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Abstract

In an earlier paper it was argued that two sequences, denoted by {U,} and {W,},
constitute the sextic analogues of the well-known Lucas sequences {u,} and {v,}.
While a number of the properties of {U,,} and {W,,} were presented, several arithmetic
properties of these sequences were only mentioned in passing. In this paper we discuss
the derived sequences {D,} and {E,}, where D, = gcd(W,, — 6R",U,) and E, =
ged(W,,Uy,), in greater detail and show that they possess many number theoretic
properties analogous to those of {u,} and {v,}, respectively.
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1 Introduction
Let p, ¢ € Z be relatively prime and «, § be the zeros of
= pr+q

with discriminant 6 = (a — 3)* = p* — 4¢q. The well-known Lucas sequences {u, } and {v,}
are defined by

a™ — pg"

a—p3"
These sequences possess many interesting properties and have found applications in primality
testing, integer factorization, solution of quadratic and cubic congruences, and cryptography
(see [4]). We note here that both sequences are linear recurrence sequences of order 2 and
that u,,, v, € Z whenever n > 0.

Lucas’ problem of extending or generalizing his sequences has been well studied and we
refer the reader to [2, Chapter 1] and [3, Section 1] for further information on this topic.
One possible extension of the Lucas sequences, which involves cubic instead of quadratic
irrationalities, was investigated in [2] (also see Miiller, Roettger and Williams [1]). In this

case we let P, ), R € Z be integers such that ged(P,Q, R) = 1 and let «, 3, v be the zeros
of

Uy, = Un(p, q) = v, = Uy(p, q) = " + 5"

h(z) = 2* — Px* + Qz — R, (1)

with discriminant
A= (a—B)2B -7y —a)=Q*P*—4Q> — 4RP? + 18PQR — 27TR* # 0.
Roettger’s sequences {c,} and {w,} are defined as

tn = (P, Q, R) = (" = ") (8" —=7") (7" — a")/((a = B)(B —7)(y — a))

and
wy, = wp(P,Q, R) = (" + ") (8" +7") (V" + ") — 2R".

Note here that if n > 0, we have ¢,, w, € Z and {¢,}, {w,} are linear recurrence sequences
of order 6.

In [2], it is pointed out that the sequences {¢,} and {w, } have many properties analogous
to those of {u,} and {v,}, respectively. Recently, these sequences were extended further by
Roettger, Williams and Guy [3]. If we put vy = /8, 72 = /7, 73 = 7/, A = R, then we
can write

tn = NI =911 =) (1 =5)/((1 —71)(1 —72)(1 —73)) and
w, = v,—2R", where
v = A"(14+7)1 4+ 7)1 +73).
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One of the most important properties of the Lucas sequence {u,} when n > 0 is that it
is a divisibility sequence. An integer sequence {A,} is said to be a divisibility sequence if
A, | Ay, whenever n | m and A,, # 0. For example, Roettger’s sequence {¢,} (n > 0) is a
divisibility sequence. Suppose we define

AT =) =) (- ) @)
! (L=y)(I =) —73)
Vi = A1 4+7) (1 +72) (1 +73), (3)

where A, 1, 72, 13 € Q; 71, 72, 13 # 15 % # 75 when @ # j and y1927y3 = 1. In [3], it is shown
that if U,, V,, € Z whenever n > 0, {U,} is a linear recurrence sequence and {U,} is also a

divisibility sequence, then we must have A = R € Z and p; = R(v; + 1/v) (i = 1,2,3) must
be the zeros of a cubic polynomial

g(x) = 2* — S12* + Sy — Ss, (4)

where

S3 = RS — 2RS, — 4R? (5)
and S7, Sy € Z. The six zeros of

G(z) = (2% — p1w + R*)(2* — pox + R*)(2* — p3z + R?)
= 2% — S12° + (S + 3R*) 2" — (S5 + 2R2S))2® + R*(Sy + 3R?)x* — R*S1x + R®

are Rvy;, R/v; (i = 1,2,3). If we define W,, = V,, — 2R", then both {U,} and {W,} are
linear recurrence sequences with characteristic polynomial G(z). Also, Uy = 0, U; = 1,
U2 = Sl+2R, U3 = S%+R81_SQ_3R2, WO = 6, W1 = Sl, W2 = 512—252—6R2,
Wy = S} — 3515, + 3RS? — 6RS, — 3R*S; — 12R3. Furthermore, we have U_,, = —U,, /R*",
W_,, = W,/R*"; hence, U,,, W,, € Z when n > 0. It is also the case that {U,} is a divisibility
sequence.

It is shown in [3] that if

S, = PQ — 3R, Sy = PR+ Q* - 5PQR + 3R?, (6)

then U, (S, S2, R) = ¢,(P,Q, R), W,(51, 52, R) = w,(P,Q, R). If, in the expression (2), we
define
A = N(1—m)*(1—7)*(1—)°
= RQ(’Yl 2+ =1/ —1/7% — 1/’73)27 (7)

we find that
A =S} —4S, +4RS, — 12R?, (8)



but this is the same as Q*P? —4Q* —4RP3+18PQR — 27R?, the discriminant of h(x), when
Sy and Sy are given by (6). If d denotes the discriminant of g(z), then, as shown in [3], we
have d = AT, where

I = Ry —)0e—1)0s—m) (9)
— 524+ 10RS, Sy — 4RS? — 11R*S? + 12R3S, + 24R*S, + 36R". (10)
The discriminant D of G(z) is given by D = Ed?R'?, where
E = R?A(Sy + 2R)? = (p1 — 4R?)(py — 4R%)(ps — 4R?).
If Sy and Sy are given by (6), then
I = (RP® — Q%> (11)

We remark that the condition analogous to ged(P,Q, R) = 1 for Roettger’s sequences is
ged(Sy, Se, R) = 1 for the more general {IW,} and {U,} sequences.
The duplication formulas are

2Wy,, = W2 4+ AU? — 4R"W,,, Us,, = U,(W,, +2R") (12)
and the triplication formulas are

AWy, = BAUZ(W,, + 2R") + W2(W,, — 6R") + 24R*", (13)
4Us, = U, (3W? + AU?). (14)

Since {U,} is a divisibility sequence, we must have Us, /U, € Z (n > 0) and by (14), this
means that 4 | W2 — AU?2. Thus, if 2 | U,, then 2 | W,, and we have proved Proposition 1.

Proposition 1. Ifn >0, then 2 | ged(W,,,U,,) if and only if 2 | U,.

The general multiplication formulas for {W,} and {U,} are given as [3, (7.7) and (7.8)].
We observe here that in general for a given Sy, So R € Z there do not always exist, P,
() € Z such that (6) holds. As a simple example consider S; = —1, Sy = —4, and R = 1; it is
not possible to find integers P, Q such that PQ = 2 and P3 + Q3 = 3. Thus, the sequences
{W, (51,52, R)}, {U,(S1, S, R)} represent a non-trivial extension of Roettger’s sequences
{w,} and {c,}.
In [3] it is mentioned that if we define

D, = ged(W,, — 6R",U,) and E, = ged(W,,U,),

then the sequences {D,} and {E,} possess many number theoretic properties in common
with {u,} and {v,}, respectively. Indeed, some of these properties were presented in [3]
without proof. The purpose of this paper is to supply these proofs or sketches thereof and
to develop some new results concerning {D,,} and {E,}.
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2 Some properties of {D,}

In this section we will produce some results concerning {D,,} that are similar to those
possessed by {u,}. We begin with two simple propositions that easily follow from Lemma
8.1 of [3] and results immediately following that lemma.

Proposition 2. If gcd(Sy, o, R) = 1, then for n > 0 we have
ged(D,y,, R) | 2.

Proposition 3. If gcd(Sy, o, R) = 1, then for any n > 0, we must have 4 1 D,, whenever
2| R.

In the sequel we will assume that Sy, Sz, R have been selected such that ged(Sy, Se, R) = 1.
If we define

o AUZ when 2 1 AU,;
" 1 AU2/4, when 2| AU,

we see that since 4 | W2 — AU F,, must be an integer. If M is any divisor of F,, and

(M, R) =1, then we can use [3, (7.7) and (7.8)] to show that

Upin /Uy, = RM™YEK, (W, /2R™)  (mod M), (15)
Win = 2R™ L,,,(W,,/2R"™)  (mod M), (16)

where the polynomials K,,(x) and L,,(z) are respectively defined in [2, §4.3 and §5.1]. Also,
from results in [2] it is easy to show that L,,(3) = 3 and K,,(3) = m®. We next establish
that like {u,}, {D,} is a divisibility sequence.

Theorem 4. Ifn, m > 1, then D,, | Dp,.

Proof. Since {U,} is a divisibility sequence it suffices to show
D, | Wy —6R™. We let 2% || D,,. ff A =0o0r A > 1 and 2 { R, then D, | F,. By
Proposition 2, we have ged(D,,, R) = 1 and by (16) we get

Wy = 2R™ Ly (W, /2R™) = 2R™ L, (3) = 6R™  (mod D,,).
If A =1, then ged(D,,/2,R) =1 and D,,/2 | F,,; hence,
Wi = 6R™  (mod D,,/2).

Also, since 2 | Uy, we have 2 | U,,,, and 2 | W,,,, (Proposition 1). It follows that W,,, = 6R™"
(mod 2) and since ged(2, D, /2) = 1 we get

Wy = 6R™  (mod D,,).

There remains the case of A > 1 and 2 | R, but this is impossible by Proposition 3. O
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Let p be any prime. We are next able to present the law of repetition for p in {D, }. We
denote by v,(z) (x € Z) that value of A such that p* || z.

Theorem 5. Let p be any prime such that p > 3 and suppose that v,(D,,) > 1.

1. If v, (Uy,) > v,(W,, — 6R"), then v,(D,,) = v,(Dy,) + 2 and
Vp(Wpn — 6RP™) < vp(Upp,).

2. If v,(Uyp) = v,(W,, — 6R") and v,(U,) > 1, then
Vp(Dpn) = vp(Dy,) + 2 and vy(Wy,, — 6RP") < 1, (Upy).

3. If v,(U,) < v,(W,, —6R"), then if v,(U,) > 1,
Vp(Dpn) = vp(Dn) + 3.

4. If X =1, then v,(D,y,) > 2.

Proof. These results can be established by making use of the techniques of [2, §5.2], together
with the polynomial congruence

Ly(z) =3+ p*(x = 3) + (P*(p* — 1)/12)(z — 3)?
+ (' (r* = D(* — 4)/360)(z = 3)*  (mod (z - 3)"),
which holds for all primes p > 5. O]
When p = 3, the law of repetition for 3 in {D,} is given below.

Theorem 6. Let v3(D,) > 1.

1. If v3(Uy,) > v3(W,, — 6R™) > 1, then v3(Ds,) = v3(D,y,) + 2.

2. If v3(Uy,) > v3(W,, — 6R"™) = 1, then v3(Ds,) > v3(Dy) + 2.

3. If v3(U,) < v3(W,, — 6R™), then

v3(Ds,) = v3(Dy,) +3  when v3(D,) > 1

or
I/3(D3n) Z Vg(Dn) + 3 when Vg(Dn) =1.

Proof. These results can be easily proved by making use of the the triplication formulas (13)

and (14). O

In the case of p = 2, there exists a rather complicated law of repetition for p in {D,,}.
We will not provide the complete law here, but we remark that if v5(D,) > 1, then the
duplication formulas (12) can be used to show that (Do) > va(D,) + 1. The case of
vo(D,,) = 1, however, is more problematical. Certainly, if 2 | R, there is no law of repetition
for 2 in {D,} by Proposition 3. Thus, we need only consider the case of 2 || D,, and 2t R.
In this case, we can use the duplication and triplication formulas to find that if
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i) 4| Uy, 2| W, —6R™;
i) 2| Un, 2|| W, —6R™, 2| A,
i) 2| Uy, 4| W, — 6R", 21 A
then 4 | D3, and 41 Ds,. In all other cases we have 4 | Ds,.
We also have the following companion result to the law of repetition for any odd prime
in {D,}.
Theorem 7. If p is odd and v,(D,,) > 1, then v,(Dy,y) = v,(D,,) whenever p { m.

Proof. Since p # 2, we have p* | F,, when A = v,(D,), ged(p,R) = 1 and W,, = 6R"
(mod p*). Tt follows from (16) that

Wi = 2R™ L,,(W,,/2R") = 2R™ L,,,(3) = 6R™ (mod p*)
and by (15) that
Upin /Uy, = R YK, (3) = m*RYM™ Y (mod p).

Since p { m, it follows that p* || Uy, and p* | Wy, — 6R™; hence p* || D O
In the case of p = 2, Theorem 7 is not in general true when A = 1 and 2 { R, as we have
seen in the above remarks. Of course, we could eliminate this problem if we could impose
additional restrictions on Sy, Sy, R such that none of i), ii) or iii) could occur. If 2 || D,
and 2 { R, it is easy to show that cases i), ii) or iii) can occur if and only if 2 | @,, where
Qn, = (W2 — AU?)/4. In a later section we will discuss the parity of @, when 2 | D,,. Note
that if 4 | D,,, then 21 R and

Qn = 1 (mod 2). If A\ > 1, then we certainly have 2* | D,,, by Theorem 4 and since
W,/2R" =3 (mod 2*71), we get

Upn /Uy = m*R™™=D (mod 271).
Thus, if m is odd, then 21 U,,,, /U, and 2" || D,,,. Hence Theorem 7 is true when p = 2 and

VQ(Dn> > 1.
We conclude this section with a result that is often useful.

Theorem 8. If m, n > 1, then gcd(U,y, /Uy, D) | 2m®.

Proof. 1t is easy to show this when 2 { D,, because D,, | F,, and ged(D,,, R) = 1. Suppose
2| D,; then because U, /2 | F},, we have D, /2 | F,,. Also, ged(D,,/2, R) = 1 by Propositions
2 and 3. Hence, by (15)

Upin /U = m3R™™=1 " (mod D, /2).

It follows that

gcd(Upn /Un, D, /2) | m?
and

2cd(Upn /Uy, Dy) | 2m?.



3 The law of apparition for m in {D,}

In this section we deal with the problem of when m | D,,, when m > 1. We note that if p is
an odd prime and p | R, then p{ D,, (n > 0) by Proposition 2. Thus, we may assume that
if m is odd, then ged(m, R) = 1. We define w = w(m), if it exists, to be the least positive
value of n such that m | D,,. We call w the rank of apparition of m in {D,}.

We begin by examining the case where m is a prime p where p | d and p { 2R.

Theorem 9. Let p by any prime such that p{ 2R and p | d. There exists a rank of apparition
w of pin {D,} and if p | D, for somen >0, then w | n. Also, w=p orw |p=+1.

Proof. By results in the early part of [3, §9], we know that if

p | S — 39,, then p has a simple rank of apparition ry in {U,}. It is not difficult to show
that p | D,, if and only if ry | n; hence, w = ry. If pt S? — 355, then p can have two ranks of
apparition in {U,} when p | A and only one when p t A. In either case, it is a simple matter
to show that there is a rank of apparition w of p in {D,}, that w # p and that if p | D,,
then w | n. O

We next consider the case of p =3 and 31 d.

Lemma 10. If p = 3 and 3t dR, then w = w(3) always exists in {D,} and if 3 | D, then
w | n.

Proof. We see from [3, Table 2| that there is single rank of apparition r of 3 in {U,,}. From
the duplication formulas we see that if 3 | U,, and 3 t W,,, then 3 | W, if and only if W,, = R™
(mod 3) and 3 | Wy, if and only if W,, = —R™ (mod 3). Thus, w(3) always exists and w = r,
2r or 4r. Furthermore, if 3 | D,,, then w | n. O

There remains the case of odd p where p 1 3dR. We first need to establish a simple lemma
in this case. Here and in the sequel we will denote by K, the splitting field of G(z) € F[x].
We can denote the zeros of G(x) € F,[z] by Ry, and R/~; (i =1,2,3).

Lemma 11. If p12AR, then p | D, if and only if {7 =5 =5 =1 in K,.

Proof. Certainly, if 7) = v8 =~ = 1in K,, then p | W,, —6R" and p | U,, by (2) and (3);
hence, p | D,,. If p | D, then since p | U,, and p 1 A, we may assume without loss of generality
that 77" = 1. By [3, (8.4)], we have v} — 1 = 0 and therefore v§ = 1/(7v%) = 1. O

Corollary 12. If p t 2AR and w = w(p) exists for p in {D,}, then p | D, if and only if
w | n.

Proof. Certainly p | D,, when w | n because {D,,} is a divisibility sequence. Suppose next
that w{n and p | D,,. In this case we have n = quw+r, where 0 < r < w. Also, by the lemma
we must have 7' =73 =73 =1, 7Y =1 =75 = 1 € K,,. It follows that 7] =5 =5 =1
in K, and p | D,, which contradicts the definition of w. ]



We now deal with the case of p {1 6dR. Under this condition, we say that p is an S-prime,
Q-prime or I-prime if the splitting field of g(x) € F,[z] is F,,, F,2 or F s, respectively. The
following theorem follows easily from Lemma 11 and results in [3, §9].

Theorem 13. If p is a prime, p{ 6dR and e = (A/p), then

p | Dy—e when p is an S-prime,
p | Dp2_y when p is an Q-prime,

P | Dp2yepi1 when p is an I-prime.
We can now assemble the above results in the following theorem.

Theorem 14. If p{ 2R, there exists a rank of apparition w (< p?>+p+1) of p in {D,} and
if p| Dy, then w | n.

In [2, §4.6], S-, Q-, I-primes are discussed with respect to the polynomial h(z) € F,[z].
We next show that if 51, Sy are given by (6), then the splitting fields of h(z) and g(x) € F, ]
are the same whenever p{ . We let L; denote the splitting field of h(z) € F,[z], Ly denote
the splitting field of g(x) € F,lz] and let «, S, 7 denote the zeros of h(z) in L. Since the
zeros of g(x) € F,[x] are given by

p1=(a® + 37, p2 = a(f* +77), ps = Bla® +77),

we see that pi, pa, p3 € Ly. If Ly = Fp, then clearly Ly = F, = LL;. If L; = Fj2, then
(A/p) = —1 and by (11), we get (d/p) = (I'A/p) = (A/p) = —1; hence, Ly = Fo = L;. If
Ly = Fps, then (d/p) = 1 and LLy # F,2. Consider

pr=7(P*=2Q) -~ € L.

We have
P ="(P?* = 2Q) — 7" = a(P? - 2Q) — o”.

Thus, if p; = p}, then since o # v we must have
o +ay+vt=P?—2Q

and 3% = ay or 2 = R. From (1), we get P3—Q = 0 and P?R—Q? = 0, which is impossible
because p t I'. Thus, p; # pY, and therefore Ly = Fps = L;.

We have not yet discussed the case of p = 2. The reason for this is easily seen in [3, Table
1]. We first observe that if 2 | R, 2t .S; and 2 | Sy, then w(2) does not exist. Next, if 2 | S;
and 2 1 SR, then w(2) = 2 by definition, but we also have 2 | D3 and w(2) 1 3. Thus to truly
have a rank of apparition of 2 in the sense of the results given above we should eliminate the
possibility that 2 | S; and 2 4 SyR. When we do this, then by Proposition 2 we have w(2)
given by Table 1.



If p 1 2R, then p has a rank of apparition w in {D,}; we now deal with the case when
m = p* and « > 1. By the law of repetition we know that p* | D,, for some n > 0; hence
w(p®) must exist. If we put w = w(p), then since p | Dypey, we must have w | w(p®) by
Theorem 14. Put s = w(p®)/w and let p” || s, then s = p“t, where p { t. If p* || Dy, and
A < a, then p* || Dpvyr by Theorem 7, which is a contradiction; thus w(p®) = p“w. Notice
that v is the least positive integer such that p® | Dpv,.

Next, suppose that 2 1 m and the prime power decomposition of m is

k

.

m =] ]
i=1

we must have
w(m) = lem(w(py®) i =1,2,...,k). (17)

Thus, if (m,2R) = 1, then w(m) always exists and is given by (17).

4 The auxiliary sequences {U'} and {W*}

In order to prove some results concerning {U,} and {W,}, it is often useful to make use
of the auxiliary sequences {U}} and {W}}. We put v = v2/7, v = /%2, 75 = 71/73,

R* = R? and define
Vi=R"(1+9") (145" +4"),

Ur=R™" (1 -1 =" =%")/(1 =)0 =) (1 =),
W* =V*—2R™,

where
A= R =) (1= )1 = 95)* =T #0. (18)
Notice also that
I = R =) — 1) (s — 1)
AR*US.

If we put 7i* =73 /7 = 1/73, then 77* = 1/~5. We also have
W5 =5/ = 1/75, 95" =71/ = 1/71; hence,

*k
1

Wy = R"Ws,, Uy = R""'Us, /Us. (19)
If we put p; = R*(v/ +1/7)) (i = 1,2,3), we get

ST =pi +p5+p3 =5 — RS, (20)
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and

S5 = pips+ paps + pipr = RWs + RS

= RS} —3RS,Sy +3R*S, — 5R*S, — AR®S; — 12R*. (21)
Also,
S5 = pip3ps

= R'S{? —2R*S; — AR,

It follows, then, from the results mentioned in §1, that if we compute the initial values
of U and Wi(= V* — 2R*) by replacing R,Si, Sy by R*, S;,S;, respectively, then we
have both {U}} and {W}} to be linear recurrence sequences of order 6 with characteristic
polynomial G*(z) and {U;} is a divisibility sequence. It is easy to show as well that W* =
Wy /R*" and U*, = —U}/R**". We observe further that ged(S7,S;,55) = 1 if and only if
ged (S, S2,53) = 1. Thus, the sequences {U}} and {W} have the same properties as {U,,}
and {W,} with R, S;, Ss, replaced by R*, S}, S;, respectively.

We have shown how to relate the {U*} and {W *} sequences to {U,} and {W,} in
(19); we can also relate the {U}} and {W}} sequences to {U,} and {W,}. We define

p™ = R*(y7 +1/47) (i = 1,2,3) and find that

St = ) g pm . plm — (22)
and
S5 = p" 08" + oo + pi s = Wi+ RUW. (23)
Since
AU = R™(1 =721 =) (1 =)
= S{"? — 48" +AR"S" — 12R*",
we get

AU? = W2 — AW} — 12R™ (24)

using (22) and (23). This formula, which generalizes (8), is similar to the well-known Lucas
function identity

v2 — dul = 4q".
Note also that we get

Qn =W’ +3R" (25)

from (24) and
AW = W? — AU? — 12R™",
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the relation connecting W to W,, and U,. To relate U} to W,, and U, is somewhat more
complicated. From (24), we have

AU = W2 — AW™* — 12R**".
Hence, from (18), (19), and (24), we get
TU? = ((W? — AU?) /4 — 3R*)* — 4R"W3, — 12R"".
From (13), we find that

16TU2 = W — 16R"W? — 48R"AW,U? + 7T2R*W? — T2R*"AU?
— 2AW2AU? + AU — 432R*™, (26)

a formula that generalizes (10).

As promised in §2 we will now investigate the parity of Q, when 2+ R and 2 | D,. If
21.5; and 2 | Sy, then by (20) and (21), we have 2 ¢ S} and 2 | S;. It follows that 2 | U
if and only if 7 | n and 2 | W* when 2 | D,. In this case we find from (25) that 2 1 Q,
whenever 2 | D,,. If 2 | S} and 2 | Sy, then 2 | S§ and 2 | S5; hence, 2 | U} if and only
if 2 | n and we get 2 | W*, Q, = 1 (mod 2) whenever 2 | D,,. If 21 S; and 2 { Sy, then
A* =T = (Sy + RS;)?> =0 (mod 4) from (10). Since 4 | W2 — A*U?, we get 2 | W and
Qn=1 (mod 2).

The only remaining case is 2 | S; and 2 1 S;. In this case 4 | A and case (iii) can never
occur. We get Uy = S; + 2 (mod 4) and W, — 6R* = 2 (mod 4); thus, we see that cases
(i) and (ii) can always occur, depending on the parity of S;/2. In either of these cases, we
get 4 | Dg. It follows that if we eliminate the case of 2 | Sy and 2 1 Sy R, then Thereom 7,
will be true for all primes p. Also, we have already seen in §3 that if we eliminate this case,
then we have a rank of apparition w of 2 in {D,,} and 2 | D,, if and only if w | n; indeed, if
ged(m, R) = 1, there always exists a rank of apparition w of m in {D,,} given by (17) such
that m | D, if and only if w | n. We remark here that if ) and Sy are given by (6), then
if 21 R and 2| Sy, we must have 2 | Sy. Thus, for the sequences {¢,} and {w,} we cannot
have the case of 2 | S} and 2t SaR.

If p is an I-prime and p = ¢ = (A/p) (mod 3), then 3 | p* 4+ ep+ 1. Since we know in this
case that p | Dy2p41, it is of some interest to determine a criterion for deciding whether
or not p | Dip24epi1)/3- Roettger showed for the case of the {c,} and {w,} sequences that
p | D2ipi1y/s (€ =1 in this case if p is an I-prime) if and only if R#~1/3 =1 (mod p) in |2,
Theorem 5.14]. In what follows we will extend this result to the {U,} and {IV,,} sequences.
We begin with three preliminary lemmas.

Lemma 15. [f 3W2 = —A (mod p), then p cannot be an I-prime.
Proof. We have W7 = S; and by (8) we find that

Sy, = RS? —2RS; — 4R* (mod p)

12



and by (5)
S3 = —RS? —2R?S; +2R* (mod p).

Hence

g(r) = (z + R)(2* — (S1 + R)z + S} + 2RS, — 2R?) (mod p).
Since g(z) is reducible modulo p, p cannot be an I-prime. O

Lemma 16. Let p be an I-prime and let K, be the splitting field of G(x) € Flz]. If { is a
primative cube root of unity in K,, then in K, we can have

CFn+nt+rn)+* m +n +n) =+ttt +nt o (27)
if and only if 3 | k.

Proof. 1f 3 | k it is trivial that (27) must hold. If 3  k, we first observe that ¢* + (7% = —1
and we have

¢ +1/2=(¢F-¢M)/2 CFH12= (M=)
Thus (27) can hold only if
Ck _ C_k

_ _ _ 3 _ _ _
et mn mw) =gt F ).

On multiplying both sides by 2R and squaring we find that

3WE=-A (mod p),
which by the previous lemma is impossible. O
Lemma 17. If p is an I-prime and p | Uy, then p | D,,.

Proof. Since p | U,,, we must have 7 = 1 in K, for some i € {1, 2,3} by (2). We may assume
that 7 = 1. From the proof of [3, Theorem 9.8], we have 1 = 72" = 75™; hence, 7§ = 1 and
v8 =1/(77v%) = 1. The result now follows by Lemma 11. O

We are now able to derive our criterion for when p | D2 epi1)/s-

Theorem 18. If p is an I-prime and p = € (mod 3), then p | Dy2yepi1y/3 if and only if
Wi—os = R2P=93=17 (mod p).
Proof. We first note by Lemma 17 and 11 that p | U213 if and only if vfp2+€p+1)/3 =1

in K, for all 7 € {1,2,3}. Since fy]f2+€p+1 =1 in K,, we must have

2
pZ+tep+1
3 k

’yl :Cv

13



where ¢ is a primitive cube root of unity in K,. It follows that
P | Dg2gepy1yss if and only if 3 | k. Now

PP +ep+1)/3=(p—e(p+26)/3+1.

Hence,

2 € € —€
¢k = P F PV = ()i,

Since v} = 7§ (see the proof of [3, Theorem 9.8]), we get
¢k = (173) By = APy

and
*(p—e)/3 €
,YS(P )/ — (Ck/'}/l) ]

Since v5" =7 /v5 = 5/ = 11, we get
xe(p—e)/3 €
I = (R Y = Py,

and
*(p—e)/3 €
B = (K /)
Similarly 1%~ 9" = (¢*/y3)°. Tt follows that
Wi—oys = BP0 495 +95) + O + 72+ 5]
By Lemma 16, we see that 3 | k if an only if
Wio/s = R2P=9/3-17 (mod p).

]

This criterion can easily be converted to one that involves only the {U,} and {WW,}
sequences by using (24). At first glance, the criterion of Theorem 18 does not resemble the
more elegant rule for p | D2441y/3 When dealing with Roettger’s sequences. In this case
we have v1 = /8, v2 = /7, 73 = v/a and R = af~. We can deduce Roettger’s rule in the
following corollary of Theorem 18.

Corollary 19. Suppose D,, = ged(w,, — 6R"™, ¢,,) and p is an I-prime with respect to h(zx) €
F,[z], then if p=1 (mod 3), we have

p | D(p2+€p+1)/3 = R(p_l)/3 =1 (mod p).

14



Proof. Suppose first that p { I'. In this case p is an I-prime with respect to g(z) € F,[x]
and 1 = (d/p) = (l'A/p) = (A/p) = €. By Theorem 18 we have p | D24 ¢p11)/3 if and only
it Wi _s = BP9, (mod p). But in Ky, we have 77 = 7/m1 = 5%/(ay) = °/R;

hence,

«P=1

N ® o= @p—l/R(p—l)/?) — (a/ﬁ)/R(p_l)/3 — 72—1/R(p—1)/3‘
p—1 «P=1
Similarly, 75 * =751 /RP V3, 4% =4t /RP-D/3 Tt follows that

Wiy = REOUB(REDB(y 4 yy 4 45) + RTOVB( T 447t 4421

3

and by Lemma 16 W}, = R*P~D/3-1I}/; (mod p), if and only if R?~1/3 =1 in K,,.

Suppose next that ]39 | T. In this case, p cannot be an I-prime with respect to g(x). If p{ P,
then by (11) we have R = (Q/P)? (mod p) and h(Q/P) =0 (mod p). In this case p is not
an I-prime with respect to h(z), a contradiction. If p | P, then p | Q and o® = 2 =~3 =R
in L;. We have aP~! = 8P~ = 4P=1 = RP=1/3 and if RP~V/3 =1 (mod p), we get o? = a,
and p is not an I-prime with respect to h(z) € F,lz], a contradiction. Now p | D3 and
since 3 1 (p? 4+ ep + 1)/3, we have p t D(21epr1)3- Thus, if p is an I-prime with respect to
h(z) € Fplz], then RP~D/3 £ 1 (mod p) and pt Dy2iepin)/s- O

We conclude this section with the following result concerning

D; = ged(W; —6R™,U,).

*

Theorem 20. If p is an I-prime and p = € (mod 3), then p | Dl yprny3e
Proof. We observe as above that v = 72/ and
(P> +ep+1)/3=(p—e)(p+2)/3+1.

Hence 5
* € 1)/3 € —€
71(p +ep+1)/3 _ (72/71)<<72/,}/1)p+2 )(p )/3

in K,. Now 74 = 7%, 47 = 75; hence,

)p+2e — ( 35'

(v2/m YVov3/ Vi) =1

It follows that
(o /m)PH2) P93 = AT P = oy

and ,
,Yik(p tept1)/3 _ 4

Hence, p | Dl pinya ]
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5 Some properties of {F,}

We will devote the major portion of this section to the proof that if p (> 3) is a prime and
p | E,, then p = (I'/p) (mod 3). This generalizes [2, Theorem 6.2]. We observe that by
Proposition 2 we have ged(E,, R) = 2. We now need some preliminary results.

Lemma 21. Let p be any prime such that p > 3. If p | E,, then in K, we must have
v =1, VA7 +1=0,
where 1 € {1,2,3} and all j € {1,2,3} such that j # i.

Proof. If pt A and p | U,,, we may assume with no loss of generality that 77" = 1 in K. If
p | A we may assume with no loss of generality that v; = 1 (and 7§ = 1) in K. Now

W, =V, —2R" = R'(1+77)(1+15)(1+5) —2R"
= 2R"(v375 +72 +3)
= 2R"(1 4+ +1/7)
= 2R"(1+1/75 +3),
the latter results following from ~{ = 1 and {4575 = 1. Since W,, = 0 in K, we have
WA L=+ +1=0. 0
Lemma 22. Ifp (> 3) is a prime, then p1{ (E,,T).

Proof. If p | I', then 71 = 73, 72 = 73 or 73 = 71 in K, by (10). If p | E,, then we may
assume that 77 = 1 and 73" + 95 +1 = 0 in K, by Lemma 21. If 73 = 79, then 73 = 1,
which is impossible because p > 3. The same is true if y5 = 3 or 73 = ;. ]

Lemma 23. Ifp (> 3) is a prime, p | A and p | E,, then
p=(T/p) (mod3).

Proof. Since p | A, we may assume with no loss of generality that v; = 1 and therefore
Y23 = 1 in K, = Fj2. Also, by Lemma 21 we may assume that if p | E,, then

%"+ +1=0
in K,. Hence, v5" = 1 and 75 # 1 in K,,. By Lemma 22, p{ T and

p—1

Iz = (n—2)" (=) (=)
(1—=7)(e —1hs—1)
(1=7)(2 =) —1)° (28)

If 49 € F,, then Iz = 1. Also, from 72" = 42, we get 7'~ " = 1, which, since 12 # 1

means that 3 | p— 1 and p = (I'/p) (mod 3). If 45 € F,2\F,, then 7% = 73 and A7~ " = —1
by (28). Since ¥5" =~ = 1/45 and AP — 1 we see that 3 | p+ 1 and p = (I'/p)
(mod 3). O
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We now show that if p is an I-prime, then p { E,,.
Theorem 24. If p is an I-prime, then p{ E,,.

Proof. As noted above we know that if p is an I-prime, then 7} = 7§, v5 =75, 74 = 7§ in K,,.
If p | E,, then by Lemma 21, we have 77 = 1 and 73"+~ +1 = 0. Now 752 =P =7 =
and 752" = ~7". Hence,

0=(5"+7 + 1" =3,

which is a contradiction. ]

We next deal with the case where p | 51 + 2R.

Lemma 25. Ifp (> 3) is a prime, ptd, p | S1+ 2R and p | E,, then

p=(I'/p) (mod 3).

Proof. Since p | S1 + 2R and Sy + 2R = R(v1 + 1)(72 + 1)(y3 + 1), we may assume in K,
that v = —1 and 273 = —1. We get

(m+7) e+ +m) =—(h+1/7% —2).

Since S; = —2R (mod p), we get S3 = —2RS5 (mod p) from (5) and
g(7) = (v + 2R)(2* + S) € F,[].

Since p = R(yi + 1/m) = —2R, we get pj = pi = =5 and 75 + 1/7) = p3/R* -2 =
—Sy/R* — 2 € F,. It follows that (71 +72)(72 + 73) (73 + 71) € F, and
(37 =) (5 = 13) (5 =)' = (= 1) (e — 718) (s — 1)) =

= (I'/p). (29)

As 43 4 1/93 € F,, we must have 73, 1/72 € F2 and 73 = 13 or 75" = ~2. Since p  d, we
see from (29), that (I'/p) = 1, when 72” = ~2 and (I'/p) = —1, when ~2” = ~2.

If p | E,, then by Lemma 21, we have 4" = 1 for some i € {1,2,3} and 77" +~7 +1 =10
(i # j). Since 73 = —1, we see that ¢ = 1 and 2 | n. If (I'/p) = 1, then 15” = +2 and
v®D — 1. Since 43" = 1 and 72 # 1, we see that 3 | p— 1 and p = (I'/p) (mod 3).
If (T/p) = —1, then %? = 42 = 1/4% and 74" = 1; hence 3 | p+ 1 and p = (I'/p)
(mod 3). O

We are now ready to prove our main result.

Theorem 26. Ifp (> 3) is a prime divisor of E,, then p = (I'/p) (mod 3).
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Proof. We have already proved this result when p | d and when p{d and p | S; + 2R. We
may assume, then, that p{ d and p{ S} + 2R. Since p | E,, p can only be an S-prime or a
Q-prime by Theorem 24. If p is an S-prime, then 1 = (d/p) = (A/p)(I'/p) and (I'/p) = ¢; if p
is an Q-prime, then —1 = (d/p) = (A/p)(I'/p) and (I'/p) = —e. Suppose p is an S-prime. By
results in the proof of [3, Theorem 9.4], we have vf = ~¢ (i = 1,2,3) in K,,. By Lemma 21,
we get 73" = 1, 72 # 1; also, 727 = 42¢ means that v 9" =1 and 3 | p — e. Similarly, if p
is a Q-prime, then by the results in the proof of [3, Theorem 9.6], we have

5 =5, V5 =5, s =i

in K,. In this case we get 15" = 75" = (1/72)“" and 7§(p+6) =1,793" =1 and 7% # 1. Hence
3| p+ € and in either case p = (I'/p) (mod 3). O

In order to extend Theorem 26, we need to prove the following result.
Theorem 27. For any n > 0, we have E,, | Ds,.

Proof. We can rewrite (13) as
Wiy, — 6R*™ = (W, — 6R™)Q,, + AW,U?, (30)

where Q,, = (W2 — AU, ) /4. Suppose p is any odd prime and p* || E,, where A > 1. Since
p* | Uy, we must have p* | Us,. Also, p** | Q, and p* | Wa, — 6R3 by (30). Next, suppose
that 2* || B, and A > 1. We have 2 | W,, — 6R™ and 2222 | Q,,, 2* | U,.. By (30) we see that
2221 | Wy, — 6R3™ and since A > 1, we have 2\ — 1 > X and 2* | Ds,,. Hence, E,, | Ds,,. O

We next prove a result which is analogous to the theorem that states that if p is an odd
prime and p | v,,, then p = +1 (mod 2"™!), where 2" || n. (See [2, Theorem 2.20]).

Theorem 28. If p (> 3) is a prime and p | E,, then p= (T'/p) (mod 3*™'), where 3" || n.

Proof. Since p | E, and p > 3, we have p t D, as p{ 6R. But, by Theorem 27, we know
that p | Ds,. Thus, if w is the rank of apparition of p in {D,}, we have w | 3n and w 1 n.
It follows that 3“1 | w. Also, since p is not an I-prime and p { 6 R, we must have w = p or
w | p?> — 1 by results in §3. Since 3 | w we cannot have w = p and therefore w | p? — 1 and
37T | p* — 1. Since pt T, we have p? — 1= (p— (['/p))(p+ (I'/p)) and 3 | p — (I'/p). Hence
3" | p—(T/p). O

6 Primality tests

In Williams [4], it is shown how Lucas used the properties of {u,} and {v,} to develop
primality tests for certain families of integers. In this section we will indicate how the
properties of {U,} and {W,} can be used to produce some primality tests. We begin with
a simple result concerning integers of the form A3"™ + 1, where n? = 1.
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Theorem 29. Let N = A3" +n, where2 | A, n>2,31tA, ne{l,—1} and A < 3". If
N | Un—n/Un—nys;
then N is a prime.

Proof. Let p be any prime divisor of N and put m = (N —n)/3. We note that p # 2,3 and
by (14)
AUz Uy = 3W2 + AUZ,.

Since p | Usyy,, there must exist some rank of apparition r of p in {U,} such that r | 3m. If
p | Un and p | W,,, then p | E,, and p = (I'/p) (mod 3") by Theorem 28. If p 1 U,,, then
r4m and r | 3m means that 3" | r. Suppose p t dR. If p is an S-prime or a Q-prime, then by
[3, Corollary 9.5 and Theorem 9.7] we must have r | p—e¢, where e = (A/p); hence p = (A/p)
(mod 3"). If p is an I-prime, then r | p* + ep + 1 by Theorem 9.9 of [3]. Since 9 | r, this is
impossible. If p | dR, then r = 3,p or divides p £ 1. Since 9 | r, r # 3 and since pt N —n,
we cannot have r = p. Thus, in all possible cases, we find that p = £1 (mod 3") and since
p is odd, we have p > 2-3" — 1. Since (2-3" —1)? > N, N can only be a prime. ]

We also note that if IV obeys the conditions in the first line of Theorem 29 and N | E(n_y)/3,
then N must be a prime.

By extending the results in [2, Chapter 7] it is possible to select the parameters of Sy,
S5 to make Theorem 29 both a necessary and sufficient test for the primality of N, but this
test is much less efficient than one based on the Lucas Functions.

In [3, §9] several primality tests for N are presented. These tests can be easily proved
by using the techniques in [2, Chapter 7], but to be usable they require that we know the
complete factorization of

N*+N+1 or N?’—N+1.

Of course, such a circumstance is very unlikely, but we might have a partial factorization of
N? 4+ N + 1. In what follows we will devise a test for the primality of N in this case. We
first require a simple lemma.

Lemma 30. If p and q are distinct primes, p > 3 and p | Dy, and p | Uy, /Uy, then M | w,
where w is the rank of apparition of p in {D,} and ¢* || n.

Proof. Suppose p | D,,. If p | U, /U, then by Theorem 8, we get p | 2¢*, which is impossible.
Hence, p { D,,. It follows that since p | D, ({D,} is a divisibility sequence), we get w | gn
and w { n, which means that ¢**! | w. O

We will also need the easily established technical lemma below.

Lemma 31. If x > 5, then

(*+ 2+ 1) <2(2* —2? +1).
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Theorem 32. Let N be a positive integer such that gcd(N,6) = 1 and put n = 1 or —1.
Let T = N? + nN + 1 and suppose that T' | T, where ged(T",T/T") = 1 and T"* > 2T. If
N | Dy and N | Up/Urq for all distinct primes q such that q | T", then N is a prime.

Proof. Let p be any prime divisor of N and ¢ be any prime divisor of T”; then p > 5 and
by Lemma 30 we have ¢* | w(p), where w(p) is the rank of apparition of p in {D,} and
¢ || T. Since ged(T", T/T") = 1, we have ¢* || T"; hence, T" | w(p). Let w denote the rank
of apparition of T"in {D,,}. We have w | T and w/q t T’; hence, ¢* | w, where ¢* || T and
therefore 7" | w.
By (17), we have
w=lem(w(p]") :i=1,2,...,7),

where .
J

v =1L
i=1

is the prime power factorization of N. Since w(p;") = p;"w(p;), we must have v; = 1 because
pi1T. We get

J
w = ICHI(W(pz) = 1’2’ e ,j‘T’H wé{jz)

i=1
If we put T' = kw, then

by Theorem 13. Also, since

J .9
p; +pi+1
T=N?>4+pN+1>2|] =2+ —22——
+nN + H1 5 ,

([3, Lemma 9.11], cf. [2, Lemma 7.1]) we get
J 92 J .2
2 1 2 4 it 1
kT’Hp’+p+ >2sz+p+

. 1’ . 2
i=1 =1

and
ET'27 > 2(T"Y.
Hence,
k> (T'/2)"'>T'/2 (when j>2).

But since T/T" = kw/T’, we have k < T/T'" < T"/2, a contradiction; consequently, we
can only have j = 1 and N = p® Since w(N) = p’w(p) and ged(p,w(N)) = 1, we get
w(p®) = w(p). It follows that

w(N) =w(p) <p’+p+1.
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Now T" | w(p) means that w(p) > T" and p*+p+1 > T'. Since T > 2T, we have for o > 2
(0" +p+1)" > 2™ +p® + 1) > 2(p™ —p* + 1) 2 2(p" —p* + 1)
which is impossible by Lemma 31. Hence we can only have N = p. [

Many other primality tests can be devised by making use of the ideas in [2, Chapter 7],
but the above should suffice to illustrate the kind of results that can be established.

7 Conclusions

In [3] we showed that the {U,} and {W,} sequences can be considered respectively as the
sextic analogues of Lucas’ {u,} and {v,} sequences. In this paper we have produced a
number of results that are the number-theoretic analogues of well-known properties of the
Lucas functions. Of course, there are many other properties of {D,} and {E,} that are
similar to those of the {D,,} and {E,} sequences discussed at some length in [2], and these
can be proved by using the results presented here and the techniques of [2].
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