4-bonacci word;
they show that the abelian complexity of m-bonacci words gains new properties when m

exceeds 3. The paper is concluded by Section 9, in which we discuss other applications and
generalizations of the method.

2 Preliminaries

Let us consider a set A = {0, 1, 2, . . . ,m − 1} (alphabet) consisting of m symbols (letters)
0, 1, . . . ,m − 1. Concatenations of letters from A are called words. Let A∗ denote the
free monoid of all finite words over A including the empty word ε. The length of a word
w = w0w1w2 · · ·wn−1 ∈ A

∗ is the number of its letters, |w| = n. The symbol |w|ℓ for ℓ ∈ A
and w ∈ A∗ stands for the number of occurrences of the letter ℓ in the word w.

The set of all infinite words over A is denoted by AN. We say that an infinite word u is
recurrent if every factor of u occurs infinitely many times in u.

A finite word w is a factor of a (finite or infinite) word u if there exists a finite word x
and a (finite or infinite, respectively) word y such that u = xwy. If x = ε, the factor w is
called a prefix of u.

For any word w ∈ A∗ and k ∈ N we write wk =

k times
︷ ︸︸ ︷
ww · · ·w. Similarly, we set w0 = ε.

If a word v ∈ AN has the prefix wk for k ∈ N, then the symbol w−kv stands for the word
satisfying wkw−kv = v.

The Parikh vector of w is the m-tuple Ψ(w) = (|w|0, |w|1, . . . , |w|m−1); note that |w|0 +
|w|1 + · · · + |w|m−1 = |w|. For any given infinite word u, let Pu(n) denote the set of all
Parikh vectors corresponding to factors of u having the length n, i.e.,

Pu(n) = {Ψ(w) |w is a factor of u, |w| = n} .

The abelian complexity of a word u is the function ρabu : N→ N defined as

ρabu (n) = #Pu(n), (1)

where # denotes the cardinality.
It is useful to introduce the relative Parikh vector [19], which is defined for any factor w

of u of length n as
Ψrel

u (w) = Ψ(w)−Ψ(u[n]) ,

3

where u[n] is the prefix of u of length n. Since the subtrahend Ψ(u[n]) depends only on the
length of w and not on w itself, the set of relative Parikh vectors corresponding to the length
n,

Prel
u (n) :=

{
Ψrel

u (w)
∣
∣ w is a factor of u, |w| = n

}
,

has the same cardinality as Pu(n). Hence we obtain, with regard to (1),

ρabu (n) = #Prel
u (n) . (2)

An infinite word u is said to be b-balanced for a certain b ∈ N if for every ℓ ∈ A and
for every pair of factors v, w of u such that |v| = |w|, the inequality ||v|ℓ − |w|ℓ| ≤ b holds.
If u is a b-balanced word, the components of relative Parikh vectors are bounded by b [19].
Therefore, the set of all relative Parikh vectors

⋃

n∈N P
rel
u (n) is finite for any b-balanced word

u.
This paper is primarily concerned with the Tribonacci word t, which is defined over the

alphabet A = {0, 1, 2} as the fixed point of the substitution

ϕt : 0 7→ 01
1 7→ 02
2 7→ 0

(3)

i.e.,
t = lim

k→∞
ϕk
t(0) = 01020100102010102010010201020100102010102010 · · · .

It is easy to check that ϕj
t(0) = ϕ

j−1
t (0)ϕj−2

t (0)ϕj−3
t (0) for every j ≥ 3. Hence, the lengths

of factors ϕj
t(0) satisfy the recurrence relation |ϕj

t(0)| = |ϕ
j−1
t (0)| + |ϕj−2

t (0)| + |ϕj−3
t (0)|.

Comparing this relation with the Tribonacci recurrence relation Tj = Tj−1 + Tj−2 + Tj−3,
we conclude that |ϕj

t(0)| = Tj+3 for every j ∈ N ∪ {0}, where (Tj)j≥0 = (0, 0, 1, 1, 2, 4, 7, . . .)
is the sequence of Tribonacci numbers A000073. Any n ∈ N can be written as a sum of
Tribonacci numbers with binary coefficients,

n =
k∑

j=0

djTj+3 for dj ∈ {0, 1}, k ∈ N ∪ {0} . (4)

If coefficients dj ∈ {0, 1} are obtained by the greedy algorithm, they form the normal T -
representation (also called the Tribonacci representation) of n, which we denote by the
symbol 〈n〉T :

〈n〉T = dkdk−1 · · · d1d0 . (5)

For n = 0, we have 〈0〉T = ε. Table 1 shows normal T -representations of several small
integers. The constant k in expansion (5) does not need to be chosen minimal, i.e., a normal
T -representation can start with a block of zeros. For example, the representations 〈n〉T = 011
and 〈n〉T = 00011 are both equivalent to 〈n〉T = 11 and correspond to n = 3.

4

http://oeis.org/A000073

n 〈n〉T n 〈n〉T n 〈n〉T n 〈n〉T n 〈n〉T
1 1 4 100 7 1000 10 1011 13 10000
2 10 5 101 8 1001 11 1100 14 10001
3 11 6 110 9 1010 12 1101 15 10010

Table 1: Normal T -representations of the numbers 1, . . . , 15.

The substitution (3) is a special case of a simple Parry substitution, defined over the
alphabet A = {0, 1, . . . ,m− 1} in the way

ϕ : 0 7→ 0α01
1 7→ 0α12

...
m− 2 7→ 0αm−2(m− 1)
m− 1 7→ 0αm−1

(6)

with αi ∈ N∪ {0} satisfying the conditions α0 ≥ 1 and αℓ ≤ α0 for all ℓ ∈ A [9, 13]. We call
the fixed point of (6) a simple Parry word ; in this sense the Tribonacci word is an example
of a simple Parry word. Simple Parry words appear in nonstandard numeration systems.
Without going into details, let us mention here that the order of letters in the fixed point
of (6) corresponds to the order of lengths of gaps between so-called β-integers for β > 1 being
a zero of the polynomial αm−1x

m−1+αm−2x
m−2+ · · ·+α1x+α0 [17]. Since all simple Parry

substitutions have common structure, the combinatorial properties of their fixed points can
be often examined in a similar way. In particular, the approach we are going to apply in
this paper is based on a method that can handle fixed points of all substitutions of type (6).
Therefore, it is convenient here to formulate the representation (5) more generally. Consider
a simple Parry substitution ϕ, and set Uj = |ϕ

j(0)| for every j ∈ N ∪ {0}. Any n ∈ N can
be represented as a sum

n =
k∑

j=0

djUj

with integer coefficients dj. If coefficients dj are obtained by the greedy algorithm, the
sequence dkdk−1 · · · d1d0 is called the normal U-representation of n [10] and denoted

〈n〉U = dkdk−1 · · · d1d0 . (7)

It can be shown that the coefficients in (7) satisfy dj ∈ {0, 1, . . . , α0} for all j = 0, 1, . . . , k.
A deterministic finite automaton with output (DFAO) [1] is an extension of the determin-

istic finite automaton (DFA) model. A DFAO is defined as a 6-tuple (Q,Σ, δ, q0,∆, τ), where
Q is a finite set of states, Σ is the finite input alphabet, δ : Q × Σ → Q is the transition
function, q0 is the initial state, ∆ is the output alphabet, and τ : Q → ∆ is the output
function. If we extend the domain of δ to Q × Σ∗ by defining δ(q, ǫ) = q for all q ∈ Q,

5

and δ(q, xa) = δ(δ(q, x), a) for all q ∈ Q, x ∈ Σ∗ and a ∈ Σ, a DFAO defines a function
f : Σ∗ → ∆, given as

f(w) = τ(δ(q0, w)) for w ∈ Σ∗.

Let [n]k denote the representation of n ∈ N in base k for a certain integer k ≥ 2. A
sequence (an)n∈N over a finite alphabet ∆ is called k-automatic if there exists a DFAO with
Σ = {0, 1, . . . , k − 1} such that an = τ(δ(q0, [n]k)) for all n ∈ N.

Shallit [16] introduced the concept of generalized automatic sequences, which are gener-
ated by automata using nonstandard representations instead of ordinary base-k representa-
tions. In particular, we say that a sequence (an)n∈N with values in a finite alphabet ∆ is
U-automatic if there exists a DFAO (Q,Σ, δ, q0,∆, τ) such that

an = τ(δ(q0, 〈n〉U)) for all n ∈ N,

where 〈n〉U is the normal U -representation defined above.

3 Abelian co-decomposition

Abelian co-decomposition, which we briefly summarize in this section, has been developed as
a tool for calculating ρabu (n) of recurrent words [19]. The main idea is roughly the following:
the method uses the normal U -representation 〈n〉U to associate any n ∈ N with a certain set
Zu(n) of pairs of factors. At the same time the structure of the set Zu(n) is designed in a
way that allows to find quickly the set of relative Parikh vectors Prel

u (n), and, consequently,
to obtain the value ρabu (n) by formula (2).

Let v, w be any factors of u such that Ψ(v) = Ψ(w) (in particular, |v| = |w|). We
factorize them as follows:

v = z0 z1 z2 · · · zh
w = z̃0 z̃1 z̃2 · · · z̃h

(8)

where z0, z1, . . . , zh and z̃0, z̃1, . . . , z̃h are non-empty words satisfying Ψ(z̃j) = Ψ(zj) for all
j ∈ {0, 1, . . . , h}. The set of pairs

{(
z0
z̃0

)

,

(
z1
z̃1

)

,

(
z2
z̃2

)

, · · · ,

(
zh
z̃h

)}

(9)

is called the abelian co-decomposition of the pair
(

v
w

)
.

An abelian co-decomposition (9) exists for any v, w such that Ψ(v) = Ψ(w), because one
can take, e.g.,

{(
v
w

)}
. The decomposition (8) is in general not unique (see Example 1 below),

but it can be made unique by an additional requirement. Here we will adopt, throughout
the whole paper, the following convention: The number h in equation (8) is chosen to be
maximal. The abelian co-decomposition satisfying this requirement will be denoted Dec

(
v
w

)
.

6

Example 1. Let v = 0102, w = 1020. There exist two possible decompositions (8):

v =

z0
︷︸︸︷

0102
w = 1020

︸︷︷︸

z̃0

or
v =

z0
︷︸︸︷

01

z1
︷︸︸︷

02
w = 10

︸︷︷︸

z̃0

20
︸︷︷︸

z̃1

Hence the abelian co-decomposition of the pair
(
0102
1020

)
, obeying our convention of maximality

of number of elements, is

Dec

(
v

w

)

=

{(
01
10

)

,

(
02
20

)}

.

For any pair
(

v
w

)
of factors of u such that |v| = |w|, we introduce the following set of

vectors:

Vect

(
v

w

)

:= {Ψ(s)−Ψ(r) | r is a prefix of v, s is a prefix of w, |s| = |r|} . (10)

Example 2.

Vect

(
0102
1020

)

=
{
Ψ(1)−Ψ(0),Ψ(10)−Ψ(01),Ψ(102)−Ψ(010),Ψ(1020)−Ψ(0102)

}

={(−1, 1, 0), (0, 0, 0), (−1, 0, 1)}.

Let u be the fixed point of (6). For every n ∈ N, we define the set [19, Def. 3.7 and
Prop. 4.8]

Zu(n) := Dec

(
ϕK+R(0)

u−1
[n]ϕ

K+R(0)u[n]

)

, (11)

where K is any integer such that n ≤ UK and R is a constant that we choose using the
formula

R = m− 1 + min{j | (∀ℓ ∈ A)(ϕj(ℓ) has the prefix 0)} . (12)

Note that the factors ϕK+R(0) and u−1
[n]ϕ

K+R(0)u[n] are obviously abelian equivalent, thus
we are allowed to consider their abelian co-decomposition. In Proposition 3 we will see
that the right-hand side of (11) is independent of the choice of K, i.e., the symbol Zu(n) is
well-defined.

Proposition 3. Let R be given by equation (12). For any n ∈ N and for any integer K
such that n ≤ UK we have

Dec

(
ϕK+R(0)

u−1
[n]ϕ

K+R(0)u[n]

)

=
⋃

ℓ∈A

Dec

(
ϕK0+R−m+1(ℓ)

u−1
[n]ϕ

K0+R−m+1(ℓ)u[n]

)

, (13)

where K0 = min{K ′ ∈ N∪{0} | n ≤ UK′}. In particular, the right-hand side of equation (11)
is independent of the choice of K.

7

Proof. Let us take an arbitrary K such that n ≤ UK . Since we have R ≥ m− 1 by (12), we
can write

ϕK+R(0) = ϕK0(ϕR−m+1(ϕm−1+K−K0(0))) .

It is easy to see that for every j ≥ m−1, the factor ϕj(0) contains each letter from A, which
follows from (6). We have K ≥ K0, thus m − 1 +K −K0 ≥ m − 1. Therefore, the factor
ϕm−1+K−K0(0) contains each letter ℓ ∈ A. Hence

ϕK+R(0) = ϕK0(w0w1w2 · · ·wh) , (14)

where
{w0, w1, w2, . . . , wh} =

{
ϕR−m+1(ℓ)

∣
∣ ℓ ∈ A

}
.

The definition of R requires that the factor ϕR−m+1(ℓ) has the prefix 0 for any ℓ ∈ A. As
a result, each factor of type ϕK0(ϕR−m+1(ℓ)) has the prefix ϕK0(0). At the same time we
know, with regard to the assumption n ≤ UK0 , that u[n] is a prefix of ϕK0(0). To sum up,
the words ϕR−m+1(ℓ) for ℓ ∈ A have u[n] as their prefixes. Now we can rewrite equation (14)
as follows:

ϕK+R(0) = ϕK0(w0)ϕ
K0(w1)ϕ

K0(w2) · · ·ϕ
K0(wh) = z0z1z2 · · · zh ,

where the factors z0, z1, z2, . . . , zh satisfy

{z0, z1, z2, . . . , zh} =
{
ϕK0+R−m+1(ℓ)

∣
∣ ℓ ∈ A

}
, (15)

and, moreover, u[n] is a prefix of zj for every j ∈ {0, 1, . . . , h}. This allows us to decompose

ϕK+R(0) = z0 z1 z2 · · · zh
u−1
[n]ϕ

K+R(0)u[n] = u−1
[n]z0u[n] u−1

[n]z1u[n] u−1
[n]z2u[n] · · · u−1

[n]zhu[n]

Factors zj and z̃j = u−1
[n]zju[n] are abelian equivalent for every j = 0, 1, . . . h, thus

⋃h

j=0

{(zj
z̃j

)}

is an abelian co-decomposition of
(ϕK0+R(0)

u
−1
[n]

ϕK+R(0)u[n]

)
. The “maximal” (i.e., having maximal

number of elements) abelian co-decomposition of
(ϕK0+R(0)

u
−1
[n]

ϕK+R(0)u[n]

)
is obviously obtained as

the union of the “maximal” abelian co-decompositions of
(
zj
z̃j

)
for j = 0, 1, . . . h, i.e.,

Dec

(
ϕK+R(0)

u−1
[n]ϕ

K+R(0)u[n]

)

=
h⋃

j=0

Dec

(
zj

u−1
[n]zju[n]

)

. (16)

Finally, equation (15) gives the identity

h⋃

j=0

Dec

(
zj

u−1
[n]zju[n]

)

=
⋃

ℓ∈A

Dec

(
ϕK0+R−m+1(ℓ)

u−1
[n]ϕ

K0+R−m+1(ℓ)u[n]

)

. (17)

Combining equations (16) and (17) one gets equation (13).

8

The set Zu(n) together with the map Vect allow to determine the set of relative Parikh
vectors corresponding to the number n. Indeed, one can prove that [19, Prop. 3.8]

Prel
u (n) =

⋃

z

z̃

∈Zu(n)

Vect

(
z

z̃

)

(18)

for any n ∈ N. Consequently, if Zu(n) is known, it is a trivial task to calculate ρabu (n) using
the formula

ρabu (n) = #
⋃

z

z̃

∈Zu(n)

Vect

(
z

z̃

)

, (19)

which follows immediately from equations (2) and (18).

Example 4. Let us calculate Zt(1). We have t[1] = 0. Since 1 ≤ T0 = 1 and R =
3− 1 + min{1, 2, 3, . . .} = 3, we shall use formula (11) with K + R = 0 + 3 = 3. Therefore,
from (11),

Zt(1) = Dec

(
ϕ3
t(0)

0−1ϕ3
t(0)0

)

.

We have
ϕ3
t(0) = 01 02 01 0

0−1ϕ3
t(0)0 = 10 20 10 0

whence we obtain

Zt(1) =

{(
0
0

)

,

(
01
10

)

,

(
02
20

)}

.

Let us continue the example and demonstrate the application of equations (18) and (19).
We have

Vect

(
0

0

)

= {(0, 0, 0)}, Vect

(
01

10

)

= {(−1, 1, 0), (0, 0, 0)}, Vect

(
02

20

)

= {(−1, 0, 1), (0, 0, 0)}.

Equation (18) then gives Prel
t (1) = {(0, 0, 0), (−1, 1, 0), (−1, 0, 1)}, and hence, from Eq. (19)

we get ρabt (1) = 3. This calculation has an illustrative purpose only – the result ρabt (1) = 3
could be of course found much easier from equation (1).

The essential point is that sets Zu(n) does not need to be calculated from definition (11)
for each n ∈ N. We are going to present a recurrence relation that will allow us to express
Zu(N) in terms of Zu(n) for a certain n < N . Let N ∈ N be an integer with the normal
U -representation 〈N〉U = dkdk−1 · · · d1d0. Let us take a j ∈ [1, k], and split the sequence
dkdk−1 · · · d1d0 into two parts in the way dk · · · dj+1, dj · · · d0. Note that both parts are

9

valid normal U -representations of certain integers; we write them as n and p, as shown in
equation (20).

〈N〉U = dk · · · dj+1
︸ ︷︷ ︸

〈n〉U

dj · · · d0
︸ ︷︷ ︸

〈p〉U

(20)

Then we have the following result [19, Prop. 5.1]:

Proposition 5. Let the numbers N, n, p and k, j obey (20). If ϕj+1(z̃) has the prefix u[p] for

all

(
z

z̃

)

∈ Zu(n), then Zu(N) can be calculated from Zu(n) using the formula

Zu(N) =
⋃

z

z̃

∈Zu(n)

Dec

(
ϕj+1(z)

u−1
[p] ϕ

j+1(z̃)u[p]

)

. (21)

For dealing with the Tribonacci word, the following corollary will come in handy. It is
obtained straightforwardly from equation (21) by choosing j = 0 and p = 0 or p = 1.

Corollary 6. We have

〈N〉T = 〈n〉T0 ⇒ Zt(N) =
⋃

z

z̃

∈Zt(n)

Dec

(
ϕt(z)
ϕt(z̃)

)

,

〈N〉T = 〈n〉T1 ⇒ Zt(N) =
⋃

z

z̃

∈Zt(n)

Dec

(
ϕt(z)

0−1ϕt(z̃)0

)

.

Since the abelian co-decompositions Dec

(
ϕt(z)
ϕt(z̃)

)

and Dec

(
ϕt(z)

0−1ϕt(z̃)0

)

will be often

used throughout the paper, we introduce a shorthand for them. Let z, z̃ be factors of t
satisfying Ψ(z) = Ψ(z̃), and let ζ stand for

(
z

z̃

)
. We define the symbols

D0(ζ) := Dec

(
ϕt(z)
ϕt(z̃)

)

and D1(ζ) := Dec

(
ϕt(z)

0−1ϕt(z̃)0

)

. (22)

Recall that the numbers di in the normal T -representation (5) attain the values 0 and 1 only.
The statement of Corollary 6 can be thus formulated as

〈N〉T = 〈n〉Td ⇒ Zt(N) =
⋃

ζ∈Zt(n)

Dd(ζ) . (23)

Formula (23) is crucial for us. It says how the set Zt(n) is transformed when a digit d
is added to 〈n〉T . For this reason it will be sometimes refered to as the “transformation
formula”.

From now on we will focus on the Tribonacci word. Therefore, we can simplify the
notation by dropping the subscript t from symbols ρabt , Prel

t , ϕt, Zt.

10

4 Sets Z(n)

This section can be regarded as the core of the paper. Examining the structure of sets Z(n),
we find out that only finitely many of them are mutually different. In other words, we show
that there exist sets Z1,Z2, . . . ,ZM such that for any n ∈ N, the set Z(n) is equal to Zq for
a certain q ∈ {1, . . . ,M}. In addition, we express Z1,Z2, . . . ,ZM explicitly.

Lemma 7. Let an N ∈ N have the representation 〈N〉T = 1dk−1 · · · d1d0. Let n be the
number with the representation 〈n〉T = 1dk−1 · · · d1, i.e., 〈N〉T = 〈n〉Td0. Then

Z(N) =
⋃

ζ∈Z(n)

D0(ζ) or Z(N) =
⋃

ζ∈Z(n)

D1(ζ) . (24)

Lemma 7 is just a trivial consequence of the transformation formula (23). The main
result of this section follows.

Theorem 8. There exist a 56-element set

Zsuper = {ζ1, ζ2, ζ3, . . . , ζ56}

and 277 of its subsets Z1,Z2, . . . ,Z277 ⊂ Zsuper such that

(∀n ∈ N) (∃q ∈ {1, 2, . . . , 277}) (Z(n) = Zq) . (25)

Proof. We begin the proof by exploring Z(n) for n having a 1-digit representation, i.e.,
〈n〉T = d0. Trivially, there is one single positive number having such representation, namely
n = 1. We know from Example 4 that

Z(1) = {ζ1, ζ2, ζ3}

for

ζ1 =

(
0
0

)

, ζ2 =

(
01
10

)

, ζ3 =

(
02
20

)

.

From now on we let Z1 denote the set Z(1).
In the next step we proceed to exploring Z(N) for those N having 2-digit representations,

i.e., 〈N〉T = 1d0 for d0 ∈ {0, 1}. We apply Lemma 7 with k = 1. Writing 〈N〉T = 1d0 in the
form 〈n〉Td0 implies 〈n〉T = 1, and hence n = 1. For such N and n, equations (24) read

Z(N) =
⋃

ζ∈Z1

D0(ζ) or Z(N) =
⋃

ζ∈Z1

D1(ζ) .

Since Z1 = {ζ1, ζ2, ζ3}, we need to find D0(ζj) and D1(ζj) for j = 1, 2, 3, which is an easy
task. Let us start with D0(ζj). With regard to (22), we have to calculate

ϕ(0) = 0 1 ϕ(01) = 0 102 ϕ(02) = 0 10
ϕ(0) = 0 1 ϕ(10) = 0 201 ϕ(20) = 0 01

11

Hence
D0(ζ1) = {ζ1, ζ4} , D0(ζ2) = {ζ1, ζ5} , D0(ζ3) = {ζ1, ζ6} , (26)

where ζ1 =
(
0
0

)
has been defined above and

ζ4 =

(
1
1

)

, ζ5 =

(
102
201

)

, ζ6 =

(
10
01

)

.

A similar calculation leads to sets D1(ζj) for j = 1, 2, 3; see (22). We have

ϕ(0) = 01 ϕ(01) = 0102 ϕ(02) = 0 1 0
0−1ϕ(0)0 = 10 0−1ϕ(10)0 = 2010 0−1ϕ(20)0 = 0 1 0

hence
D1(ζ1) = {ζ2} , D1(ζ2) = {ζ7} , D1(ζ3) = {ζ1, ζ4} (27)

for ζ1, ζ2, ζ4 defined above and

ζ7 =

(
0102
2010

)

.

To sum up, if 〈N〉T = 1d0, then

Z(N) = {ζ1, ζ4, ζ5, ζ6} := Z2 or Z(N) = {ζ1, ζ2, ζ4, ζ7} := Z3 . (28)

We will list sets Zq in Table 2. The elements ζj together with D0(ζj) and D1(ζj) will be
listed in Table 3.

Now we can apply Lemma 7 again, this time for k = 2, in order to explore Z(N) for
those N having 3-digit representations, 〈N〉T = 1d1d0. Any such N can be written in the
form 〈n〉Td0 for 〈n〉T = 1d1 and d0 ∈ {0, 1}. The representation of n has two digits, and
hence Z(n) = Z2 or Z(n) = Z3 due to the result of the previous step. We thus need to
apply equations (24) for Z(n) = Z2 and Z(n) = Z3, which requires the knowledge of D0(ζj)
and D1(ζj) for j = 1, . . . , 7. Sets D0(ζj) and D1(ζj) for j = 1, 2, 3 are already known; see
equations (26), (27). Concerning j = 4, . . . , 7, a short calculation gives

D0(ζ4) = {ζ1, ζ8}, D0(ζ5) = {ζ1, ζ9}, D0(ζ6) = {ζ1, ζ10}, D0(ζ7) = {ζ1, ζ6, ζ11},
D1(ζ4) = {ζ3}, D1(ζ5) = {ζ1, ζ10}, D1(ζ6) = {ζ12}, D1(ζ7) = {ζ1, ζ4, ζ8}

(29)

for

ζ8 =

(
2
2

)

, ζ9 =

(
2010
0102

)

, ζ10 =

(
201
102

)

, ζ11 =

(
20
02

)

, ζ12 =

(
0201
1020

)

.

Once we substitute Z(n) = Z2 and Z(n) = Z3 into equation (24) and use the known
structure of Z2,Z3 (cf. (28)) together with equations (26), (27) and (29), we get

Z(n) = Z2 ⇒

Z(N) = {ζ1, ζ4, ζ8, ζ9, ζ10} =: Z4 or Z(N) = {ζ1, ζ2, ζ3, ζ10, ζ12} =: Z6 ;

Z(n) = Z3 ⇒

Z(N) = {ζ1, ζ4, ζ5, ζ6, ζ8, ζ11} =: Z5 or Z(N) = {ζ1, ζ2, ζ3, ζ4, ζ7, ζ8} =: Z7 .

12

q {j | ζj ∈ Zq}
1 1 ; 2 ; 3
2 1 ; 4 ; 5 ; 6
3 1 ; 2 ; 4 ; 7
4 1 ; 4 ; 8 ; 9 ; 10
5 1 ; 4 ; 5 ; 6 ; 8 ; 11
6 1 ; 2 ; 3 ; 10 ; 12
7 1 ; 2 ; 3 ; 4 ; 7 ; 8
8 1 ; 2 ; 4 ; 8 ; 9 ; 10
9 1 ; 4 ; 5 ; 6 ; 7 ; 13
10 1 ; 2 ; 3 ; 14 ; 15
11 1 ; 2 ; 3 ; 10 ; 12 ; 16
12 1 ; 2 ; 4 ; 7 ; 15 ; 17
...

277 1 ; 2 ; 4 ; 7 ; 15 ; 17 ; 22 ; 23 ; 24 ; 36 ; 43 ; 50

Table 2: Structure of sets Zq.

j ζj {i | ζi ∈ D0(ζj)} {i | ζi ∈ D1(ζj)} {i |ψr
i ∈ Vect(ζj)}

1
(
0
0

)
1;4 2 0

2
(
01
10

)
1;5 7 0;1

3
(
02
20

)
1;6 1;4 0;2

4
(
1
1

)
1;8 3 0

5
(
102
201

)
1;9 1;10 0;3

6
(
10
01

)
1;10 12 0;4

7
(
0102
2010

)
1;6;11 1;4;8 0;2;3

8
(
2
2

)
1 1 0

9
(
2010
0102

)
1;2;3 14 0;5;6

10
(
201
102

)
1;7 15 0;6

11
(
20
02

)
1;2 16 0;5

12
(
0201
1020

)
1;13 17 0;1;6

...
54

(
0010201010201
1020101020100

)
1;18;19;56 1;22;23;41 0;1;2

55
(
00102010201
10201020100

)
1;18;19;37 1;13;22;23 0;1;2

56
(
10010201020
02010201001

)
1;25;26;52 1;27;28;29 0;3;4

Table 3: Possible elements of sets Z(n). The table shows the elements ζj and the structure
of sets D0(ζj),D1(ζj). It also shows the structure of sets Vect(ζj), cf. Sect. 5.

13

k new Zq found new ζj found k new Zq found new ζj found
0 Z1 ζ1, ζ2, ζ3 15 Z201, . . . ,Z221 ζ56
1 Z2,Z3 ζ4, ζ5, ζ6, ζ7 16 Z222, . . . ,Z245 none
2 Z4,Z5,Z6,Z7 ζ8, ζ9, ζ10, ζ11, ζ12 17 Z246, . . . ,Z260

3 Z8,Z9,Z10,Z11,Z12 ζ13, ζ14, ζ15, ζ16, ζ17 18 Z261, . . . ,Z271

4 Z13, . . . ,Z21 ζ18, . . . , ζ24 19 Z272,Z273

5 Z22, . . . ,Z32 ζ25, . . . , ζ30 20 Z274,Z275
... 21 Z276,Z277

14 Z179, . . . ,Z200 ζ54, ζ55 22 none

Table 4: Progress of the calculation. Sets Zq expressed in terms of ζj can be found in Tab. 2.
Elements ζj are listed in Tab. 3.

The calculation continues in the same way for k = 3. For each q ∈ {4, 5, 6, 7}, we
substitute the set Zq into (24) for Z(n). Evaluation of Z(N) requires sets D0(ζj) and D1(ζj)
for j = 1, . . . , 12. Some of them are known from our previous calculation (j = 1, . . . , 7),
others can be calculated similarly now (j = 8, . . . , 12). In this way we find eight sets Z(N),
namely

Z(n) = Z4 ⇒ Z(N) = Z7 or Z(N) = Z10 ,

Z(n) = Z5 ⇒ Z(N) = Z8 or Z(N) = Z11 ,

Z(n) = Z6 ⇒ Z(N) = Z9 or Z(N) = Z12 ,

Z(n) = Z7 ⇒ Z(N) = Z5 or Z(N) = Z7 .

(30)

Their structure is shown in Table 2.
In the next step we use Lemma 7 again. The eight sets found in (30) should be plugged

in equations (24), which will lead to sets Z(N) for N having 5-digit representations (k = 4).
Note, however, that the eight sets obtained in (30) are of two types:

• three of them (Z7 occurring 2 times and Z5) had been found in earlier steps;

• five of them (Z8,Z9,Z10,Z11,Z12) are “new” – they have just appeared in the calcu-
lation for the first time.

Since sets Z5 and Z7 have been already explored, there is no need to apply equations (24)
on them again. It suffices to use formula (24) only with Z(n) = Zq for such Zq that promise
potential new results, i.e., q = 8, 9, 10, 11, 12. Henceforth we will proceed similarly – we will
always put aside those sets Zq that reappear after having been explored in earlier stages of
the procedure, and queue only the “new” ones for further use in (24).

The progress of the calculation is illustrated with Table 4. We see that when k reaches the
value 22, no new set Zq is found. In other words, all sets Z(N) obtained by equations (24)
for k = 22 have been already found (and explored) earlier. The search is then completed.
We conclude: there exist altogether 277 sets Z1, . . . ,Z277 such that for any n ∈ N, we have
Z(n) = Zq for a certain q ∈ {1, . . . , 277}.

14

Since every Zq consists of elements ζj for j = 1, . . . , 56 (note that new elements ζj stop
appearing already at k = 16), the set Zsuper := {ζ1, ζ2, ζ3, . . . , ζ55, ζ56} obviously satisfies
Zq ⊂ Zsuper for all q = 1, . . . , 277.

The search for sets Zq and elements ζj can be in principle carried out completely using
pen and paper, but since the procedure is lengthy and cumbersome, it is more convenient
to use a computer, which also helps to avoid mistakes. Below we provide a pseudocode of
the algorithm. Note that some variables used in the pseudocode are of special types, such
as sets or pairs of strings.

1: calculate Z(1) using formula (11) for R = 3 and K = 0
2: a← number of elements of Z(1)
3: Z[1]← the set {1, . . . , a}
4: M ← 1
5: M old← 0
6: M new ← 1
7: for j = 1, . . . , a do

8: zeta[j]← j-th element of Z(1)
9: end for

10: a old← 0
11: a new ← a

12: while M old < M new do

13: for d = 0, 1 do

14: for j = a old+ 1, . . . , a new do

15: z ← zeta[j]
16: D ← ∅
17: calculate Dd(z) using formula (22)
18: for every x ∈ Dd(z) do
19: if an i ∈ {1, . . . , a} satisfies x = zeta[i] then
20: D ← D ∪ {i}
21: else

22: D ← D ∪ {a+ 1}
23: zeta[a+ 1]← x

24: a← a+ 1
25: end if

26: end for

27: D[d, j]← D

28: end for

29: end for

30: a old← a new

31: a new ← a

32: for q =M old+ 1, . . . ,M new do

15

33: for d = 0, 1 do

34: D ← ∅
35: for every j ∈ Z[q] do
36: D ← D ∪D[d, j]
37: end for

38: if a j ∈ {1, . . . ,M} satisfies D = Z[j] then
39: delta[q, d]← j

40: else

41: delta[q, d]←M + 1
42: Z[M + 1]← D

43: M ←M + 1
44: end if

45: end for

46: end for

47: M old←M new

48: M new ←M

49: end while

When the algorithm ends, final values of variables have the meanings as follows.

• a: cardinality of Zsuper;

• zeta[j] for j = 1, . . . , a: ζj (cf. Table 3);

• D[d, j] for d = 0, 1, j = 1, . . . , a: the set {i | ζi ∈ Dd(ζj)} (cf. Table 3);

• M : cardinality of {Z(n) | n ∈ N} (cf. Table 2);

• Z[q] for q = 1, . . . ,M : the set {j | ζj ∈ Zq} (cf. Table 2);

• delta[q, d] for q = 1, . . . ,M , d = 0, 1: δ(q, d) (cf. Sect. 6, Table 6).

5 Range of the abelian complexity

The aim of this section is twofold:

• We illustrate that the result of Section 4 allows to examine the image of the abelian
complexity function, as well as the balance bound of t.

• We express Vect(ζj) for j = 1, . . . , 56, and we associate each Zq for q = 1, . . . , 277 with
a certain value of the abelian complexity function. This result will be useful later in
Section 6 for an explicit evaluation of ρab(n).

Recall that for any n ∈ N, the value of the abelian complexity function ρab(n) can
be determined by formula (19) if the set Z(n) is known. We have not found an explicit

16

relation between n and Z(n) yet, and thus we cannot use (19) as it is. Nevertheless, we
have demonstrated in Section 4 that Z(n) = Zq for a certain q ∈ {1, . . . , 277}, which already
gives us the possibility to restrict the range of ρab(n).

The use of formula (19) requires Vect(ζ) for ζ ∈ Z(n). Therefore, we shall express
Vect(ζj) for j = 1, . . . , 56. If equation (10) is applied on ζ1, it gives

Vect(ζ1) = Vect

(
0
0

)

= {Ψ(s)−Ψ(r) | r is a prefix of 0, s is a prefix of 0, |s| = |r|}

= {(0, 0, 0)}.

Similarly, for ζ2 and ζ3 we get

Vect(ζ2) = Vect

(
01
10

)

= {Ψ(s)−Ψ(r) | r is a prefix of 01, s is a prefix of 10, |s| = |r|}

= {(−1, 1, 0), (0, 0, 0)},

Vect(ζ3) = Vect

(
02
20

)

= {Ψ(s)−Ψ(r) | r is a prefix of 02, s is a prefix of 20, |s| = |r|}

= {(−1, 0, 1), (0, 0, 0)}.

Performing the same calculation for every value of j, we find that for all j = 1, . . . , 56, we
have Vect(ζj) ⊂ {ψ

r
0, ψ

r
1, . . . , ψ

r
8}, where

ψr
0 = (0, 0, 0) ; ψr

1 = (−1, 1, 0) ; ψr
2 = (−1, 0, 1) ;

ψr
3 = (0,−1, 1) ; ψr

4 = (1,−1, 0) ; ψr
5 = (1, 0,−1) ;

ψr
6 = (0, 1,−1) ; ψr

7 = (−1, 2,−1) ; ψr
8 = (−1,−1, 2) .

The structure of sets Vect(ζj) in terms of ψr
0, . . . , ψ

r
8 is partly shown in Table 3.

According to (25), for every n ∈ N there is a q ∈ {1, . . . , 277} such that Z(n) = Zq. By
virtue of equation (19), we have

Z(n) = Zq ⇒ ρab(n) = #
⋃

ζ∈Zq

Vect(ζ) . (31)

The expression #
⋃

ζ∈Zq
Vect(ζ) depends only on q. Therefore, it is convenient to introduce

the function
τ(q) := #

⋃

ζ∈Zq

Vect(ζ) (32)

for q = 1, . . . , 277. Evaluation of τ is a straightforward task, consisting of combining data
from Tables 2 and 3:

1. Table 2 shows the structure of Zq in terms of ζj.

2. Table 3 contains Vect(ζj) for ζj.

17

q τ(q) q τ(q) q τ(q) q τ(q) q τ(q) q τ(q) q τ(q)
1 3 7 4 13 4 19 4 25 4 31 4 37 4
2 3 8 4 14 4 20 4 26 4 32 4 38 4
3 4 9 4 15 3 21 4 27 4 33 5 39 4
4 3 10 3 16 4 22 5 28 4 34 5 40 4
5 4 11 4 17 4 23 5 29 4 35 4 41 3
6 4 12 4 18 4 24 3 30 4 36 4 42 4

Table 5: The function τ (partial list for q = 1, . . . , 42).

For example, for q = 1 we obtain

⋃

ζ∈Z1

Vect(ζ)
(a)
= Vect(ζ1) ∪ Vect(ζ2) ∪ Vect(ζ3)

(b)
= {ψr

0} ∪ {ψ
r
0, ψ

r
1} ∪ {ψ

r
0, ψ

r
2} = {ψ

r
0, ψ

r
1, ψ

r
2} ,

where we used data from Table 2 at (a) and data from Table 3 at (b). Hence τ(1) =
#
⋃

ζ∈Z1
Vect(ζ) = 3. We proceed similarly for q = 2, . . . , 277. The values τ(q) obtained

by the calculation are listed in Table 5. The list is only partial by reason of saving space,
however, in the full list we could see that τ(q) ∈ {3, 4, 5, 6, 7} for all q ∈ {1, . . . , 277}.
Consequently, ρab(n) ∈ {3, 4, 5, 6, 7} for all n ∈ N.

Moreover, one can show similarly that for any q = 1, . . . , 277, the absolute values of the
elements of the difference vector ψr

i − ψ
r
j for ψr

i , ψ
r
j ∈

⋃

ζ∈Zq
Vect(ζ) do not exceed 2. This

fact implies that the Tribonacci word is 2-balanced. However, this bound as well as the
result ρab(n) ∈ {3, 4, 5, 6, 7} are not new; they have been derived already in [14].

6 Evaluation of the abelian complexity

As we have noticed at the beginning of Section 5, there is one last step to do before we
can calculate ρab(n) explicitly. Namely, we need to associate each n ∈ N with the number
q ∈ {1, . . . , 277} such that Z(n) = Zq. The task will be solved in this section.

We introduce the map (the “transition function”) δ(q, d) for q ∈ {1, . . . , 277} and d ∈
{0, 1} by the formula

δ(q, d) = ℓ ⇔
⋃

ζ∈Zq

Dd(ζ) = Zℓ . (33)

Then we extend its domain to the value q = 0 by setting

δ(0, 0) = 0, δ(0, 1) = 1. (34)

Values δ(q, d) for q = 1, . . . , 277 can be naturally gathered in the course of the calcula-
tions carried out in the proof of Theorem 8. For example, we have

⋃

ζ∈Z1
D0(ζ) = Z2 and

18

q δ(q, 0) δ(q, 1) q δ(q, 0) δ(q, 1) q δ(q, 0) δ(q, 1) q δ(q, 0) δ(q, 1)
1 2 3 11 16 21 21 17 13 31 22 23
2 4 6 12 17 13 22 33 39 32 17 13
3 5 7 13 22 23 23 34 40 33 47 54
4 7 10 14 23 28 24 7 41 34 48 55
5 8 11 15 24 29 25 13 42 35 13 56
6 9 12 16 14 19 26 35 43 36 49 57
7 5 7 17 25 30 27 14 19 37 14 19
8 13 18 18 26 31 28 36 44 38 14 19
9 14 19 19 27 32 29 37 45 39 50 58
10 15 20 20 22 23 30 38 46 40 17 13

Table 6: Values of the transition function δ(q, d) (partial list for q = 1, . . . , 40).

⋃

ζ∈Z1
D1(ζ) = Z3; hence δ(1, 0) = 2 and δ(1, 1) = 3. The values can be then tabulated; see

Table 6.
The transition function δ(q, d) allows to determine Z(n) for any n ∈ N, as we demonstrate

in the following proposition.

Proposition 9. If 〈n〉T = dkdk−1 · · · d1d0, then

Z(n) = Zq for q = δ(0, dkdk−1 · · · d1d0) , (35)

where the symbol δ(0, dkdk−1 · · · d1d0) is a shorthand for δ(δ(· · · δ(δ(0, dk), dk−1) · · · , d1), d0)
(cf. Sect. 2).

Proof. At first, let us assume that dk = 1; the case dk = 0 will be treated in the end. We
prove the statement by induction on k.

I. Let k = 0. Then 〈n〉T = 1, i.e., n = 1. We have δ(0, d0) = δ(0, 1) = 1 from Eq. (34),
thus formula (35) gives Z(1) = Z1. This is obviously true with regard to the definition of
Z1.

II. Let the formula (35) be valid for numbers with normal T -representations having at
most k digits. Let a number n have a (k + 1)-digit representation 〈n〉T = dkdk−1 · · · d1d0.
The formula (35) is valid for 〈n′〉T = dkdk−1 · · · d1 (because 〈n′〉T has only k digits), and
hence Z(n′) = Zj for j = δ(0, dkdk−1 · · · , d1). From Eq. (23) we have Z(n) =

⋃

ζ∈Zj
Dd0(ζ).

Consequently, with regard to the definition of the transition function δ (cf. (33)), the equation
Z(n) = Zq holds for q = δ(j, d0). Combining these two facts, we obtain

Z(n) = Zq for q = δ(δ(0, dkdk−1 · · · , d1), d0) = δ(0, dkdk−1 · · · d1d0) ,

which completes the inductive step.
It suffices to deal with the case dk = 0, i.e., 〈n〉T = 00 · · · 0dℓdℓ−1 · · · d0 for an ℓ < k

and dℓ = 1. The initial block of zeros in the representation can be omitted, i.e., we can

19

write 〈n〉T = dℓdℓ−1 · · · d0 for dℓ = 1. Then, due to previous considerations, Z(n) = Zq for
q = δ(0, dℓdℓ−1 · · · , d0). At the same time, since δ(0, 0) = 0 from Eq. (34), we trivially get
δ(0, 0 · · · 0) = 0. Hence

q = δ(0, dℓdℓ−1 · · · , d0) = δ(δ(0, 0 · · · 0), dℓdℓ−1 · · · , d0) = δ(0, 0 · · · 0dℓdℓ−1 · · · d1d0)

= δ(0, dkdk−1 · · · dℓ+1dℓdℓ−1 · · · d1d0) .

Proposition 9 associates any n ∈ N with a q ∈ {1, . . . , 277} such that Z(n) = Zq.
Formula (31) together with (32) then gives the value of the abelian complexity as τ(q),
where τ is the function tabulated in Table 5. Combining these two results, we get

Theorem 10. For any n ∈ N we have

ρab(n) = τ(δ(0, 〈n〉T)) . (36)

Obviously, Theorem 10 together with Tables 6 and 5 allows to determine ρab(n) for any
n ∈ N.

Equation (36) implies that (ρab(n))n∈N is a T -automatic sequence. It is generated by the
DFAO (Q,Σ, δ, q0,∆, τ), where

• Q = {0, 1, . . . , 277} is the set of states;

• Σ = {0, 1} is the input alphabet;

• δ is the state-transition function, cf. Table 6;

• q0 = 0 is the initial state;

• ∆ = {3, 4, 5, 6, 7} is the output alphabet;

• τ is the output function, specified in Table 5.

The number of steps needed for evaluating ρab(n) is proportional to the number of digits
in the normal T -representation 〈n〉T . The Tj grow roughly exponentially (Tj ≈ βj, where
β ≈ 1.84 is the root of x3 = x2 + x + 1), and hence the number of digits is k ∼ log n. The
evaluation of ρab(n) using formula (36) thus needs O(log n) operations. It is therefore fast
even for large values of n.

Example 11. Let us calculate ρab(n) for n = 2013. Since

(Tj)
∞
j=3 = (1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . .) ,

we have 〈2013〉T = 1001000101011, cf. (4). Starting from the initial state 0 and applying the
state-transition function δ step by step, we obtain

0
1
→ 1

0
→ 2

0
→ 4

1
→ 10

0
→ 15

0
→ 24

0
→ 7

1
→ 7

0
→ 5

1
→ 11

0
→ 16

1
→ 19

1
→ 32 ,

thus δ(0, 1001000101011) = 32. Hence ρab(2013) = τ(32) = 4.

20

7 Reduction of states of the automaton

In Section 6, we have found a DFAO that evaluates the abelian complexity function of the
Tribonacci word. The automaton has 278 states (including the initial state q0 = 0). In this
section we will show that the size of the automaton can be substantially reduced.

Obviously, if p, q ∈ {1, . . . , 277} (p 6= q) satisfy

δ(p, 0) = δ(q, 0) ∧ δ(p, 1) = δ(q, 1) ∧ τ(p) = τ(q) ,

then the states p and q can be merged into a single state.
We use this fact to reduce the size of our automaton; note that the procedure has to

be repeated several times until no more mergeable vertices exist. Eventually we obtain an
equivalent DFAO that has just 68 vertices. Then we update the labels of states of the
new automaton to the numbers 0, 1, . . . , 67 (where 0 corresponds to the initial state) and
recalculate accordingly the values of the transition function and the output function. The
result is summarized in Table 7. Naturally, the formula

ρab(n) = τ(δ(0, 〈n〉T))

from Theorem 10 also remains valid with functions δ and τ tabulated in Table 7. Although
the reduction method we used is quite elementary, it works well in this case: one can check,
using, e.g., Moore’s algorithm, that the reduced automaton is already minimal.

Example 12. Let us calculate ρab(n) for n = 2013 using Table 7. Since 〈2013〉T =
1001000101011 (see Ex. 11), we obtain

0
1
→ 1

0
→ 2

0
→ 4

1
→ 9

0
→ 13

0
→ 4

0
→ 3

1
→ 3

0
→ 5

1
→ 6

0
→ 8

1
→ 6

1
→ 10 .

Hence ρab(2013) = τ(10) = 4.

Now we can return to the open problem proposed by Richomme, Saari and Zamboni [15]
concerning the characterization of those n for which ρab(n) = c, c ∈ {4, 5, 6, 7}. The au-
tomaton derived in this section leads to a solution. Namely, for each c ∈ {4, 5, 6, 7} it suffices
to consider the deterministic finite automaton (DFA) Ac = (Q,Σ, δ, q0, Fc), where Q,Σ, δ, q0
have the same meaning as above, and Fc ⊂ Q is the set of accepting states, defined by the
equivalence q ∈ Fc ⇔ τ(q) = c. The automaton Ac obviously accepts 〈n〉T if and only if
ρab(n) = c.

We noticed that Moore’s minimization algorithm reduces the size of Ac for each c ∈
{3, 4, 5, 6, 7}. It is interesting to compare the number of states of the reduced automata; see
Table 8. The minimal automaton accepting the set {〈n〉T | ρ

ab(n) = 3} has just 5 states
(including the initial state), whereas the minimal automata accepting {〈n〉T | ρ

ab(n) = c}
for c ∈ {4, 5, 6, 7} have 66 states. The disparity in sizes explain, in our opinion, why the
authors of [15] could give a simple characterization of those n satisfying AC(n) = 3, whereas
the question about the n satisfying AC(n) = c for c ∈ {4, 5, 6, 7} remained open.

21

q δ(q, 0) δ(q, 1) τ(q) q δ(q, 0) δ(q, 1) τ(q) q δ(q, 0) δ(q, 1) τ(q)
0 0 1 - 23 26 24 4 46 51 38 6
1 2 3 3 24 28 16 5 47 52 38 6
2 4 6 3 25 29 32 5 48 53 55 5
3 5 3 4 26 30 33 4 49 54 56 4
4 3 9 3 27 31 29 4 50 37 57 5
5 7 6 4 28 34 22 5 51 58 38 6
6 8 10 4 29 35 38 5 52 59 22 6
7 11 10 4 30 11 23 4 53 24 23 5
8 12 6 4 31 19 39 5 54 43 53 4
9 13 11 3 32 36 11 5 55 60 63 5
10 14 11 4 33 37 40 5 56 61 34 5
11 15 16 4 34 41 10 6 57 62 58 5
12 16 17 4 35 42 22 6 58 58 38 7
13 4 18 3 36 25 18 5 59 58 32 7
14 7 18 4 37 43 19 5 60 43 53 5
15 19 22 5 38 36 27 5 61 19 64 5
16 20 10 5 39 21 45 4 62 30 55 4
17 21 11 4 40 44 41 5 63 48 58 5
18 8 23 4 41 46 16 6 64 54 65 4
19 24 10 5 42 47 32 6 65 66 51 5
20 25 6 5 43 16 49 4 66 19 67 5
21 12 18 4 44 30 50 4 67 54 63 4
22 21 27 4 45 48 47 4

Table 7: Reduced automaton. Values of the transition function δ(q, d) and of the output
function τ .

c 3 4 5 6 7
number of states 5 66 66 66 66

Table 8: Sizes of minimal automata accepting the sets {〈n〉T | ρ
ab(n) = c}.

22

q0start q1 q3

q2

q4

1

0
0

1
0

1

0,1

0

1

Figure 1: The minimal automaton accepting the set {〈n〉T | ρ
ab(n) = 3}.

Remark 13. The minimal automaton corresponding to A3, which accepts 〈n〉T if and only
if ρab(n) = 3, has the transition diagram shown in Figure 1. Hence we obtain one more
characterization of those n for which ρab(n) = 3 on top of those that were found in [15,
Prop. 3.3], namely:

ρab(n) = 3 ⇔ 〈n〉T is a prefix of 100100100 · · · . (37)

8 On the abelian complexity of m-bonacci words for

m ≥ 4

The m-bonacci word is defined for any integer m ≥ 2 over the alphabet A = {0, 1, . . . ,m−1}
as the fixed point of the substitution

ϕm : 0 7→ 01, 1 7→ 02, . . . , m− 2 7→ 0(m− 1), m− 1 7→ 0 .

The Fibonacci word and the Tribonacci word are its special cases for m = 2 and m = 3,
respectively.

It is easy to see that the procedure, used in previous sections to examine the abelian
complexity of the Tribonacci word, can be straightforwardly applied to any m-bonacci word,
regardless of m. Indeed, to explore an m-bonacci word for a given m ≥ 2 by this method,
it suffices to change just the constant R in Example 4 from the value 3 to m, and to use
the m-bonacci representation of integers. The m-bonacci representation is a normal U -
representation defined for Uj = |ϕ

j
m(0)|; note that the values Uj satisfy

Uj =

{

2j, if j ∈ {0, 1, . . . ,m− 1};

Uj−1 + Uj−2 + · · ·Uj−m, if j ≥ m.

On the other hand, the cardinality of Zsuper seems to quickly grow with m; thus the method
ceases to be efficient for high values of m.

23

q0start q1 q3

q2

q4

q5

1

0
0

1

0

1

0,1

0

1

0

1

Figure 2: (4-bonacci word) The minimal automaton accepting the set
{
〈n〉Q | ρ

ab
q (n) = 4

}
.

For instance, we have considered the 4-bonacci word A254990 and successfully found an
explicit DFAO that evaluates its abelian complexity A255014; the automaton has 5665 states
(66881 before the reduction of states). We provide main results below. For the sake of brevity
we will denote the 4-bonacci word by the symbol q. For any n ∈ N, let 〈n〉Q be the 4-bonacci
representation of n, constructed for Uj = Qj+4, where (Qj)j≥0 = (0, 0, 0, 1, 1, 2, 4, 8, 15, . . .)
is the sequence of Tetranacci numbers A000078.

The minimal and maximal values of the output function of the automaton evaluating
ρabq are 4 and 16, respectively. Therefore, the abelian complexity function ρabq takes values
between 4 and 16. However, the output function of the automaton does not attain the value
5, which implies that there exists no n ∈ N such that ρabq (n) = 5. To sum up,

{
ρabq (n) | n ∈ N

}
= {4} ∪ {6, 7, . . . , 16}.

The existence of gaps in ranges of abelian complexity functions of m-bonacci words was
already observed a few years ago by K. Břinda [4] on the basis of computer-assisted calcula-
tions performed for m ∈ {4, 5, . . . , 12}. Our automaton confirms his observation in the case
m = 4.

Furthermore, we are able to characterize those n for which ρabq (n) = 4. We apply Moore’s
minimization algorithm on the automaton accepting the set {〈n〉T | ρ

ab
q (n) = 4}, which leads

to an automaton having just 6 states. The transition diagram of the automaton is depicted
in Figure 2. One can see directly from its structure that

ρabq (n) = 4 ⇔ 〈n〉Q is a prefix of 100010001000 · · · . (38)

This result is the 4-bonacci version of the Tribonacci equivalence (37).
Let us proceed to characterization of those n such that ρabq (n) = 6. We again apply

Moore’s minimization, and again get an automaton having only 6 states; see Figure 3. It is
obvious from the graph that

ρabq (n) = 6 ⇔ 〈n〉Q ∈ {11, 110, 1100},

24

http://oeis.org/A254990
http://oeis.org/A255014
http://oeis.org/A000078

q0start q1

q2

q3 q4

q5

1

0
0

1

0,1

0

1 0
1

0,1

Figure 3: (4-bonacci word) The minimal automaton accepting the set
{
〈n〉Q | ρ

ab
q (n) = 6

}
.

c 4 5 6 7 8 9 10 11 12 13 14 15 16
states 6 – 6 66 4649 4683 4735 5004 5256 5299 5322 5324 5032

Table 9: (4-bonacci word) Sizes of minimal automata accepting the sets {〈n〉Q | ρ
ab
q (n) = c}.

i.e., the value 6 is attained only for n ∈ {3, 6, 12}. The fact that the function ρabq takes a
certain value only finitely many times is remarkable, because it implies a significant quali-
tative difference between abelian complexity functions of the Tribonacci and the 4-bonacci
word. Recall that each value in the range of ρabt is attained infinitely often [15, 19].

Now we will comment on the remaining values of ρabq , i.e., c ∈ {7, . . . , 16}. Although one
can again construct minimal automata accepting {〈n〉Q | ρ

ab
q (n) = c}, they are not useful

for obtaining a nice characterization of the numbers n such that ρabq (n) = c. This follows
from Table 9: the automata are too large, especially for c ≥ 8. Nevertheless, we are still
able to demonstrate that each value in the set {7, . . . , 16} is attained infinitely many times.
For every c ∈ {7, . . . , 16}, we give in Table 10 an infinite family of normal Q-representations
〈n〉Q such that ρabq (n) = c.

Let us summarize the results obtained on the 4-bonacci word.

Theorem 14. The abelian complexity function of the 4-bonacci word has the following prop-
erties.

•
{
ρabq (n) | n ∈ N

}
= {4} ∪ {6, 7, . . . , 16}.

• ρabq (n) = 4 if and only if 〈n〉Q is a prefix of 100010001000 · · · .

• ρabq (n) = 6 if and only if n ∈ {3, 6, 12}.

• For every value c ∈ {7, . . . , 16} there exist infinitely many integers n ∈ N such that
ρabq (n) = c.

25

c 〈n〉Q c 〈n〉Q
7 (1000)j0 (∀j ≥ 1) 12 10j1 (∀j ≥ 19)
8 (100)j (∀j ≥ 3) 13 10j (∀j ≥ 19)
9 (10)j (∀j ≥ 11) 14 (10000)j (∀j ≥ 6)
10 10j11 (∀j ≥ 19) 15 (10000)j0 (∀j ≥ 6)
11 (10)j0 (∀j ≥ 11) 16 (10000)j00 (∀j ≥ 6)

Table 10: (4-bonacci word) Examples of infinite families of normal Q-representations 〈n〉Q
such that ρabq (n) = c for c ∈ {7, . . . , 16}. The data in the table were obtained by trial and
error: we used the automaton evaluating ρabq (n) to explore several periodic expansions, some
with an aperiodic part at the end, and noted down those expansions that were useful. Many
other such examples can be found.

We are convinced that the existence of gaps in the range of the abelian complexity
function, as well as the existence of values that are attained only finitely many times, are
common properties of all m-bonacci words with m ≥ 4.

We finish the section by a remark on the minimal value of the abelian complexity function
of the m-bonacci word for a general m. Let u be an m-bonacci word. One can easily show
that for every n ∈ N and ℓ ∈ {0, 1, . . . ,m − 1}, the factor ℓu[n−1] is a factor of u, thus
ρabu (n) ≥ m. At the same time we have ρabu (1) = m. To sum up, minn∈N ρ

ab
u (n) = m for any

m-bonacci word. Results of K. Břinda’s calculations [4] together with proven formulas (37)
and (38) suggest a conjecture on a precise characterization of the numbers for which the
abelian complexity function of an m-bonacci word u attains its minimum:

ρabu (n) = m ⇔ 〈n〉U is a prefix of 10m−110m−110m−1 · · · ; (39)

the symbol 〈n〉U stands here for the m-bonacci representation of n. We are able to prove the
implication ⇐ in (39) for a general m by the abelian co-decomposition method, introduced
earlier [19]. The implication ⇒ remains so far open, although we expect that it is probably
not difficult to be proven either.

9 Conclusions and generalizations

In this paper we focused on the abelian complexity of the Tribonacci word (or, more generally,
m-bonacci words), but the method can be easily adapted for application on any simple Parry
word. Let us consider the fixed point u of a substitution (6). The calculation naturally takes
advantage of the numeration system associated with ϕ, i.e., of the normal U -representation
for Uj = |ϕ

j(0)|. Let us briefly sketch the procedure. First of all, for the sake of generality, we
slightly reformulate the definition of Dec

(
v
w

)
by imposing an additional technical assumption

on the decomposition (8). Namely, we assume that for every j ∈ {1, . . . , h}, the factor z̃
has the prefix 0, and require that h is maximal subject to this condition. We also need to

26

introduce maps D0,D1, . . . ,Dα0 , defined in a way analogous to equations (22), i.e.,

Dj(ζ) := Dec

(
ϕ(z)

0−jϕ(z̃)0j

)

for ζ =

(
z

z̃

)

, j ∈ {0, 1, . . . , α0} .

The search for sets Z1, . . . ,ZM starts with calculating Zu(n) by formula (11) for every
n ∈ {1, . . . , α0}. Then we take the bunch of sets Zu(1), . . . ,Zu(α0), which we denote by
Z1, . . . ,Zα0 , and apply the maps D0,D1, . . . ,Dα0 on each of the sets, similarly as in the
proof of Theorem 8. In this way we obtain a new bunch of sets, we apply D0,D1, . . . ,Dα0

on them again, and so forth. However, unlike in the case of m-bonacci words, one needs to
keep track of the admissibility of the normal U -representations 〈n〉U during the calculation.
Briefly speaking, if a normal U -representation, examined at a given moment, cannot be
validly extended by a certain specific digit d, then the map Dd is not applied at that stage.
The procedure ends when the application of D0,D1, . . . ,Dα0 generates no new data.

The abelian co-decomposition method also allows us to deal with the other type of Parry
words, called non-simple Parry words, which are fixed points of substitutions

ϕ : 0 7→ 0α01
1 7→ 0α12

...
m 7→ 0αm(m+ 1)

...
m+ p− 2 7→ 0αm+p−2(m+ p− 1)
m+ p− 1 7→ 0αm+p−1m

where αj satisfy α0 ≥ 1, αℓ ≤ α0 for all ℓ ∈ A, and (∃ℓ ∈ {m,m+1, . . . ,m+p−1})(αℓ ≥ 1).
Although we have not explicitly discussed non-simple Parry words in previous sections, the
implementation of the procedure would be the same; we just need to replace the value m in
the definition of R (12) by m+p. To sum up, the approach is applicable on any Parry word;
but one shall keep in mind that in practice it will more likely work well in cases when the
image of the abelian complexity function is a set of low cardinality. Nevertheless, it can still
give new results for various words for which other methods fail.

Those Parry words, for which this approach turns out to be inefficient, can be per-
haps treated by a newer technique, which replaces pairs

(
z

z̃

)
by certain conveniently chosen

triples [20]. That technique is more involved, but it is expected to have smaller memory
requirements in most cases and to work faster.

A potentially interesting question is whether this approach (possibly after a certain im-
provement) can be used for dealing with a word that depends on a parameter, i.e., whether
one can explore a parametric family of words as a whole. Consider for instance them-bonacci
word for a general m ≥ 2. We are convinced that the procedure could be implemented with
a parameter as well, although the calculation would be of course intricate and lengthy.

The procedure also gives, as a by-product, the optimal balance bound of the examined
word. The optimal bound is equal to the maximal entries of vectors ψ having the form

27

ψ = vi − vj for vi, vj belonging to the same set
⋃

ζ∈Zq
Vect(ζ). For example, one can check

in this way that the 4-bonacci word is 3-balanced. Consequently, we can regard the method
not only as a tool for evaluating abelian complexity, but also as a tool for exploring balance
properties of words. In particular, it is possible that this approach can lead to the optimal
balance bound for the m-bonacci word for any m. Recall that the optimal bound for the
m-bonacci word is not known yet, despite the fact that an upper bound has been already
determined [5].

10 Acknowledgements

The author thanks J.-P. Allouche for useful comments and suggestions, and the referees for
valuable hints and corrections that helped to improve the manuscript.

References

[1] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generaliza-
tions, Cambridge University Press, 2003.

[2] H. Ardal, T. Brown, V. Jungić, and J. Sahasrabudhe, On abelian and additive com-
plexity in infinite words, Integers 12 (2012), #A21.

[3] L’. Balková, K. Břinda, and O. Turek, Abelian complexity of infinite words associated
with quadratic Parry numbers, Theor. Comput. Sci. 412 (2011), 6252–6260.

[4] K. Břinda, Abelian complexity of infinite words and Abelian return words, Research
project, Czech Technical University in Prague, 2012.

[5] K. Břinda, E. Pelantová, and O. Turek, Balances of m-bonacci words, Fundam. Inform.
132 (2014), 33–61.

[6] J. Cassaigne, G. Richomme, K. Saari, and L. Q. Zamboni, Avoiding Abelian powers in
binary words with bounded Abelian complexity, Int. J. Found. Comp. Sci. 22 (2011),
905–920.

[7] E. M. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Syst.
Theory 7 (1973), 138–153.

[8] J. Currie and N. Rampersad, Recurrent words with constant Abelian complexity, Adv.
Appl. Math. 47 (2011), 116–124.

[9] S. Fabre, Substitutions et β-systèmes de numération, Theor. Comput. Sci. 137 (1995),
219–236.

28

[10] M. Lothaire, Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathemat-
ics and its Applications, Cambridge University Press, 2002.

[11] B. Madill and N. Rampersad, The abelian complexity of the paperfolding word, Discrete
Math. 313 (2013), 831–838.

[12] H. Mousavi and J. Shallit, Mechanical proofs of properties of the Tribonacci word,
preprint, 2014. Available at http://arxiv.org/abs/1407.5841.

[13] W. Parry, On the β-expansions of real numbers, Acta Math. Hungar. 11 (1960), 401–
416.

[14] G. Richomme, K. Saari, and L. Q. Zamboni, Abelian complexity in minimal subshifts,
J. London Math. Soc. 83 (2011), 79–95.

[15] G. Richomme, K. Saari, and L. Q. Zamboni, Balance and Abelian complexity of the
Tribonacci word, Adv. Appl. Math. 45 (2010), 212–231.

[16] J. Shallit, A generalization of automatic sequences, Theor. Comput. Sci. 61 (1988),
1–16.

[17] W. Thurston, Groups, tilings and finite state automata, AMS Colloquium Lecture Notes,
1989. Available at http://timo.jolivet.free.fr/docs/ThurstonLectNotes.pdf.

[18] O. Turek, Balances and Abelian complexity of a certain class of infinite ternary words,
RAIRO Theoret. Informatics Appl. 44 (2010), 313–337.

[19] O. Turek, Abelian complexity and abelian co-decomposition, Theor. Comput. Sci. 469
(2013), 77–91.

[20] O. Turek, Abelian properties of Parry words, Theor. Comput. Sci. 566 (2015), 26–38.

2010 Mathematics Subject Classification: Primary 11B85; Secondary 68R15.
Keywords: abelian complexity, Tribonacci word, finite automaton, 4-bonacci word.

(Concerned with sequences A000073, A000078, A080843, A216190, A254990, and A255014.)

Received October 7 2014; revised version received February 12 2015. Published in Journal
of Integer Sequences, February 14 2015.

Return to Journal of Integer Sequences home page.

29

http://arxiv.org/abs/1407.5841
http://timo.jolivet.free.fr/docs/ThurstonLectNotes.pdf
http://oeis.org/A000073
http://oeis.org/A000078
http://oeis.org/A080843
http://oeis.org/A216190
http://oeis.org/A254990
http://oeis.org/A255014
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminaries
	Abelian co-decomposition
	Sets Z(n)
	Range of the abelian complexity
	Evaluation of the abelian complexity
	Reduction of states of the automaton
	On the abelian complexity of m-bonacci words for m 4
	Conclusions and generalizations
	Acknowledgements
	Bibliography

