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Abstract

In this paper, we study congruences on sums of products of binomial coefficients
that can be proved by using properties of the Jacobi polynomials. We give special at-
tention to polynomial congruences containing Catalan numbers, second-order Catalan

numbers, the sequence Sn =
(6n3n)(

3n
2n)

2(2nn )(2n+1)
, and the binomial coefficients

(

3n
n

)

and
(

4n
2n

)

.

As an application, we address several conjectures of Z. W. Sun on congruences of sums
involving Sn and we prove a cubic residuacity criterion in terms of sums of the binomial
coefficients

(

3n
n

)

conjectured by Z. H. Sun.

1 Introduction

In this paper, building on our previous work with Tauraso [3], we continue to apply properties

of the Jacobi polynomials P
(±1/2,∓1/2)
n (x) for proving polynomial and numerical congruences

containing sums of binomial coefficients. In particular, we derive polynomial congruences
for sums involving binomial coefficients

(

3n
n

)

,
(

4n
2n

)

, Catalan numbers (A000108)

Cn =
1

n+ 1

(

2n

n

)

=

(

2n

n

)

−
(

2n

n− 1

)

, n = 0, 1, 2, . . . ,
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second-order Catalan numbers (A001764)

C(2)
n =

1

2n+ 1

(

3n

n

)

=

(

3n

n

)

− 2

(

3n

n− 1

)

, n = 0, 1, 2, . . . ,

and the sequence (A176898)

Sn =

(

6n
3n

)(

3n
n

)

2
(

2n
n

)

(2n+ 1)
, n = 0, 1, 2, . . . , (1)

arithmetical properties of which have been studied very recently by Sun [13] and Guo [2].

Recall that the Jacobi polynomials P
(α,β)
n (x) are defined by

P (α,β)
n (x) =

(α + 1)n
n!

F (−n, n+ α + β + 1;α + 1; (1− x)/2), α, β > −1, (2)

where

F (a, b; c; z) =
∞
∑

k=0

(a)k(b)k
k!(c)k

zk,

is the Gauss hypergeometric function and (a)0 = 1, (a)k = a(a+ 1) · · · (a+ k − 1), k ≥ 1, is
the Pochhammer symbol.

The polynomials P
(α,β)
n (x) satisfy the three-term recurrence relation [14, Sect. 4.5]

2(n+ 1)(n+ α + β + 1)(2n+ α + β)P
(α,β)
n+1 (x)

=
(

(2n+ α + β + 1)(α2 − β2) + (2n+ α + β)3x
)

P (α,β)
n (x)

− 2(n+ α)(n+ β)(2n+ α + β + 2)P
(α,β)
n−1 (x)

(3)

with the initial conditions P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) = (x(α + β + 2) + α− β)/2.

While in [3] we studied binomial sums arising from the truncation of the series

arcsin(z) =
∞
∑

k=0

(

2k
k

)

z2k+1

4k(2k + 1)
, |z| ≤ 1, (4)

the purpose of the present paper is to consider a quadratic transformation of the Gauss
hypergeometric function given by [6, p. 210]

sin(a arcsin(z))

a
= zF

(

1 + a

2
,
1− a

2
;
3

2
; z2
)

, |z| ≤ 1, (5)

which essentially can be regarded as a generalization of series (4). Note that letting a
approach zero in (5) yields (4). On the other side, identity (5) serves as a source of generating
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functions for some special sequences of numbers including those mentioned above. Namely,
for a = 1/2, 1/3, 2/3, we have

sin

(

arcsin(z)

2

)

= 2
∞
∑

k=0

C2k

(z

4

)2k+1

, |z| ≤ 1, (6)

sin

(

arcsin(z)

3

)

=
z

3

∞
∑

k=0

C
(2)
k

(

4z2

27

)k

, |z| ≤ 1, (7)

sin

(

2

3
arcsin(z)

)

=
4z

3

∞
∑

k=0

Sk

(

z2

108

)k

, |z| ≤ 1. (8)

In this paper, we develop a unified approach for the calculation of polynomial congruences
modulo a prime p arising from the truncation of the series (6)–(8) and polynomial congru-
ences involving binomial coefficients

(

3k
k

)

,
(

4k
2k

)

and also the sequence (2k+1)Sk within various
ranges of summation depending on a prime p.

Note that the congruences involving binomial coefficients
(

3k
k

)

,
(

4k
2k

)

have been studied
extensively from different points of view [9, 10, 11, 12, 16]. Z. H. Sun [10, 11] studied con-

gruences for the sums
∑⌊p/3⌋

k=1

(

3k
k

)

tk and
∑⌊p/4⌋

k=1

(

4k
2k

)

tk using congruences for Lucas sequences
and properties of the cubic and quartic residues. Sun [9] also investigated interesting con-

nections between values of
∑⌊p/3⌋

k=1

(

3k
k

)

tk (mod p), solubility of cubic congruences, and cu-
bic residuacity criteria. Zhao, Pan, and Sun [16] obtained first congruences for the sums
∑p−1

k=1

(

3k
k

)

tk and
∑p−1

k=1C
(2)
k tk at t = 2 with the help of some combinatorial identity. Later

Z. W. Sun [12] gave explicit congruences for t = −4, 1
6
, 1
7
, 1
8
, 1
9
, 1
13
, 3
8
, 4
27

by applying properties
of third-order recurrences and cubic residues.

Our approach is based on reducing values of the finite sums discussed above modulo
a prime p to values of the Jacobi polynomials P (±1/2,∓1/2)(x), which is done in Section 2,
and then investigating congruences for the Jacobi polynomials in subsequent sections. In
Section 3, we deal with polynomial congruences involving binomial coefficients

(

4k
2k

)

and even-
indexed Catalan numbers C2k. In Section 4, we study polynomial congruences containing
binomial coefficients

(

3k
k

)

and second-order Catalan numbers C
(2)
k . In Sections 5 and 6, we

apply the theory of cubic residues developed in [8] to study congruences for polynomials of
the form

⌊2p/3⌋
∑

k=(p+1)/2

(

3k

k

)

tk,

p−1
∑

k=1

(

3k

k

)

tk,

p−1
∑

k=1

C
(2)
k tk,

p−1
∑

k=0

Skt
k,

p−1
∑

k=0

(2k + 1)Skt
k.

As a result, we prove several cubic residuacity criteria in terms of these sums, one of which,
in terms of

∑⌊2p/3⌋
k=(p+1)/2

(

3k
k

)

tk, confirms a question posed by Z. H. Sun [9, Conj. 2.1].

In Section 6, we derive polynomial congruences for the sums
∑⌊p/6⌋

k=0 Skt
k,
∑p−1

k=0 Skt
k,

∑⌊p/6⌋
k=0 (2k + 1)Skt

k,
∑p−1

k=0(2k + 1)Skt
k and also give many numerical congruences which are
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new and have not appeared in the literature before. In particular, we show that

p−1
∑

k=0

Sk

108k
≡ 1

2

(

3

p

)

(mod p)

confirming a conjecture of Z. W. Sun [13, Conj. 2]. Finally, in Section 7, we prove a closed
form formula for a companion sequence of Sn answering another question of Sun [13, Conj. 4].

2 Main theorem

For a non-negative integer n, we consider the sequence wn(x) defined [3, Sect. 3] by

wn(x) := (2n+ 1)F (−n, n+ 1; 3/2; (1− x)/2) =
n!

(1/2)n
P (1/2,−1/2)
n (x). (9)

From (3) it follows that wn(x) satisfies a second-order linear recurrence with constant coef-
ficients

wn+1(x) = 2xwn(x)− wn−1(x)

and initial conditions w0(x) = 1, w1(x) = 1 + 2x. This yields the following formulae:

wn(x) =















(α + 1)αn − (α−1 + 1)α−n

α− α−1
, if x 6= ±1;

2n+ 1, if x = 1;

(−1)n, if x = −1,

(10)

where α = x+
√
x2 − 1. Note that for x ∈ (−1, 1) we also have an alternative representation

wn(x) = cos(n arccos x) +
x+ 1√
1− x2

sin(n arccos x). (11)

By the well-known symmetry property of the Jacobi polynomials

P (α,β)
n (x) = (−1)nP (β,α)

n (−x)

and formula (2), we get one more expression of wn(x) in terms of the Gauss hypergeometric
function

wn(x) = (−1)nF (−n, n+ 1; 1/2; (1 + x)/2). (12)

For a given prime p, let Dp denote the set of those rational numbers whose denominator is
not divisible by p. Let ϕ(m) be the Euler totient function and let (a

p
) be the Legendre symbol.

We put (a
p
) = 0 if p|a. For c = a/b ∈ Dp written in its lowest terms, we define ( c

p
) = (ab

p
) in

view that the congruences x2 ≡ c (mod p) and (bx)2 ≡ ab (mod p) are equivalent. It is clear
that ( c

p
) has all the formal properties of the ordinary Legendre symbol. For any rational

number x, let vp(x) denote the p-adic order of x.
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Theorem 1. Let m be a positive integer with ϕ(m) = 2, i.e., m ∈ {3, 4, 6}, and let p be a

prime greater than 3. Then for any t ∈ Dp, we have

⌊p/m⌋
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k + 1)!
tk ≡ 1

1 + 2⌊p/m⌋ w⌊ p

m
⌋(1− t/2) (mod p), (13)

⌊p/m⌋
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k)!
tk ≡ (−1)⌊p/m⌋ w⌊ p

m
⌋(t/2− 1) (mod p), (14)

⌊(m−1)p/m⌋
∑

k=(p−1)/2

(

1
m

)

k

(

m−1
m

)

k

(2k + 1)!
tk ≡ −1

m(1 + 2⌊p/m⌋)
(

w
⌊
(m−1)p

m
⌋
(1− t/2)+ w⌊ p

m
⌋(1− t/2)

)

(mod p),

(15)

⌊(m−1)p/m⌋
∑

k=(p+1)/2

(

1
m

)

k

(

m−1
m

)

k

(2k)!
tk ≡ (−1)⌊p/m⌋

m

(

w
⌊
(m−1)p

m
⌋
(t/2− 1)− w⌊ p

m
⌋(t/2− 1)

)

(mod p).

Proof. Let m ∈ {3, 4, 6}, i.e., ϕ(m) = 2. Suppose p is an odd prime greater than 3 and p ≡ r
(mod m), where r ∈ {1,m− 1}. We put n = p−r

m
. Then p = mn+ r and from (9) we have

wn(x) = (2n+ 1)F
(

−n, n+ 1;
3

2
;
1− x

2

)

=
2p− 2r +m

m

n
∑

k=0

(

r−p
m

)

k

(

m−r+p
m

)

k
(

3
2

)

k
k!

(

1− x

2

)k

.

Since (3
2
)k = 3·5·...·(2k+1)

2k
and 2k + 1 ≤ 2n + 1 < p, the denominators of the summands are

coprime to p and we have

wn(x)≡
m− 2r

m

⌊p/m⌋
∑

k=0

(

r
m

)

k

(

m−r
m

)

k
(

3
2

)

k
k!

(

1− x

2

)k

=
m− 2r

m

⌊p/m⌋
∑

k=0

(

1
m

)

k

(

m−1
m

)

k
(

3
2

)

k
k!

(

1− x

2

)k

(mod p)

or

wn(x) ≡
m− 2r

m

⌊p/m⌋
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k + 1)!
(2(1− x))k (mod p).

Replacing x by 1− t/2, we get (13).
Applying formula (12) to wn(x), similarly as before, we get

wn(x) = (−1)nF (−n, n+ 1; 1/2; (1 + x)/2) = (−1)n
n
∑

k=0

(

r−p
m

)

k

(

p−r+m
m

)

k
(

1
2

)

k
k!

(

1 + x

2

)k

or

wn(x) ≡ (−1)n
n
∑

k=0

(

1
m

)

k

(

m−1
m

)

k
(

1
2

)

k
k!

(

1 + x

2

)k

= (−1)n
n
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k)!
(2(1 + x))k (mod p).
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Substituting t = 2(1 + x), we obtain (14).
To prove the other two congruences, we consider (m − 1)p modulo m. It is clear that

(m−1)p ≡ r (mod m), where r ∈ {1,m−1}. We put n = (m−1)p−r
m

. Then (m−1)p = mn+r
and from (9) we have

wn(x) =
2(m− 1)p− 2r +m

m

n
∑

k=0

(

r−(m−1)p
m

)

k

(

(m−1)p+m−r
m

)

k
(

3
2

)

k
k!

(

1− x

2

)k

. (16)

Note that p divides (3
2
)k if and only if k ≥ (p− 1)/2. Moreover, p2 does not divide (3

2
)k for

any k from the range of summation. Similarly, we have

(

r − (m− 1)p

m

)

k

=
k−1
∏

l=0

r +ml − (m− 1)p

m
.

All possible multiples of p among the numbers r +ml, where 0 ≤ l ≤ k − 1 ≤ (m−1)p−r−m
m

,
could be only of the form r +ml = jp with 1 ≤ j ≤ m− 2. This implies that jp ≡ r ≡ −p
(mod m) or (j + 1)p ≡ 0 (mod m), which is impossible, since gcd(p,m) = 1 and j + 1 < m.

So p does not divide ( r−(m−1)p
m

)k. Considering

(

(m− 1)p+m− r

m

)

k

=
k
∏

l=1

(m− 1)p+ml − r

m
,

we see that p divides ( (m−1)p+m−r
m

)k if and only if k ≥ p+r
m

. Moreover, p2 does not divide
(

(m−1)p+m−r
4

)

k
for any k from the range of summation. Indeed, if we had ml − r = jp for

some 1 < j ≤ m− 1, then p ≡ −r ≡ jp (mod m) and therefore p(j− 1) ≡ 0 (mod m), which
is impossible. From the divisibility properties of the Pochhammer’s symbols above and (16)
we easily conclude that

w
⌊
(m−1)p

m
⌋
(x) ≡ m− 2r

m





⌊p/m⌋
∑

k=0

+

⌊(m−1)p/m⌋
∑

k=(p−1)/2





(

r−(m−1)p
m

)

k

(

(m−1)p+m−r
m

)

k
(

3
2

)

k
k!

(

1− x

2

)k

(mod p)

and therefore,

w
⌊
(m−1)p

m
⌋
(x) ≡ m− 2r

m





⌊p/m⌋
∑

k=0

+m

⌊(m−1)p/m⌋
∑

k=(p−1)/2





(

r
m

)

k

(

m−r
m

)

k
(

3
2

)

k
k!

(

1− x

2

)k

(mod p),

where for the second sum, we employed the congruence
(

(m−1)p+m−r
m

)

k
(

3
2

)

k

=
(m−1)p+m−r

m
· (m−1)p+2m−r

m
· · · (m−1)p+m· p+r

m
−r

m
· · · (m−1)p+mk−r

m
3
2
· 5
2
· · · p

2
· · · 2k+1

2

≡ m

(

m−r
m

)

k
(

3
2

)

k

(mod p)

6



valid for (p− 1)/2 ≤ k ≤ ⌊(m− 1)p/m⌋. Now by (13), we obtain

m

m− 2r
w

⌊
(m−1)p

m
⌋
(x) ≡ 1

1 + 2⌊p/m⌋ w⌊ p

m
⌋(x)+m

⌊(m−1)p/m⌋
∑

k=(p−1)/2

(

1
m

)

k

(

m−1
m

)

k

(2k + 1)!
(2(1− x))k (mod p).

Taking into account that
⌊

(m−1)p
m

⌋

= p − 1 −
⌊

p
m

⌋

and replacing x by 1 − t/2, we get the

desired congruence (15).
Finally, applying formula (12) and following the same line of arguments as for proving

(15), we have

w
⌊
(m−1)p

m
⌋
(x) = (−1)nF (−n, n+ 1; 1/2; (1 + x)/2)

= (−1)⌊
(m−1)p

m
⌋

⌊(m−1)p/m⌋
∑

k=0

(

r−(m−1)p
m

)

k

(

(m−1)p+m−r
m

)

k
(

1
2

)

k
k!

(

1 + x

2

)k

≡ (−1)⌊
(m−1)p

m
⌋





⌊p/m⌋
∑

k=0

+

⌊(m−1)p/m⌋
∑

k=(p+1)/2





(

r−(m−1)p
m

)

k

(

(m−1)p+m−r
m

)

k
(

1
2

)

k
k!

(

1 + x

2

)k

≡ (−1)⌊
(m−1)p

m
⌋





⌊p/m⌋
∑

k=0

+m

⌊(m−1)p/m⌋
∑

k=(p+1)/2





(

1
m

)

k

(

(m−1)
m

)

k

(2k)!
(2(1 + x))k (mod p).

Now by (15), we obtain

(−1)⌊
(m−1)p

m
⌋w

⌊
(m−1)p

m
⌋
(x) ≡ (−1)⌊

p

m
⌋w⌊ p

m
⌋(x)+m

⌊(m−1)p/m⌋
∑

k=(p+1)/2

(

1
m

)

k

(

(m−1)
m

)

k

(2k)!
(2(1 + x))k (mod p)

and after the substitution x = t/2− 1, we derive the last congruence of the theorem.

Corollary 2. Let m be a positive integer with ϕ(m) = 2, i.e., m ∈ {3, 4, 6}, and let p be a

prime greater than 3. Then for any t ∈ Dp, we have

p−1
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k + 1)!
tk≡ 1

m(1 + 2⌊p/m⌋)
(

(m− 1)w⌊ p

m
⌋(1− t/2)−w

⌊
(m−1)p

m
⌋
(1− t/2)

)

(mod p),

p−1
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k)!
tk ≡ (−1)⌊p/m⌋

m

(

(m− 1)w⌊ p

m
⌋(t/2− 1) + w

⌊
(m−1)p

m
⌋
(t/2− 1)

)

(mod p).

Proof. Let p = mn + r, where r ∈ {1,m − 1}. If n + 1 = ⌊ p
m
⌋ + 1 ≤ k ≤ p−3

2
, then

vp((2k + 1)!) = 0 and vp
((

r
m

)

k

)

≥ 1, since the product
∏k−1

l=0 (r + lm) is divisible by p.

7



If (m − 1)n + r =
⌊

(m−1)p
m

⌋

+ 1 ≤ k ≤ p − 1, then it is easy to see that vp((2k + 1)!) =

vp((2k)!) = 1, vp
((

r
m

)

k

)

≥ 1, and the product
∏k

l=1(lm − r) contains the factor (m − 1)p.

This implies that vp
((

m−r
m

)

k

)

≥ 1, and therefore we have

p−1
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k + 1)!
tk ≡

⌊p/m⌋
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k + 1)!
tk +

⌊(m−1)p/m⌋
∑

k=(p−1)/2

(

1
m

)

k

(

m−1
m

)

k

(2k + 1)!
tk (mod p),

p−1
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k)!
tk ≡

⌊p/m⌋
∑

k=0

(

1
m

)

k

(

m−1
m

)

k

(2k)!
tk +

⌊(m−1)p/m⌋
∑

k=(p+1)/2

(

1
m

)

k

(

m−1
m

)

k

(2k)!
tk (mod p).

Finally, applying Theorem 1, we conclude the proof of the corollary.

3 Polynomial congruences involving Catalan numbers

In this section, we consider applications of Theorem 1 when m = 4. In this case, we get
polynomial congruences involving even-indexed Catalan numbers C2n (sequence A048990 in
the OEIS [7]) and binomial coefficients

(

4n
2n

)

(sequence A001448).

Theorem 3. Let p be an odd prime and let t ∈ Dp. Then

⌊p/4⌋
∑

k=0

C2kt
k ≡ 2(−1)

p−1
2 w⌊ p

4
⌋(1− 32t) (mod p),

⌊3p/4⌋
∑

k=(p−1)/2

C2kt
k ≡ (−1)

p+1
2

2

(

w⌊ 3p
4
⌋(1− 32t) + w⌊ p

4
⌋(1− 32t)

)

(mod p),

⌊p/4⌋
∑

k=0

(

4k

2k

)

tk ≡
(−2

p

)

w⌊ p

4
⌋(32t− 1) (mod p),

⌊3p/4⌋
∑

k=(p+1)/2

(

4k

2k

)

tk ≡ 1

4

(−2

p

)

(

w⌊ 3p
4
⌋(32t− 1)− w⌊ p

4
⌋(32t− 1)

)

(mod p).

Proof. We put m = 4 in Theorem 1. Then for any odd prime p, we have p = 4l+ r, where l
is non-negative integer and r ∈ {1, 3}. Hence,

1

1 + 2⌊p/4⌋ =
1

1 + 2l
=

2

p+ 2− r
≡ 2

2− r
= 2(−1)(p−1)/2 (mod p).

Moreover, (−1)⌊p/4⌋ = (−1)l = (−2
p
). Now noticing that

C2k =
1

2k + 1

(

4k

2k

)

=
(4k)!

(2k)!(2k + 1)!
=

(3
4
)k(

1
4
)k

(2k + 1)!
(64)k

and replacing t by 64t in Theorem 1, we get the desired congruences.
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Corollary 4. Let p be an odd prime and let t ∈ Dp. Then

p−1
∑

k=0

C2kt
k ≡ 1

2

(−1

p

)

(

3w⌊ p

4
⌋(1− 32t)− w⌊ 3p

4
⌋(1− 32t)

)

(mod p),

p−1
∑

k=0

(

4k

2k

)

tk ≡ 1

4

(−2

p

)

(

w⌊ 3p
4
⌋(32t− 1) + 3w⌊ p

4
⌋(32t− 1)

)

(mod p).

Evaluating values of the sequences w⌊ p

4
⌋(x) and w⌊ 3p

4
⌋(x) modulo p, we get numerical

congruences for the above sums. Here are some typical examples.

Corollary 5. Let p be a prime greater than 3. Then

p−1
∑

k=0

C2k

16k
≡
(

2

p

)

,

⌊p/4⌋
∑

k=0

C2k

16k
≡ 2

(

2

p

)

(mod p),

p−1
∑

k=0

(

4k
2k

)

16k
≡ 1

4

(

2

p

)

,

⌊3p/4⌋
∑

k= p+1
2

(

4k
2k

)

16k
≡ −1

4

(

2

p

)

(mod p),

⌊p/4⌋
∑

k=0

C2k

32k
≡ 2

(−1

p

)

(−1)⌊p/8⌋,

⌊p/4⌋
∑

k=0

(

4k
2k

)

32k
≡
(−2

p

)

(−1)⌊p/8⌋ (mod p),

p−1
∑

k=0

C2k

32k
≡
{

(−1)(p−1)/2+⌊p/8⌋ (mod p), if p ≡ ±1 (mod 8);

2(−1)(p−1)/2+⌊p/8⌋ (mod p), if p ≡ ±3 (mod 8),

p−1
∑

k=0

(

4k
2k

)

32k
≡











(−2

p

)

(−1)⌊p/8⌋ (mod p), if p ≡ ±1 (mod 8);

1

2

(−2

p

)

(−1)⌊p/8⌋ (mod p), if p ≡ ±3 (mod 8).

Proof. The proof easily follows from the fact that

wn(−1) = (−1)n, wn(0) = (−1)⌊n/2⌋, and wn(1) = 2n+ 1. (17)

9



Corollary 6. Let p be a prime greater than 3. Then

(

2

p

) p−1
∑

k=0

C2k

64k
≡
{

1 (mod p), if p ≡ ±1 (mod 12);

−7/2 (mod p), if p ≡ ±5 (mod 12),

(

2

p

) p−1
∑

k=0

(

4k
2k

)

64k
≡
{

1 (mod p), if p ≡ ±1 (mod 12);

1/4 (mod p), if p ≡ ±5 (mod 12),

p−1
∑

k=0

C2k

(

3

64

)k

≡
{

1 (mod p), if p ≡ ±1 (mod 12);

1/2 (mod p), if p ≡ ±5 (mod 12),

p−1
∑

k=0

(

4k

2k

)(

3

64

)k

≡
{

1 (mod p), if p ≡ ±1 (mod 12);

−5/4 (mod p), if p ≡ ±5 (mod 12).

Proof. We can easily evaluate by (11),

wn(1/2) = 2 cos
(π(n− 1)

3

)

and wn(−1/2) =
2√
3
sin
(π(2n+ 1)

3

)

. (18)

Hence we obtain

w⌊ p

4
⌋(1/2) ≡

{

(−1)⌊p/4⌋ (mod p), if p ≡ ±1 (mod 12);

−2(−1)⌊p/4⌋ (mod p), if p ≡ ±5 (mod 12),

w⌊ p

4
⌋(−1/2) ≡

{

(−1)(p−1)/2 (mod p), if p ≡ ±1 (mod 12);

0 (mod p), if p ≡ ±5 (mod 12)

and w⌊3p/4⌋(1/2) ≡ (−1)⌊p/4⌋, w⌊3p/4⌋(−1/2) ≡ (−1)(p−1)/2 (mod p). Applying Corollary 4
and the equality (−1)(p−1)/2+⌊p/4⌋ =

(

2
p

)

, we get the desired congruences.

Lemma 7. For any x 6= ±1, we have

wn(2x
2 − 1) =

α2n+1 − α−2n−1

α− α−1
, where α = x+

√
x2 − 1.

Proof. By (10), we obtain

w2n(x) =
(α + 1)α2n − (α−1 + 1)α−2n

α− α−1

=
(α2 + 1)α2n − (α−2 + 1)α−2n + (α + α−1)(α2n − α−2n)

α2 − α−2

= wn(2x
2 − 1) +

α2n − α−2n

α− α−1
.
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This implies

wn(2x
2 − 1) = w2n(x)−

α2n − α−2n

α− α−1
=

α2n+1 − α−2n−1

α− α−1
,

and the lemma follows.

Lemma 8. Let p be a prime, p > 3, and let x ∈ Dp. Then

w⌊ p

4
⌋(2x

2 − 1) ≡ 1

2

(−2

p

)((

1− x

p

)

+

(

1 + x

p

))

(mod p),

w⌊ 3p
4
⌋(2x

2 − 1) ≡ 1

2

(−2

p

)((

1− x

p

)

(1 + 2x) +

(

1 + x

p

)

(1− 2x)

)

(mod p).

Proof. First, we suppose that x 6= ±1. Then, by Lemma 7, if p ≡ 1 (mod 4), we have

w⌊ p

4
⌋(2x

2 − 1) = w p−1
4
(2x2 − 1) =

α
p+1
2 − α− p+1

2

α− α−1

=

(√

x+1
2

+
√

x−1
2

)p+1

−
(√

x+1
2

−
√

x−1
2

)p+1

2
√
x2 − 1

=
1√

x2 − 1

p
∑

k=1
k is odd

(

p

k

)(

x− 1

2

) k
2
(

x+ 1

2

)
p+1−k

2

+
1√

x2 − 1

p−1
∑

k=0
k is even

(

p

k

)(

x− 1

2

)
k+1
2
(

x+ 1

2

)
p−k

2

≡ (x− 1)
p−1
2

2
p+1
2

+
(x+ 1)

p−1
2

2
p+1
2

≡ 1

2

(

2

p

)((

x− 1

p

)

+

(

x+ 1

p

))

(mod p).

If p ≡ 3 (mod 4), then, by Lemma 7, we have

w⌊ p

4
⌋(2x

2 − 1) = w p−3
4
(2x2 − 1) =

α
p−1
2 − α− p−1

2

α− α−1

=

(√

x+1
2

+
√

x−1
2

)p−1

−
(√

x+1
2

−
√

x−1
2

)p−1

2
√
x2 − 1

=

(√

x+1
2

−
√

x−1
2

)(√

x+1
2

+
√

x−1
2

)p

−
(√

x+1
2

+
√

x−1
2

)(√

x+1
2

−
√

x−1
2

)p

2
√
x2 − 1

.

Simplifying as in the previous case, we get modulo p,

w⌊ p

4
⌋(2x

2 − 1) ≡ 1

2

(

(

x− 1

2

)
p−1
2

−
(

x+ 1

2

)
p−1
2

)

≡ 1

2

(

2

p

)((

x− 1

p

)

−
(

x+ 1

p

))

,
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and the first congruence of the lemma follows. Similarly, to prove the second congruence,
we consider two cases. If p ≡ 1 (mod 4), then we get

w⌊ 3p
4
⌋(2x

2 − 1) = w 3(p−1)
4

(2x2 − 1) =
α

3p−1
2 − α− 3p−1

2

α− α−1

=

(√

x+1
2

+
√

x−1
2

)3p−1

−
(√

x+1
2

−
√

x−1
2

)3p−1

2
√
x2 − 1

=

(√

x+1
2

−
√

x−1
2

)(√

x+1
2

+
√

x−1
2

)3p

−
(√

x+1
2

+
√

x−1
2

)(√

x+1
2

−
√

x−1
2

)3p

2
√
x2 − 1

.

Simplifying the right-hand side modulo p, we obtain

1

2

(

x− 1

2

)
3p−1

2

− 1

2

(

x+ 1

2

)
3p−1

2

+
3

2

(

x− 1

2

)
p−1
2
(

x+ 1

2

)p

− 3

2

(

x+ 1

2

)
p−1
2
(

x− 1

2

)p

and therefore,

w⌊ 3p
4
⌋(2x

2 − 1) ≡ 1

2

(

2

p

)((

x− 1

p

)

(1 + 2x) +

(

x+ 1

p

)

(1− 2x)

)

(mod p).

If p ≡ 3 (mod 4), then

w⌊ 3p
4
⌋(2x

2 − 1) = w 3p−1
4

(2x2 − 1) =
α

3p+1
2 − α− 3p+1

2

α− α−1

=

(√

x+1
2

+
√

x−1
2

)3p+1

−
(√

x+1
2

−
√

x−1
2

)3p+1

2
√
x2 − 1

.

Simplifying the right-hand side modulo p, we get

1

2

(

x− 1

2

)
3p−1

2

+
1

2

(

x+ 1

2

)
3p−1

2

+
3

2

(

x− 1

2

)
p−1
2
(

x+ 1

2

)p

+
3

2

(

x+ 1

2

)
p−1
2
(

x− 1

2

)p

and therefore,

w⌊ 3p
4
⌋(2x

2 − 1) ≡ 1

2

(

2

p

)((

x− 1

p

)

(2x+ 1) +

(

x+ 1

p

)

(2x− 1)

)

(mod p),

as required. If x = ±1, then, by (10), we have w⌊ p

4
⌋(1) = 2⌊p

4
⌋+ 1 ≡ (−1)(p−1)/2/2 (mod p)

and w⌊ 3p
4
⌋(1) = 2⌊3p

4
⌋+1 ≡ (−1)(p+1)/2/2 (mod p), which completes the proof of the lemma.

From Lemma 8 and Corollary 4 we immediately deduce the following result.
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Theorem 9. Let p be a prime, p > 3, and let t ∈ Dp. Then

p−1
∑

k=0

C2k

(

1− t2

16

)k

≡ 1

2

(

2

p

)((

1− t

p

)

(1− t) +

(

1 + t

p

)

(1 + t)

)

(mod p),

p−1
∑

k=0

(

4k

2k

)

t2k ≡ 1

2

((

1− 4t

p

)

(1 + 2t) +

(

1 + 4t

p

)

(1− 2t)

)

(mod p).

Proof. From Corollary 4 we have

p−1
∑

k=0

C2k

(

1− t2

16

)k

≡ 1

2

(−1

p

)

(

3w⌊ p

4
⌋(2t

2 − 1)− w⌊ 3p
4
⌋(2t

2 − 1)
)

(mod p)

and
p−1
∑

k=0

(

4k

2k

)

t2k ≡ 1

4

(−2

p

)

(

3w⌊ p

4
⌋(32t

2 − 1) + w⌊ 3p
4
⌋(32t

2 − 1)
)

(mod p).

Now by Lemma 8 with x replaced by 4t for the last congruence, we conclude the proof.

Theorem 10. Let p be a prime, p > 3, and let a, b ∈ Z, ab 6≡ 0 (mod p), and a 6≡ b
(mod p). Then we have the following congruences modulo p:

p−1
∑

k=0

C2k
(a− b)2k

(−64ab)k
≡



















(ab)
p−1
4

2(a− b)

(

(3a+ b)

(

b

p

)

− (3b+ a)

(

a

p

))

, if p ≡ 1 (mod 4);

(ab)
p+1
4

2(b− a)

(

3a+ b

a

(

b

p

)

− 3b+ a

b

(

a

p

))

, if p ≡ 3 (mod 4),

p−1
∑

k=0

(

4k

2k

)

(a+ b)2k

(64ab)k
≡



















(

2
p

)

(ab)
p−1
4

4(a− b)

(

(3a− b)

(

b

p

)

− (3b− a)

(

a

p

))

, if p ≡ 1 (mod 4);
(

2
p

)

(ab)
p+1
4

4(b− a)

(

3a− b

a

(

b

p

)

− 3b− a

b

(

a

p

))

, if p ≡ 3 (mod 4).

Proof. By Corollary 4, we have

p−1
∑

k=0

C2k
(a− b)2k

(−64ab)k
≡ 1

2

(−1

p

)(

3w⌊ p

4
⌋

(

a2 + b2

2ab

)

− w⌊ 3p
4
⌋

(

a2 + b2

2ab

))

(mod p), (19)

p−1
∑

k=0

(

4k

2k

)

(a+ b)2k

(64ab)k
≡ 1

4

(−2

p

)(

3w⌊ p

4
⌋

(

a2 + b2

2ab

)

+ w⌊ 3p
4
⌋

(

a2 + b2

2ab

))

(mod p). (20)

From (10) we obtain

wn

(

a2 + b2

2ab

)

=
a(a/b)n − b(b/a)n

a− b
.
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If p ≡ 1 (mod 4), then we have modulo p,

w⌊ p

4
⌋

(

a2 + b2

2ab

)

= w p−1
4

(

a2 + b2

2ab

)

=
a(a/b)

p−1
4 − b(b/a)

p−1
4

a− b
≡

a
(

b
p

)

− b
(

a
p

)

a− b
(ab)

p−1
4 ,

w⌊ 3p
4
⌋

(

a2 + b2

2ab

)

=
a(a/b)

3(p−1)
4 − b(b/a)

3(p−1)
4

a− b
≡

a
(

a
p

)

− b
(

b
p

)

a− b
(ab)

p−1
4 .

If p ≡ 3 (mod 4), then

w⌊ p

4
⌋

(

a2 + b2

2ab

)

= w p−3
4

(

a2 + b2

2ab

)

=
a(a/b)

p−3
4 − b(b/a)

p−3
4

a− b
≡
(

b
p

)

−
(

a
p

)

a− b
(ab)

p+1
4 ,

w⌊ 3p
4
⌋

(

a2 + b2

2ab

)

=
a(a/b)

3p−1
4 − b(b/a)

3p−1
4

a− b
≡

a
b

(

a
p

)

− b
a

(

b
p

)

a− b
(ab)

p+1
4 .

Now substituting the above congruences in (19) and (20), we conclude the proof.

4 Congruences involving second-order Catalan num-

bers

In this section, we will deal with a particular case of Theorem 1 when m = 3. This case
leads to congruences containing second-order Catalan numbers C

(2)
n (sequence A001764 in

the OEIS [7]) and binomial coefficients
(

3n
n

)

(sequence A005809).

Theorem 11. Let p be a prime greater than 3, and let t ∈ Dp. Then

⌊p/3⌋
∑

k=0

C
(2)
k tk ≡ 3

(p

3

)

w⌊ p

3
⌋(1− 27t/2) (mod p), (21)

⌊2p/3⌋
∑

k=(p−1)/2

C
(2)
k tk ≡ −

(p

3

)(

w⌊ 2p
3
⌋(1− 27t/2) + w⌊ p

3
⌋(1− 27t/2)

)

(mod p),

⌊p/3⌋
∑

k=0

(

3k

k

)

tk ≡
(p

3

)

w⌊ p

3
⌋(27t/2− 1) (mod p), (22)

⌊2p/3⌋
∑

k=(p+1)/2

(

3k

k

)

tk ≡ 1

3

(p

3

)(

w⌊ 2p
3
⌋(27t/2− 1)− w⌊ p

3
⌋(27t/2− 1)

)

(mod p). (23)
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Corollary 12. Let p be a prime greater than 3, and let t ∈ Dp. Then

p−1
∑

k=0

C
(2)
k tk ≡

(p

3

)(

2w⌊ p

3
⌋(1− 27t/2)− w⌊ 2p

3
⌋(1− 27t/2)

)

(mod p),

p−1
∑

k=0

(

3k

k

)

tk ≡ 1

3

(p

3

)(

2w⌊ p

3
⌋(27t/2− 1) + w⌊ 2p

3
⌋(27t/2− 1)

)

(mod p).

Using the exact values of wn from (17) and (18), we immediately get numerical congru-
ences at the points t = 4/27, 2/27, 1/27, 1/9.

Corollary 13. Let p be a prime greater than 3. Then

p−1
∑

k=0

C
(2)
k

(

4

27

)k

≡ 1,

⌊p/3⌋
∑

k=0

C
(2)
k

(

4

27

)k

≡ 3 (mod p),

p−1
∑

k=0

(

3k

k

)(

4

27

)k

≡ 1

9
,

⌊p/3⌋
∑

k=0

(

3k

k

)(

4

27

)k

≡ 1

3
(mod p), (24)

p−1
∑

k=0

C
(2)
k

(

2

27

)k

≡ 2

(

3

p

)

− 1,

⌊p/3⌋
∑

k=0

C
(2)
k

(

2

27

)k

≡ 3

(

3

p

)

(mod p),

p−1
∑

k=0

(

3k

k

)(

2

27

)k

≡ 2

3

(

3

p

)

+
1

3
,

⌊p/3⌋
∑

k=0

(

3k

k

)(

2

27

)k

≡
(

3

p

)

(mod p). (25)

Remark 14. Z. W. Sun [12, Thm. 3.1] gave another proof of the first congruence in (24)
based on third-order recurrences. Z. H. Sun [11, Rem. 3.1] proved the second congruence in
(24) as well as the second congruence in (25) with the help of Lucas sequences.

Corollary 15. Let p be a prime, p > 3. Then

⌊p/3⌋
∑

k=0

C
(2)
k

27k
≡
{

−6 (mod p), if p ≡ ±4 (mod 9);

3 (mod p), otherwise,

p−1
∑

k=0

C
(2)
k

27k
≡











1 (mod p), if p ≡ ±1 (mod 9);

4 (mod p), if p ≡ ±2 (mod 9);

−5 (mod p), if p ≡ ±4 (mod 9),

p−1
∑

k=0

(

3k

k

)

1

27k
≡











1 (mod p), if p ≡ ±1 (mod 9);

−2/3 (mod p), if p ≡ ±2 (mod 9);

−1/3 (mod p), if p ≡ ±4 (mod 9).
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Corollary 16. Let p be a prime, p > 3. Then

p−1
∑

k=0

C
(2)
k

9k
≡
{

−2 (mod p), if p ≡ ±2 (mod 9);

1 (mod p), otherwise,
(26)

⌊p/3⌋
∑

k=0

C
(2)
k

9k
≡











3 (mod p), if p ≡ ±1 (mod 9);

−3 (mod p), if p ≡ ±2 (mod 9);

0 (mod p), if p ≡ ±4 (mod 9),

p−1
∑

k=0

(

3k

k

)

1

9k
≡











1 (mod p), if p ≡ ±1 (mod 9);

0 (mod p), if p ≡ ±2 (mod 9);

−1 (mod p), if p ≡ ±4 (mod 9).

(27)

Remark 17. Z. W. Sun [12, Thm. 1.5] provided another proof of congruences (26) and (27)
by using cubic residues and third-order recurrences.

Lemma 18. For any x 6= 1,−1/2, we have

wn(4x
3 − 3x) =

α3n+2 − α−3n−1

α2 − α−1
, where α = x+

√
x2 − 1.

Proof. Starting with w3n(x), by (10), we get

w3n(x) =
(α + 1)α3n − (α−1 + 1)α−3n

α− α−1

=
(α3 + 1)α3n − (α−3 + 1)α−3n

α3 − α−3
· α

3 − α−3

α− α−1

+
α3n+1 − α3n+3 − α−3n−1 + α−3n−3

α− α−1

= wn(4x
3 − 3x)(α2 + 1 + α−2)

+
α3n+1 − α3n+3 − α−3n−1 + α−3n−3

α− α−1
.

Comparing the right and left-hand sides, we obtain

wn(4x
3 − 3x)(α2 + 1 + α−2) =

α3n + α3n+3 − α−3n − α−3n−3

α− α−1
=

(α3 + 1)(α3n − α−3n−3)

α− α−1

and therefore,

wn(4x
3 − 3x) =

(α3 + 1)(α3n − α−3n−3)

α3 − α−3
=

α3(α3n − α−3n−3)

α3 − 1
=

α3n+2 − α−3n−1

α2 − α−1
.
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Lemma 19. Let p be a prime, p > 3, and let x ∈ Dp. Then

(2x+ 1) · w⌊ p

3
⌋(4x

3 − 3x) ≡
(p

3

)

x+

(

x2 − 1

p

)

(x+ 1) (mod p),

(2x+ 1) · w⌊ 2p
3
⌋(4x

3 − 3x) ≡
(p

3

)

(1− 2x2) + 2

(

x2 − 1

p

)

x(x+ 1) (mod p).

Proof. First we suppose that x 6≡ 1,−1/2 (mod p). Then by Lemma 18, if p ≡ 1 (mod 3),
we have

w⌊ p

3
⌋(4x

3 − 3x) = w p−1
3
(4x3 − 3x) =

αp+1 − α−p

α2 − α−1
. (28)

For p-powers of α and α−1, we easily obtain

α±p = (x±
√
x2 − 1)p ≡ xp ± (

√
x2 − 1)p ≡ x±

√
x2 − 1(x2 − 1)

p−1
2

≡ x±
(

x2 − 1

p

)√
x2 − 1 (mod p). (29)

Substituting (29) into (28) and simplifying, we get

w⌊ p

3
⌋(4x

3 − 3x) ≡
(x+

√
x2 − 1)

(

x+
(

x2−1
p

)√
x2 − 1

)

− x+
(

x2−1
p

)√
x2 − 1

(2x+ 1)(x− 1 +
√
x2 − 1)

≡
x+

(

x2−1
p

)

(x+ 1)

2x+ 1
(mod p).

If p ≡ 2 (mod 3), then, by Lemma 18 and (29), we have

w⌊ p

3
⌋(4x

3 − 3x) = w p−2
3
(4x3 − 3x) =

αp − α1−p

α2 − α−1

≡
x+

(

x2−1
p

)√
x2 − 1− (x+

√
x2 − 1)

(

x−
(

x2−1
p

)√
x2 − 1

)

(2x+ 1)(x− 1 +
√
x2 − 1)

≡
−x+

(

x2−1
p

)

(x+ 1)

2x+ 1
(mod p)

and the first congruence of the lemma follows. Similarly, if p ≡ 1 (mod 3), then we have

w⌊ 2p
3
⌋(4x

3 − 3x) = w 2(p−1)
3

(4x3 − 3x) =
α2p − α1−2p

α2 − α−1

≡
(

x+
(

x2−1
p

)√
x2 − 1

)2 − (x+
√
x2 − 1)

(

x−
(

x2−1
p

)√
x2 − 1

)2

(2x+ 1)(x− 1 +
√
x2 − 1)

(mod p).

Simplifying, we easily find

w⌊ 2p
3
⌋(4x

3 − 3x) ≡
1− 2x2 + 2

(

x2−1
p

)

x(x+ 1)

2x+ 1
(mod p).
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If p ≡ 2 (mod 3), then

w⌊ 2p
3
⌋(4x

3 − 3x) = w 2p−1
3

(4x3 − 3x) =
α2p+1 − α−2p

α2 − α−1

≡
(x+

√
x2 − 1)

(

x+
(

x2−1
p

)√
x2 − 1

)2 −
(

x−
(

x2−1
p

)
√
x2 − 1

)2

(2x+ 1)(x− 1 +
√
x2 − 1)

(mod p),

and after simplification we get

w⌊ 2p
3
⌋(4x

3 − 3x) ≡
2x2 − 1 + 2

(

x2−1
p

)

x(x+ 1)

2x+ 1
(mod p),

as desired.
Finally, if x ≡ 1 (mod p), then, by (10), we have 3w⌊ p

3
⌋(1) = 3(2⌊p/3⌋+1) ≡ (p

3
) (mod p)

and 3w⌊ 2p
3
⌋(1) = 3(2⌊2p/3⌋ + 1) ≡ −(p

3
) (mod p), which coincide with the right-hand sides

of the required congruences when x ≡ 1 (mod p).
If x ≡ −1/2 (mod p), then the congruences become trivial and the proof is complete.

Lemma 20. Let p be a prime, p > 3, and let x ∈ Dp. Then we have modulo p,

(2x+ 1) · w⌊ p

6
⌋(4x

3 − 3x) ≡
(

2x− 2

p

)

x+

(−6x− 6

p

)

(x+ 1),

(2x+ 1) · w⌊ 5p
6
⌋(4x

3 − 3x) ≡
(

2x− 2

p

)

x(4x2 + 2x− 1)−
(−6x− 6

p

)

(x+ 1)(4x2 − 2x− 1).

Proof. First we suppose that x 6≡ 1,−1/2 (mod p). If p ≡ 1 (mod 6), then, by Lemma 18,
we have

w⌊ p

6
⌋(4x

3 − 3x) = w p−1
6
(4x3 − 3x) =

α
p+1
2

+1 − α− p+1
2

α2 − α−1
.

Substituting α = x+
√
x2 − 1 = (

√

(x+ 1)/2 +
√

(x− 1)/2)2, we have

w⌊ p

6
⌋(4x

3 − 3x) =
(x+

√
x2 − 1)(

√
x+ 1 +

√
x− 1)p+1 − (

√
x+ 1−

√
x− 1)p+1

2(p+1)/2(α2 − α−1)

=
(x+

√
x2 − 1)(

√
x+ 1 +

√
x− 1)p − 1/2(

√
x+ 1−

√
x− 1)p+2

2(p+1)/2(2x+ 1)
√
x− 1

≡ (x+
√
x2 − 1)((x+ 1)

p

2 + (x− 1)
p

2 )−(x−
√
x2 − 1)((x+ 1)

p

2 −(x− 1)
p

2 )

2(p+1)/2(2x+ 1)
√
x− 1

≡ x(x− 1)
p−1
2 + (x+ 1)

p+1
2

2(p−1)/2(2x+ 1)
≡
(

2x−2
p

)

x+
(

2x+2
p

)

(x+ 1)

2x+ 1
(mod p).

Since (−3
p
) = (p

3
) = 1, we get the desired congruence in this case.
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If p ≡ 5 (mod 6), then we have

w⌊ p

6
⌋(4x

3 − 3x) = w p−5
6
(4x3 − 3x) =

α
p−1
2 − α− p−3

2

α2 − α−1

and therefore,

w⌊ p

6
⌋(4x

3 − 3x) ≡ (x−
√
x2 − 1)((x+ 1)

p

2 + (x− 1)
p

2 )−(x+
√
x2 − 1)((x+ 1)

p

2 −(x− 1)
p

2 )

2(p+1)/2(2x+ 1)
√
x− 1

≡ x(x− 1)
p−1
2 − (x+ 1)

p+1
2

2(p−1)/2(2x+ 1)
≡
(

2x−2
p

)

x−
(

2x+2
p

)

(x+ 1)

2x+ 1
(mod p),

as desired in view of the fact that (−3
p
) = (p

3
) = −1.

The similar analysis can be applied for evaluating w⌊ 5p
6
⌋(4x

3 − 3x) modulo p. If p ≡ 1

(mod 6), then

w⌊ 5p
6
⌋(4x

3 − 3x) = w 5(p−1)
6

(4x3 − 3x) =
α

5p−1
2 − α− 5p−3

2

α2 − α−1
.

Simplifying, we obtain

w⌊ 5p
6
⌋(4x

3 − 3x) =
(x−

√
x2 − 1)(

√
x+ 1 +

√
x− 1)5p−(x+

√
x2 − 1)(

√
x+ 1−

√
x− 1)5p

2(5p+1)/2(2x+ 1)
√
x− 1

≡ (x−
√
x2 − 1)((x+ 1)

p

2 + (x− 1)
p

2 )5 − (x+
√
x2 − 1)((x+ 1)

p

2 − (x− 1)
p

2 )5

2(5p+1)/2(2x+ 1)
√
x− 1

≡
(

2x−2
p

)

x(4x2 + 2x− 1)−
(

2x+2
p

)

(x+ 1)(4x2 − 2x− 1)

2x+ 1
(mod p),

as desired. If p ≡ 5 (mod 6), then

w⌊ 5p
6
⌋(4x

3 − 3x) = w 5p−1
6

(4x3 − 3x) =
α

5p+3
2 − α− 5p+1

2

α2 − α−1

=
(
√
x+ 1 +

√
x− 1)5p+2 − (

√
x+ 1−

√
x− 1)5p+2

2(5p+3)/2(2x+ 1)
√
x− 1

≡ (x+
√
x2 − 1)((x+ 1)

p

2 + (x− 1)
p

2 )5 − (x−
√
x2 − 1)((x+ 1)

p

2 − (x− 1)
p

2 )5

8 · 2(p−1)/2(2x+ 1)
√
x− 1

≡
(

2x−2
p

)

x(4x2 + 2x− 1) +
(

2x+2
p

)

(x+ 1)(4x2 − 2x− 1)

2x+ 1
(mod p),

and the congruence is true. If x ≡ 1 (mod 6), then, by (10), we have 3w⌊ p

6
⌋(1) = 3(2⌊p/6⌋+

1) = 2(p
3
) (mod p) and 3w⌊ 5p

6
⌋(1) = 3(2⌊5p/6⌋+1) = −2(p

3
) (mod p), which prove the lemma

in this case too. Finally, if x ≡ −1/2 (mod p), we get the trivial congruences 0 ≡ 0, and the
proof is complete.
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Theorem 21. Let p be a prime, p > 3, and let t ∈ Dp.

If t 6≡ 0 (mod p), then

⌊p/3⌋
∑

k=1

C
(2)
k

(

t2(t+ 1)
)k ≡ 1 + t

2t
− 1− 3t

2t

(

(1 + t)(1− 3t)

p

)

(mod p),

p−1
∑

k=1

C
(2)
k

(

t2(t+ 1)
)k ≡ (1 + t)(1− 3t)

2t

(

1−
(

(1 + t)(1− 3t)

p

))

(mod p). (30)

If 3t+ 2 6≡ 0 (mod p), then

⌊p/3⌋
∑

k=1

(

3k

k

)

(

t2(t+ 1)
)k ≡ 3(t+ 1)

2(3t+ 2)

((

(1 + t)(1− 3t)

p

)

− 1

)

(mod p), (31)

p−1
∑

k=1

(

3k

k

)

(

t2(t+ 1)
)k ≡ 3(t+ 1)2

2(3t+ 2)

((

(1 + t)(1− 3t)

p

)

− 1

)

(mod p). (32)

Proof. From (21), Corollary 12 and Lemma 19 we have modulo p,

⌊p/3⌋
∑

k=0

C
(2)
k

(

2(1− x)(2x+ 1)2

27

)k

≡ 3
(p

3

)

w⌊ p

3
⌋(4x

3 − 3x) ≡ 3x

2x+ 1
+

3x+ 3

2x+ 1

(

3− 3x2

p

)

and

p−1
∑

k=0

C
(2)
k

(

2(1− x)(2x+ 1)2

27

)k

≡
(p

3

)

(

2w⌊ p

3
⌋(4x

3 − 3x)− w⌊ 2p
3
⌋(4x

3 − 3x)
)

≡ 2x2 + 2x− 1

2x+ 1
+

2(1− x2)

2x+ 1

(

3− 3x2

p

)

(mod p)

for any x ∈ Dp such that 2x + 1 6≡ 0 (mod p). Replacing x by (−1 − 3t)/2 with t 6≡ 0
(mod p), we get the first two congruences of the theorem.

Similarly, from (22), Corollary 12 and Lemma 19 for any x ∈ Dp with 2x+1 6≡ 0 (mod p),
we have

⌊p/3⌋
∑

k=0

(

3k

k

)(

2(x+ 1)(2x− 1)2

27

)k

≡
(p

3

)

w⌊ p

3
⌋(4x

3 − 3x) ≡ x

2x+ 1
+

x+ 1

2x+ 1

(

3− 3x2

p

)

,

p−1
∑

k=0

(

3k

k

)(

2(x+ 1)(2x− 1)2

27

)k

≡ 1

3

(p

3

)

(

2w⌊ p

3
⌋(4x

3 − 3x) + w⌊ 2p
3
⌋(4x

3 − 3x)
)

≡ 1 + 2x− 2x2

3(2x+ 1)
+

2(x+ 1)2

3(2x+ 1)

(

3− 3x2

p

)

(mod p).
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This implies that

⌊p/3⌋
∑

k=1

(

3k

k

) (

2(x+ 1)(2x− 1)2

27

)k

≡ x+ 1

2x+ 1

((

3− 3x2

p

)

− 1

)

(mod p),

p−1
∑

k=1

(

3k

k

) (

2(x+ 1)(2x− 1)2

27

)k

≡ 2(x+ 1)2

3(2x+ 1)

((

3− 3x2

p

)

− 1

)

(mod p).

Replacing x by (3t+ 1)/2, we derive the other two congruences of the theorem.

Remark 22. Note that Z. H. Sun [9, Thm. 2.3] proved congruence (31) by another method
using cubic congruences. If we put t = −c/(c + 1) in (30) and (32), we recover correspond-
ing congruences of Z. W. Sun [12, Thm. 1.1] proved by applying properties of third-order
recurrences.

5 Cubic residues and non-residues and their applica-

tion to congruences

We begin with a brief review of basic facts from the theory of cubic residues that will be
needed later in this section. Let ω = e2πi/3 = (−1 + i

√
3)/2. We consider the ring of the

Eisenstein integers Z[ω] = {a + bω : a, b ∈ Z}. To define the cubic residue symbol, we
recall arithmetic properties of the ring Z[ω] including description of its units and primes [4,
Chapter 9].

If α = a+ bω ∈ Z[ω], the norm of α is defined by the formula N(α) = αα = a2 − ab+ b2,
where α = a + bω = a + bω2 = (a − b) − bω is the complex conjugate of α. Note that the
norm is a nonnegative integer always congruent to 0 or 1 modulo 3. It is well known that
Z[ω] is a unique factorization domain. The units of Z[ω] are ±1,±ω,±ω2.

Let p be a prime in Z, then p in Z[ω] falls into three categories [1, Prop. 4.7]: (i) if p = 3,
then 3 = −ω2(1 − ω)2, where 1 − ω is prime in Z[ω] and N(1 − ω) = (1 − ω)(1 − ω2) = 3;
(ii) if p ≡ 2 (mod 3), then p remains prime in Z[ω] and N(p) = p2; (iii) if p ≡ 1 (mod 3),
then p splits into the product of two conjugate non-associate primes in Z[ω], p = ππ and
N(π) = ππ = p. Moreover, every prime in Z[ω] is associated with one of the primes listed
in (i)− (iii).

An analog of Fermat’s little theorem is true in Z[ω]: if π is a prime and π ∤ α, then

αN(π)−1 ≡ 1 (mod π).

Note that if π is a prime such that N(π) 6= 3, then N(π) ≡ 1 (mod 3) and the expression

α
N(π)−1

3 is well defined in Z[ω], i.e., α
N(π)−1

3 ≡ ωj (mod π) for a unique unit ωj. This leads
to the definition of the cubic residue character of α modulo π [4, p. 112]:

(α

π

)

3
=

{

0, if π|α;
ωj, if α

N(π)−1
3 ≡ ωj (mod π).

(33)
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The cubic residue character has formal properties similar to those of the Legendre symbol [4,
Prop. 9.3.3]:

(i) The congruence x3 ≡ α (mod π) is solvable in Z[ω] if and only if
(

α
π

)

3
= 1, i.e., iff α

is a cubic residue modulo π;
(ii)

(

αβ
π

)

3
=
(

α
π

)

3

(

β
π

)

3
;

(iii)
(

α
π

)

3
=
(

α
π

)

3
;

(iv) If π and θ are associates, then
(

α
π

)

3
=
(

α
θ

)

3
;

(v) If α ≡ β (mod π), then
(

α
π

)

3
=
(

β
π

)

3
.

Let π = a + bω ∈ Z[ω]. We say that π is primary if π ≡ 2 (mod 3), that is equivalent
to a ≡ 2 (mod 3) and b ≡ 0 (mod 3). If π ∈ Z[ω], N(π) > 1 and π ≡ ±2 (mod 3), we may
decompose π = ±π1 . . . πr, where π, . . . , πr are primary primes [4, p. 135]. For α ∈ Z[ω], the
cubic Jacobi symbol

(

α
π

)

3
is defined by

(α

π

)

3
=

(

α

π1

)

3

. . .

(

α

πr

)

3

.

Now let p be a prime. We define a cubic residue modulo p in Z. We say that m ∈ Z is a
cubic residue modulo p if the congruence x3 ≡ m (mod p) has an integer solution, otherwise
m is called a cubic non-residue modulo p. If p = 3, then by Fermat’s little theorem, m3 ≡ m
(mod 3) for all integers m, so x3 ≡ m (mod 3) always has a solution. If p ≡ 2 (mod 3), then
every integer m is a cubic residue modulo p. Indeed, we have 2p − 1 ≡ 0 (mod 3) and by

Fermat’s little theorem, m ≡ m2p−1 =
(

m
2p−1

3

)3
(mod p). So the only interesting case which

remains is when a prime p ≡ 1 (mod 3).
If a prime p ≡ 1 (mod 3), then it is well known that there are unique integers L and |M |

such that 4p = L2 + 27M2 with L ≡ 1 (mod 3). In this case, p splits into the product of
primes of Z[ω], p = ππ, where we can write π in the form

π =
1

2
(L+ 3M

√
−3) =

L+ 3M

2
+ 3Mω.

It is easy to see that
(

L
3M

)2 ≡ −3 (mod p) and therefore for any integer m coprime to p by
Euler’s criterion [5, 15], we have one of the three possibilities

m(p−1)/3 ≡ 1, (−1− L/(3M))/2 or (−1 + L/(3M))/2 (mod p).

Moreover, m(p−1)/3 ≡ 1 (mod p) if and only if m is a cubic residue modulo p. When m is
a prime and a cubic non-residue modulo p, Williams [15] found a method how to choose
the sign of M so that m(p−1)/3 ≡ (−1− L/(3M))/2 (mod p). To classify cubic residues and
non-residues in Z, Sun [8] introduced three subsets

Cj(m) =

{

c ∈ Dm

∣

∣

∣

∣

(

c+ 1 + 2ω

m

)

3

= ωj

}

, j = 0, 1, 2, m ∈ N, m 6≡ 0 (mod 3),

of Dm, which posses the following properties:
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(i) C0(m) ∪ C1(m) ∪ C2(m) = {c ∈ Dm | gcd(c2 + 3,m) = 1};
(ii) c ∈ C0(m) if and only if − c ∈ C0(m);

(iii) c ∈ C1(m) if and only if − c ∈ C2(m);

(iv) If c, c′ ∈ Dm and cc′ ≡ −3 (mod m), then c ∈ Cj(m) if and only if c′ ∈ Cj(m).

Using these sets, Z. H. Sun proved the following criterion of cubic residuacity in Z: Let
p be a prime of the form p ≡ 1 (mod 3) and hence 4p = L2 + 27M2 for some L,M ∈ Z
and L ≡ 1 (mod 3). If q is a prime with q|M , then q(p−1)/3 ≡ 1 (mod p). If q ∤ M and

j ∈ {0, 1, 2}, then

q(p−1)/3 ≡ ((−1− L/(3M))/2)j (mod p) if and only if L/(3M) ∈ Cj(q). (34)

Sun [9] gave a simple criterion in terms of values of the sum
∑⌊p/3⌋

k=1

(

3k
k

)

(

4
9(c2+3)

)k

modulo a

prime p for c ∈ Cj(p) and conjectured a similar criterion in terms of the sum
∑⌊2p/3⌋

k=(p+1)/2

(

3k
k

)

tk.

In this section, using our formulas from Theorem 11, we address this question of Sun (see
Theorem 25 below). First, we will need the following statement.

Lemma 23. ([8, Lemma 2.2]) Let p be a prime, p 6= 3, and let c ∈ Dp.

(i) If p ≡ 1 (mod 3) and so p splits into the product of primes, p = ππ with π ∈ Z[ω]
and π ≡ 2 (mod 3), then

(

c+ 1 + 2ω

p

)

3

=

(

(c2 + 3)(c− 1− 2ω)

π

)

3

,

(

c− 1− 2ω

p

)

3

=

(

c+ 1 + 2ω

p

)−1

3

=

(

(c2 + 3)(c+ 1 + 2ω)

π

)

3

.

(ii) If p ≡ 2 (mod 3), then

(

c+ 1 + 2ω

p

)

3

≡ (c2 + 3)(p−2)/3(c+ 1 + 2ω)(p+1)/3 (mod p),

(

c− 1− 2ω

p

)

3

=

(

c+ 1 + 2ω

p

)−1

3

≡ (c2 + 3)(p−2)/3(c− 1− 2ω)(p+1)/3 (mod p).

Now we prove the following criterion.

Theorem 24. Let p be a prime, p > 3, and let c ∈ Dp with c2 6≡ −3 (mod p). Then

c

⌊2p/3⌋
∑

k=(p+1)/2

(

3k

k

)(

4

9(c2 + 3)

)k

≡











0 (mod p), if c ∈ C0(p);

1 (mod p), if c ∈ C1(p);

−1 (mod p), if c ∈ C2(p).
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Proof. By (23), we have

⌊2p/3⌋
∑

k=(p+1)/2

(

3k

k

)(

4

9(c2 + 3)

)k

≡ 1

3

(p

3

)

(

w⌊ 2p
3
⌋

(

3− c2

3 + c2

)

− w⌊ p

3
⌋

(

3− c2

3 + c2

))

(mod p).

(35)
From (10) it easily follows that

wn

(

3− c2

3 + c2

)

=
(−1)n

2c(c2 + 3)n
(

(c− 1− 2ω)2n+1 + (c+ 1 + 2ω)2n+1
)

. (36)

If p ≡ 1 (mod 3), then p splits into the product of primes in Z[ω], p = ππ with π ≡ 2 (mod 3)
and, by (36), we have

w⌊ p

3
⌋

(

3− c2

3 + c2

)

=
1

2c(c2 + 3)(p−1)/3

(

(c− 1− 2ω)2(p−1)/3+1 + (c+ 1 + 2ω)2(p−1)/3+1
)

. (37)

By (33) and Lemma 23, we have

(c2 + 3)2(p−1)/3(c− 1− 2ω)2(p−1)/3 ≡
(

(c2 + 3)(c− 1− 2ω)

π

)2

=

(

c+ 1 + 2ω

p

)2

3

(mod π)

(38)
and

(c2 + 3)2(p−1)/3(c+ 1+ 2ω)2(p−1)/3 ≡
(

(c2 + 3)(c+ 1 + 2ω)

π

)2

=

(

c+ 1 + 2ω

p

)−2

3

(mod π).

(39)
Substituting (38) and (39) into (37), we get

w⌊ p

3
⌋

(

3− c2

3 + c2

)

≡ 1

2c

(

(c− 1− 2ω)

(

c+ 1 + 2ω

p

)2

3

+ (c+ 1 + 2ω)

(

c+ 1 + 2ω

p

)−2

3

)

(mod π)

and therefore,

w⌊ p

3
⌋

(

3− c2

3 + c2

)

≡















1 (mod π), if c ∈ C0(p);

−3+c
2c

(mod π), if c ∈ C1(p);
3−c
2c

(mod π), if c ∈ C2(p).

(40)

Since both sides of the above congruence are rational, the congruence is also true modulo
p = ππ. Similarly, if p ≡ 2 (mod 3), then

w⌊ p

3
⌋

(

3− c2

3 + c2

)

=
−1

2c(c2 + 3)(p−2)/3

(

(c− 1− 2ω)2(p+1)/3−1 + (c+ 1 + 2ω)2(p+1)/3−1
)

. (41)

Now, by Lemma 23, we have

(c+ 1 + 2ω)2(p+1)/3 ≡ (c2 + 3)−2(p−2)/3

(

c+ 1 + 2ω

p

)2

3

(mod p)
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and

(c− 1− 2ω)2(p+1)/3 ≡ (c2 + 3)−2(p−2)/3

(

c+ 1 + 2ω

p

)−2

3

(mod p).

Substituting the above congruences into (41) and noticing that c2+3 = (c+1+2ω)(c−1−2ω),
we get

w⌊ p

3
⌋

(

3− c2

3 + c2

)

≡ −1

2c

(

(c+ 1 + 2ω)

(

c+ 1 + 2ω

p

)−2

3

+ (c− 1− 2ω)

(

c+ 1 + 2ω

p

)2

3

)

and therefore,

w⌊ p

3
⌋

(

3− c2

3 + c2

)

≡















−1 (mod p), if c ∈ C0(p);
3+c
2c

(mod p), if c ∈ C1(p);

−3−c
2c

(mod p), if c ∈ C2(p).

(42)

Combining congruences (40) and (42), we obtain that for all primes p > 3,

(p

3

)

w⌊ p

3
⌋

(

3− c2

3 + c2

)

≡















1 (mod p), if c ∈ C0(p);

−3+c
2c

(mod p), if c ∈ C1(p);
3−c
2c

(mod p), if c ∈ C2(p).

(43)

Applying the similar argument for evaluation of w⌊ 2p
3
⌋(

3−c2

3+c2
), we see that if p ≡ 1 (mod 3),

then 2p ≡ 2 (mod 3) and therefore,

w⌊ 2p
3
⌋

(

3− c2

3 + c2

)

=
1

2c(c2 + 3)2(p−1)/3

(

(c− 1− 2ω)4(p−1)/3+1 + (c+ 1 + 2ω)4(p−1)/3+1
)

≡ 1

2c

(

(c− 1− 2ω)

(

c+ 1 + 2ω

p

)

3

+ (c+ 1 + 2ω)

(

c+ 1 + 2ω

p

)−1

3

)

(mod π),

which implies

w⌊ 2p
3
⌋

(

3− c2

3 + c2

)

≡















1 (mod p), if c ∈ C0(p);
3−c
2c

(mod p), if c ∈ C1(p);

−3+c
2c

(mod p), if c ∈ C2(p).

(44)

If p ≡ 2 (mod 3), then 2p ≡ 1 (mod 3) and we have

w⌊ 2p
3
⌋

(

3− c2

3 + c2

)

=
−1

2c(c2 + 3)(2p−1)/3

(

(c+ 1 + 2ω)4(p+1)/3−1 + (c− 1− 2ω)4(p+1)/3−1
)

≡ −1

2c

(

(c− 1− 2ω)

(

c+ 1 + 2ω

p

)

3

+ (c+ 1 + 2ω)

(

c+ 1 + 2ω

p

)−1

3

)

(mod p),
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and therefore,

w⌊ 2p
3
⌋

(

3− c2

3 + c2

)

≡















−1 (mod p), if c ∈ C0(p);

−3−c
2c

(mod p), if c ∈ C1(p);
3+c
2c

(mod p), if c ∈ C2(p).

(45)

Combining (44) and (45), we see that for all primes p > 3,

(p

3

)

w⌊ 2p
3
⌋

(

3− c2

3 + c2

)

≡















1 (mod p), if c ∈ C0(p);
3−c
2c

(mod p), if c ∈ C1(p);

−3+c
2c

(mod p), if c ∈ C2(p).

(46)

Now, by (43), (46) and (35), the congruence of the theorem easily follows.

From Theorem 24 and criterion (34) we deduce the following result confirming a question
of Z. H. Sun [9, Conj. 2.1].

Theorem 25. Let q be a prime, q ≡ 1 (mod 3) and so 4q = L2 + 27M2 with L,M ∈ Z and

L ≡ 1 (mod 3). Let p be a prime with p 6= 2, 3, q, and let p ∤ LM . Then

⌊2p/3⌋
∑

k=(p+1)/2

(

3k

k

)

M2k

qk
≡
{

0 (mod p), if p
q−1
3 ≡ 1 (mod q);

±3M
L

(mod p), if p
q−1
3 ≡ −1±9M/L

2
(mod q)

and
⌊2p/3⌋
∑

k=(p+1)/2

(

3k

k

)

L2k

(27q)k
≡
{

0 (mod p), if p
q−1
3 ≡ 1 (mod q);

± L
9M

(mod p), if p
q−1
3 ≡ −1±L/(3M)

2
(mod q).

Proof. To prove the first congruence, we put c = L
3M

in Theorem 24. Then c(c2 + 3) 6≡ 0

(mod p), 4
9(c2+3)

= M2

q
and we have

⌊2p/3⌋
∑

k=(p+1)/2

(

3k

k

)

M2k

qk
≡















0 (mod p), if L/(3M) ∈ C0(p);
3M
L

(mod p), if L/(3M) ∈ C1(p);

−3M
L

(mod p), if L/(3M) ∈ C2(p).

Now applying (34) and taking into account that L/(3M) ≡ −9M/L (mod q), we get the
result.

To prove the second congruence, we put c = −9M/L in Theorem 24. Then c(c2 +3) 6≡ 0
(mod p), 4

9(c2+3)
= L2

27q
and we have

⌊2p/3⌋
∑

k=(p+1)/2

(

3k

k

)

L2k

(27q)k
≡















0 (mod p), if −9M/L ∈ C0(p);

− L
9M

(mod p), if −9M/L ∈ C1(p);
L
9M

(mod p), if −9M/L ∈ C2(p).

(47)
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By (iv), we know that −9M/L ∈ Cj(p) if and only if L/(3M) ∈ Cj(p). This together with
(47) and (34) implies the required congruence.

From Corollary 12 and formulas (43) and (46) we get the following statement.

Theorem 26. Let p be a prime, p > 3, and let c ∈ Dp with c2 6≡ −3 (mod p). Then

p−1
∑

k=0

(

3k

k

)(

4

9(c2 + 3)

)k

≡











1 (mod p), if c ∈ C0(p);

−1+c
2c

(mod p), if c ∈ C1(p);
1−c
2c

(mod p), if c ∈ C2(p)

and

p−1
∑

k=0

C
(2)
k

(

4c2

27(c2 + 3)

)k

≡











1 (mod p), if c ∈ C0(p);

−9+c
2c

(mod p), if c ∈ C1(p);
9−c
2c

(mod p), if c ∈ C2(p).

From Theorem 26 and criterion (34) we get the following congruences.

Theorem 27. Let q be a prime, q ≡ 1 (mod 3) and so 4q = L2 + 27M2 with L,M ∈ Z and

L ≡ 1 (mod 3). Let p be a prime with p 6= 2, 3, q, and let p ∤ LM . Then

p−1
∑

k=0

(

3k

k

)

M2k

qk
≡
{

1 (mod p), if p
q−1
3 ≡ 1 (mod q);

±3M−L
2L

(mod p), if p
q−1
3 ≡ −1±L/(3M)

2
(mod q),

p−1
∑

k=0

(

3k

k

)

L2k

(27q)k
≡
{

1 (mod p), if p
q−1
3 ≡ 1 (mod q);

±L−9M
18M

(mod p), if p
q−1
3 ≡ −1±9M/L

2
(mod q)

and

p−1
∑

k=0

C
(2)
k

M2k

qk
≡
{

1 (mod p), if p
q−1
3 ≡ 1 (mod q);

±L−M
2M

(mod p), if p
q−1
3 ≡ −1±9M/L

2
(mod q),

p−1
∑

k=0

C
(2)
k

L2k

(27q)k
≡
{

1 (mod p), if p
q−1
3 ≡ 1 (mod q);

±27M−L
2L

(mod p), if p
q−1
3 ≡ −1±L/(3M)

2
(mod q).

Proof. Substituting consequently c = L/(3M) and then c = −9M/L in Theorem 26 and
following the same line of reasoning as in the proof of Theorem 25, we get the above con-
gruences.

In particular, setting q = 7, 19, 31, 37 in Theorem 27, we get the following numerical
congruences.
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Corollary 28. Let p be a prime, p 6= 2, 3, 7. Then

p−1
∑

k=0

(

3k

k

)

1

189k
≡
{

−2 (mod p), if p ≡ ±2 (mod 7);

1 (mod p), otherwise,

p−1
∑

k=0

C
(2)
k

189k
≡











1 (mod p), if p ≡ ±1 (mod 7);

−14 (mod p), if p ≡ ±2 (mod 7);

13 (mod p), if p ≡ ±3 (mod 7).

Corollary 29. Let p be a prime, p 6= 2, 3, 7, 19. Then

p−1
∑

k=0

(

3k

k

)

1

19k
≡











1 (mod p), if p ≡ ±1,±7,±8 (mod 19);

−2/7 (mod p), if p ≡ ±2,±3,±5 (mod 19);

−5/7 (mod p), if p ≡ ±4,±6,±9 (mod 19).

Corollary 30. Let p be a prime, p 6= 2, 3, 31. Then

p−1
∑

k=0

(

3k

k

)(

4

31

)k

≡











1 (mod p), if p ≡ ±1,±2,±4,±8,±15 (mod 31);

−5/4 (mod p), if p ≡ ±3,±6,±7,±12,±14 (mod 31);

1/4 (mod p), if p ≡ ±5,±9,±10,±11,±13 (mod 31).

Corollary 31. Let p be a prime, p 6= 2, 3, 11, 37. Then

p−1
∑

k=0

(

3k

k

)

1

37k
≡











1 (mod p), if p ≡ ±1,±6,±8,±10,±11,±14, (mod 37);

−4/11 (mod p), if p ≡ ±2,±9,±12,±15,±16,±17 (mod 37);

−7/11 (mod p), if p ≡ ±3,±4,±5,±7,±13,±18 (mod 37),

p−1
∑

k=0

C
(2)
k

37k
≡











1 (mod p), if p ≡ ±1,±6,±8,±10,±11,±14, (mod 37);

−6 (mod p), if p ≡ ±2,±9,±12,±15,±16,±17 (mod 37);

5 (mod p), if p ≡ ±3,±4,±5,±7,±13,±18 (mod 37).

6 Polynomial congruences involving Sn

In this section, we will deal with a particular case of Theorem 1 when m = 6. In this case, we
get polynomial congruences containing the sequence Sk (OEIS A176898) and also (2k+1)Sk.
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Theorem 32. Let p be a prime greater than 3, and let t ∈ Dp. Then

⌊p/6⌋
∑

k=0

Skt
k ≡ 3

4

(p

3

)

w⌊ p

6
⌋(1− 216t) (mod p), (48)

⌊5p/6⌋
∑

k=(p−1)/2

Skt
k ≡ −1

8

(p

3

)(

w⌊ 5p
6
⌋(1− 216t) + w⌊ p

6
⌋(1− 216t)

)

(mod p),

⌊p/6⌋
∑

k=0

(2k + 1)Skt
k ≡ 1

2
(−1)

p−1
2 w⌊ p

6
⌋(216t− 1) (mod p), (49)

⌊5p/6⌋
∑

k=(p+1)/2

(2k + 1)Skt
k ≡ 1

12
(−1)

p−1
2

(

w⌊ 5p
6
⌋(216t− 1)− w⌊ p

6
⌋(216t− 1)

)

(mod p).

Corollary 33. Let p be a prime greater than 3, and let t ∈ Dp. Then

p−1
∑

k=0

Skt
k ≡ 1

8

(p

3

)(

5w⌊ p

6
⌋(1− 216t)− w⌊ 5p

6
⌋(1− 216t)

)

(mod p),

p−1
∑

k=0

(2k + 1)Skt
k ≡ 1

12
(−1)

p−1
2

(

w⌊ 5p
6
⌋(216t− 1) + 5w⌊ p

6
⌋(216t− 1)

)

(mod p).

Taking into account (17), we get the following explicit congruences. Note that the first
congruence below confirms a conjecture of Z. W. Sun [13, Conj. 2].

Corollary 34. Let p be a prime greater than 3. Then

p−1
∑

k=0

Sk

108k
≡ 1

2

(

3

p

)

,

⌊p/6⌋
∑

k=0

Sk

108k
≡ 3

4

(

3

p

)

(mod p),

p−1
∑

k=0

Sk

216k
≡ 1

2

(

2

p

)

,

⌊p/6⌋
∑

k=0

Sk

216k
≡ 3

4

(

2

p

)

(mod p),

p−1
∑

k=0

(2k + 1)Sk

108k
≡ 2

9

(

3

p

)

,

⌊p/6⌋
∑

k=0

(2k + 1)Sk

108k
≡ 1

3

(

3

p

)

(mod p),

p−1
∑

k=0

(2k + 1)Sk

216k
≡ 1

2

(

6

p

)

,

⌊p/6⌋
∑

k=0

(2k + 1)Sk

216k
≡ 1

2

(

6

p

)

(mod p).

From Corollary 33 and (18) we get the following congruences.
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Corollary 35. Let p be a prime greater than 3. Then

(

3

p

) p−1
∑

k=0

Sk

432k
≡











1/2 (mod p), if p ≡ ±1 (mod 9);

−11/8 (mod p), if p ≡ ±2 (mod 9);

7/8 (mod p), if p ≡ ±4 (mod 9),

p−1
∑

k=0

Sk

(

3

432

)k

≡











1/2 (mod p), if p ≡ ±1 (mod 9);

1/8 (mod p), if p ≡ ±2 (mod 9);

−5/8 (mod p), if p ≡ ±4 (mod 9),

(p

3

)

p−1
∑

k=0

(2k + 1)Sk

432k
≡











1/2 (mod p), if p ≡ ±1 (mod 9);

−1/12 (mod p), if p ≡ ±2 (mod 9);

−5/12 (mod p), if p ≡ ±4 (mod 9),

p−1
∑

k=0

(2k + 1)Sk

(

3

432

)k

≡











1/2 (mod p), if p ≡ ±1 (mod 9);

−3/4 (mod p), if p ≡ ±2 (mod 9);

1/4 (mod p), if p ≡ ±4 (mod 9).

The following theorem provides two families of polynomial congruences.

Theorem 36. Let p be a prime, p > 3, and let t ∈ Dp. If t 6≡ 0 (mod p), then the following

congruences hold modulo p:

⌊p/6⌋
∑

k=0

Sk

(

t2(4t+ 1)
)k≡1 + 12t

32t

(

1 + 4t

p

)

− 1− 12t

32t

(

1− 12t

p

)

,

p−1
∑

k=0

Sk

(

t2(4t+ 1)
)k≡ (1 + 12t)(1 + 4t)(1− 6t)

32t

(

1 + 4t

p

)

− (1−12t)(24t2 + 6t+ 1)

32t

(

1− 12t

p

)

.

If 6t+ 1 6≡ 0 (mod p), then we have modulo p,

⌊p/6⌋
∑

k=0

(2k + 1)Sk

(

t2(4t+ 1)
)k≡ 1 + 12t

8(1 + 6t)

(

1− 12t

p

)

+
3(1 + 4t)

8(1 + 6t)

(

1 + 4t

p

)

,

p−1
∑

k=0

(2k + 1)Sk

(

t2(4t+ 1)
)k≡ (1 + 12t)(24t2 + 6t+ 1)

8(1 + 6t)

(

1− 12t

p

)

+
3(1− 6t)(1 + 4t)2

8(1 + 6t)

(

1 + 4t

p

)

.

Proof. From (48), Corollary 33 and Lemma 20 for any x ∈ Dp with 2x+ 1 6≡ 0 (mod p), we
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have

⌊p/6⌋
∑

k=0

Sk

(

(1− x)(2x+ 1)2

216

)k

≡ 3

4

(p

3

)

w⌊ p

6
⌋(4x

3 − 3x)

≡ 3(x+ 1)

4(2x+ 1)

(

2x+ 2

p

)

+
3x

4(2x+ 1)

(

6− 6x

p

)

(mod p),

p−1
∑

k=0

Sk

(

(1− x)(2x+ 1)2

216

)k

≡ 1

8

(p

3

)

(

5w⌊ p

6
⌋(4x

3 − 3x)− w⌊ 5p
6
⌋(4x

3 − 3x)
)

≡ (x+ 1)(2x2 − x+ 2)

4(2x+ 1)

(

2x+ 2

p

)

− x(x− 1)(2x+ 3)

4(2x+ 1)

(

6− 6x

p

)

(mod p).

Now replacing x by (−12t− 1)/2, we get the first two congruences of the theorem.
Similarly, from (49), Corollary 33 and Lemma 20 for any x ∈ Dp such that 2x + 1 6≡ 0

(mod p), we have

⌊p/6⌋
∑

k=0

(2k + 1)Sk

(

(x+ 1)(2x− 1)2

216

)k

≡ 1

2
(−1)

p−1
2 w⌊ p

6
⌋(4x

3 − 3x)

≡ x

2(2x+ 1)

(

2− 2x

p

)

+
x+ 1

2(2x+ 1)

(

6x+ 6

p

)

(mod p),

p−1
∑

k=0

(2k + 1)Sk

(

(x+ 1)(2x− 1)2

216

)k

≡ 1

12
(−1)

p−1
2

(

5w⌊ p

6
⌋(4x

3 − 3x) + w⌊ 5p
6
⌋(4x

3 − 3x)
)

≡ x(2x2 + x+ 2)

6(2x+ 1)

(

2− 2x

p

)

− (x+ 1)2(2x− 3)

6(2x+ 1)

(

6x+ 6

p

)

(mod p).

Replacing x by (12t+ 1)/2, we conclude the proof.

The next theorem gives a criterion for c ∈ Cj(p) in terms of values of the sums
∑p−1

k=0 Skt
k

and
∑p−1

k=0(2k + 1)Skt
k modulo p.

Theorem 37. Let p be a prime, p > 3, and let c ∈ Dp with c2 6≡ −3 (mod p). Then

(

3(c2 + 3)

p

)

·
p−1
∑

k=0

Sk

(

c2

108(c2 + 3)

)k

≡











1/2 (mod p), if c ∈ C0(p);
9−2c
8c

(mod p), if c ∈ C1(p);

−9+2c
8c

(mod p), if c ∈ C2(p)

and
(

c2 + 3

p

)

·
p−1
∑

k=0

(2k + 1)Sk

36k(3 + c2)k
≡











1/2 (mod p), if c ∈ C0(p);
2−c
4c

(mod p), if c ∈ C1(p);

−2+c
4c

(mod p), if c ∈ C2(p).
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Proof. From Corollary 33 we have

p−1
∑

k=0

Sk

(

c2

108(3 + c2)

)k

≡ 1

8

(p

3

)

(

5w⌊ p

6
⌋

(

3− c2

3 + c2

)

− w⌊ 5p
6
⌋

(

3− c2

3 + c2

))

(mod p), (50)

p−1
∑

k=0

(2k + 1)Sk

36k(3 + c2)k
≡ (−1)

p−1
2

12

(

5w⌊ p

6
⌋

(

3− c2

3 + c2

)

+ w⌊ 5p
6
⌋

(

3− c2

3 + c2

))

(mod p). (51)

If p ≡ 1 (mod 6), then p splits into the product of primes in Z[ω], p = ππ with π ≡ 2 (mod 3)
and, by (36), we easily find

w⌊ p

6
⌋

(

3− c2

3 + c2

)

=
(−1)

p−1
6

2c(c2 + 3)
p−1
6

(

(c− 1− 2ω)
p−1
3

+1 + (c+ 1 + 2ω)
p−1
3

+1
)

.

Applying Lemma 23, we have

w⌊ p

6
⌋

(

3− c2

3 + c2

)

≡ (−1)
p−1
6

2c(c2 + 3)
p−1
2

(

(c− 1− 2ω)

(

c+ 1 + 2ω

p

)

3

+ (c+ 1 + 2ω)

(

c+ 1 + 2ω

p

)−1

3

)

modulo π and therefore,

(−1)
p−1
2

(

c2 + 3

p

)

· w⌊ p

6
⌋

(

3− c2

3 + c2

)

≡











1 (mod p), if c ∈ C0(p);
3−c
2c

(mod p), if c ∈ C1(p);

−3+c
2c

(mod p), if c ∈ C2(p).

(52)

If p ≡ 5 (mod 6), then

w⌊ p

6
⌋

(

3− c2

3 + c2

)

=
(−1)

p−5
6

2c(c2 + 3)
p−5
6

(

(c− 1− 2ω)
p+1
3

−1 + (c+ 1 + 2ω)
p+1
3

−1
)

.

Now, by Lemma 23, we get

w⌊ p

6
⌋

(

3− c2

3 + c2

)

≡ (−1)
p−5
6

2c(c2 + 3)
p−1
2

(

(c+ 1 + 2ω)

(

c+ 1 + 2ω

p

)−1

3

+ (c− 1− 2ω)

(

c+ 1 + 2ω

p

)

3

)

modulo p and therefore,

(−1)
p−5
6

(

c2 + 3

p

)

· w⌊ p

6
⌋

(

3− c2

3 + c2

)

≡











1 (mod p), if c ∈ C0(p);
3−c
2c

(mod p), if c ∈ C1(p);

−3+c
2c

(mod p), if c ∈ C2(p).

(53)

Comparing (52) and (53), we get that (52) holds for all primes p > 3.
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Applying the similar argument for evaluation of w⌊ 5p
6
⌋

(

3−c2

3+c2

)

, we see that if p ≡ 1 (mod 6),

then 5p ≡ 5 (mod 6) and we have

w⌊ 5p
6
⌋

(

3− c2

3 + c2

)

=
(−1)

p−1
6

2c(c2 + 3)
5(p−1)

6

(

(c− 1− 2ω)
5(p−1)

3
+1 + (c+ 1 + 2ω)

5(p−1)
3

+1
)

.

Now, by Lemma 23, we easily find

w⌊ 5p
6
⌋

(

3−c2

3+c2

)

≡ (−1)
p−1
6

2c(c2 + 3)
5(p−1)

2

(

(c− 1− 2ω)

(

c+ 1 + 2ω

p

)5

3

+(c+ 1 + 2ω)

(

c+ 1 + 2ω

p

)−5

3

)

modulo π, which implies

(−1)
p−1
2

(

c2 + 3

p

)

· w⌊ 5p
6
⌋

(

3− c2

3 + c2

)

≡











1 (mod p), if c ∈ C0(p);

−3+c
2c

(mod p), if c ∈ C1(p);
3−c
2c

(mod p), if c ∈ C2(p).

(54)

Similarly, if p ≡ 5 (mod 6), then 5p ≡ 1 (mod 6) and we have

w⌊ 5p
6
⌋

(

3− c2

3 + c2

)

=
(−1)

5p−1
6

2c(c2 + 3)
5p−1

6

(

(c− 1− 2ω)
5p+2

3 + (c+ 1 + 2ω)
5p+2

3

)

.

By Lemma 23, we readily get

w⌊ 5p
6
⌋

(

3−c2

3+c2

)

≡ (−1)
5p−1

6

2c(c2 + 3)
5p−1

2

(

(c+ 1 + 2ω)

(

c+ 1 + 2ω

p

)−5

3

+(c− 1− 2ω)

(

c+ 1 + 2ω

p

)5

3

)

modulo p and therefore after simplification we obtain that (54) holds for all primes p >
3. Finally, substituting (52) and (54) into (50) and (51), we get the congruences of the
theorem.

From Theorem 37 with c = −9M/L and c = L/3M and criterion (34) we get the following
congruences.

Theorem 38. Let q be a prime, q ≡ 1 (mod 3) and so 4q = L2 + 27M2 with L,M ∈ Z and

L ≡ 1 (mod 3). Let p be a prime with p 6= 2, 3, q, and let p ∤ LM . Then

(

q

p

) p−1
∑

k=0

Sk
M2k

(16q)k
≡
{

1/2 (mod p), if p
q−1
3 ≡ 1 (mod q);

±L−2M
8M

(mod p), if p
q−1
3 ≡ −1±L/(3M)

2
(mod q),

(

3q

p

) p−1
∑

k=0

Sk
L2k

(432q)k
≡
{

1/2 (mod p), if p
q−1
3 ≡ 1 (mod q);

±27M−2L
8L

(mod p), if p
q−1
3 ≡ −1±9M/L

2
(mod q)
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and

(

q

p

) p−1
∑

k=0

(2k + 1)Sk
M2k

(16q)k
≡
{

1/2 (mod p), if p
q−1
3 ≡ 1 (mod q);

±6M−L
4L

(mod p), if p
q−1
3 ≡ −1±9M/L

2
(mod q),

(

3q

p

) p−1
∑

k=0

(2k + 1)Sk
L2k

(432q)k
≡
{

1/2 (mod p), if p
q−1
3 ≡ 1 (mod q);

±2L−9M
36M

(mod p), if p
q−1
3 ≡ −1±L/(3M)

2
(mod q).

For example, if q = 7, then 4q = L2 + 27M2 with L = M = 1 and by Theorem 38, we
get the following numerical congruences.

Corollary 39. Let p be a prime, p 6= 2, 3, 7. Then

(

7

p

) p−1
∑

k=0

Sk

112k
≡











1/2 (mod p), if p ≡ ±1 (mod 7);

−3/8 (mod p), if p ≡ ±2 (mod 7);

−1/8 (mod p), if p ≡ ±3 (mod 7),

(

21

p

) p−1
∑

k=0

Sk

3024k
≡











1/2 (mod p), if p ≡ ±1 (mod 7);

25/8 (mod p), if p ≡ ±2 (mod 7);

−29/8 (mod p), if p ≡ ±3 (mod 7),

(

7

p

) p−1
∑

k=0

(2k + 1)Sk

112k
≡











1/2 (mod p), if p ≡ ±1 (mod 7);

5/4 (mod p), if p ≡ ±2 (mod 7);

−7/4 (mod p), if p ≡ ±3 (mod 7),

(

21

p

) p−1
∑

k=0

(2k + 1)Sk

3024k
≡











1/2 (mod p), if p ≡ ±1 (mod 7);

−11/36 (mod p), if p ≡ ±2 (mod 7);

−7/36 (mod p), if p ≡ ±3 (mod 7).

Similarly, setting q = 13, 19, 31 in Theorem 38, we obtain the following congruences.
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Corollary 40. Let p be a prime, p 6= 2, 3, 5, 13. Then

(

13

p

) p−1
∑

k=0

Sk

208k
≡











1/2 (mod p), if p ≡ ±1,±5 (mod 13);

−7/8 (mod p), if p ≡ ±2,±3 (mod 13);

3/8 (mod p), if p ≡ ±4,±6 (mod 13),

(

39

p

) p−1
∑

k=0

Sk

(

25

5616

)k

≡











1/2 (mod p), if p ≡ ±1,±5 (mod 13);

17/40 (mod p), if p ≡ ±2,±3 (mod 13);

−37/40 (mod p), if p ≡ ±4,±6 (mod 13),

(

13

p

) p−1
∑

k=0

(2k + 1)Sk

208k
≡











1/2 (mod p), if p ≡ ±1,±5 (mod 13);

1/20 (mod p), if p ≡ ±2,±3 (mod 13);

−11/20 (mod p), if p ≡ ±4,±6 (mod 13),

(

39

p

) p−1
∑

k=0

(2k + 1)Sk

(

25

5616

)k

≡











1/2 (mod p), if p ≡ ±1,±5 (mod 13);

−19/36 (mod p), if p ≡ ±2,±3 (mod 13);

1/36 (mod p), if p ≡ ±4,±6 (mod 13).

Corollary 41. Let p be a prime, p 6= 2, 3, 7, 19. Then

(

19

p

) p−1
∑

k=0

Sk

304k
≡











1/2 (mod p), if p ≡ ±1,±7,±8 (mod 19);

5/8 (mod p), if p ≡ ±2,±3,±5 (mod 19);

−9/8 (mod p), if p ≡ ±4,±6,±9 (mod 19),

(

19

p

) p−1
∑

k=0

(2k + 1)Sk

304k
≡











1/2 (mod p), if p ≡ ±1,±7,±8 (mod 19);

−13/28 (mod p), if p ≡ ±2,±3,±5 (mod 19);

−1/28 (mod p), if p ≡ ±4,±6,±9 (mod 19).

Corollary 42. Let p be a prime, p 6= 2, 3, 31. Then

(

31

p

) p−1
∑

k=0

Sk

124k
≡











1/2 (mod p), if p ≡ ±1,±2,±4,±8,±15 (mod 31);

−1/2 (mod p), if p ≡ ±3,±6,±7,±12,±14 (mod 31);

0 (mod p), if p ≡ ±5,±9,±10,±11,±13 (mod 31),

(

93

p

) p−1
∑

k=0

Sk

837k
≡











1/2 (mod p), if p ≡ ±1,±2,±4,±8,±15 (mod 31);

23/16 (mod p), if p ≡ ±3,±6,±7,±12,±14 (mod 31);

−31/16 (mod p), if p ≡ ±5,±9,±10,±11,±13 (mod 31),
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(

31

p

) p−1
∑

k=0

(2k + 1)Sk

124k
≡
{

−1 (mod p), if p ≡ ±5,±9,±10,±11,±13 (mod 31);

1/2 (mod p), otherwise,

(

93

p

) p−1
∑

k=0

(2k + 1)Sk

837k
≡











1/2 (mod p), if p ≡ ±1,±2,±4,±8,±15 (mod 31);

−13/36 (mod p), if p ≡ ±3,±6,±7,±12,±14 (mod 31);

−5/36 (mod p), if p ≡ ±5,±9,±10,±11,±13 (mod 31).

7 Closed form for a companion sequence of Sn

As we noticed in the Introduction, the sequence Sn can be defined explicitly by formula
(1) or by the generating function (8). Sun [13] considered a companion sequence Tn, whose
definition comes from a conjectural series expansion of trigonometric functions [13, Conj. 4]:
there are positive integers T1, T2, T3, . . . such that

∞
∑

k=0

Skx
2k+1 +

1

24
−

∞
∑

k=1

Tkx
2k =

1

12
cos

(

2

3
arccos(6

√
3x)

)

(55)

for all real x with |x| ≤ 1/(6
√
3). The first few values of Tn are as follows:

1, 32, 1792, 122880, 9371648, 763363328, . . . .

In this section, we give an exact formula for Tn. It easily follows from the companion series
expansion to (5) [6, p. 210,(12)]:

cos(a arcsin(z)) = F

(

−a

2
,
a

2
;
1

2
; z2
)

, |z| ≤ 1. (56)

Proposition 43. The coefficients Tk, k ≥ 1, in expansion (55) are given by

Tk =
16k−1

k

(

3k − 2

2k − 1

)

= 16k−1

(

2

(

3k − 2

k − 1

)

−
(

3k − 2

k

))

.

Proof. Combining formulas (5) and (56) with the obvious trigonometric identity

arcsin(z) + arccos(z) =
π

2
,

we get a transformation formula connecting both hypergeometric functions from (5) and (56):

cos
(πa

2

)

F

(

−a

2
,
a

2
;
1

2
; z2
)

+sin
(πa

2

)

azF

(

1 + a

2
,
1− a

2
;
3

2
; z2
)

= cos(a arccos(z)), |z| ≤ 1.

Plugging in a = 2/3, we get

1

2
F

(

−1

3
,
1

3
;
1

2
; z2
)

+
z√
3
F

(

1

6
,
5

6
;
3

2
; z2
)

= cos

(

2

3
arccos(z)

)

, |z| ≤ 1.
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Replacing z by 6
√
3x with |x| ≤ 1/(6

√
3) and taking into account that

F

(

1

6
,
5

6
;
3

2
; 108x2

)

= 2
∞
∑

k=0

Skx
2k,

we obtain

1

24
F

(

−1

3
,
1

3
;
1

2
; 108x2

)

+
∞
∑

k=0

Skx
2k+1 =

1

12
cos

(

2

3
arccos(6

√
3x)

)

,

which gives the following generating function for the companion sequence Tn :

1

24
−

∞
∑

k=1

Tkx
2k =

1

24
F

(

−1

3
,
1

3
;
1

2
; 108x2

)

.

Comparing coefficients of powers of x2, we get a formula for Tk,

Tk = − 1

24

(−1/3)k(1/3)k
(1/2)kk!

108k =
16k−1

k

(

3k − 2

2k − 1

)

= 16k−1

(

2

(

3k − 2

k − 1

)

−
(

3k − 2

k

))

,

which shows that Tk ∈ N for all positive integers k.
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