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Abstract

In this paper, we study congruences on sums of products of binomial coefficients
that can be proved by using properties of the Jacobi polynomials. We give special at-
tention to polynomial congruences containing Catalan numbers, second-order Catalan

6n) (3n
numbers, the sequence S, = 2((29;%)(%, and the binomial coefficients (3:) and (;Z)

As an application, we address several conjectures of Z. W. Sun on congruences of sums
involving S, and we prove a cubic residuacity criterion in terms of sums of the binomial
coefficients (3:) conjectured by Z. H. Sun.

Introduction

In this paper, building on our previous work with Tauraso [3], we continue to apply properties

of the Jacobi polynomials p

£1/2F1/2) (x) for proving polynomial and numerical congruences

containing sums of binomial coefficients. In particular, we derive polynomial congruences
for sums involving binomial coefficients (*"), (32), Catalan numbers (A000108)

n

c - 1 <2n)_(2n)_(2n )7 n=012 ...
n+1\n n n—1
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second-order Catalan numbers (A001764)

1 3n an 3n
2 — = -2 =0,1,2,...
" 2n+1\n n n—1)’ PET S

and the sequence (A176898)

6n\ (3n
Go= ) g, 0
2" (2n+1)
arithmetical properties of which have been studied very recently by Sun [13] and Guo [2].
Recall that the Jacobi polynomials P{*"” )(2) are defined by

(v +1),

P = O
n.

F(=n,n+a+pf+La+1(1-2)/2), «f>-1, (2)

where

F(a,b;c;2) = Z R0)
k=0

is the Gauss hypergeometric function and (a)y =1, (a)y =a(a+1)---(a+k—1), k> 1,1is

the Pochhammer symbol.
The polynomials P\*” )(x) satisfy the three-term recurrence relation [14, Sect. 4.5]

2n+1)(n+a+ B+ 1)2n+a+ 8P (x)
= ((2n +a+B8+1)(®=F)+2n+a+ 6)3:):) P,SO‘”B) (x) (3)
—2n+a)(n+B)2n+a+ B +2)P ()

with the initial conditions P\*”(z) = 1, P/ (2) = (z(a + B+ 2) + a — B)/2.
While in [3] we studied binomial sums arising from the truncation of the series

o0 ) 2%+1
arcsin(z E |z] <1, (4)
= 4k 2/€ + 1

the purpose of the present paper is to consider a quadratic transformation of the Gauss
hypergeometric function given by [6, p. 210]

sin(aarcsin(z)) 7 1+a’1—a;§;z2 ’ 2| <1,
a 2 22

(5)

which essentially can be regarded as a generalization of series (4). Note that letting a
approach zero in (5) yields (4). On the other side, identity (5) serves as a source of generating
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functions for some special sequences of numbers including those mentioned above. Namely,
for a =1/2,1/3,2/3, we have

_ (aresin(2)) 2\ 2k+1
sin (T) = 2ZCQk <Z> , |z| <1, (6)

k=0
. 00 k
_ [arcsin(z)\ =z @ [ 47°
S1n (T) = g kZ;Ck (2—7 y ’Z‘ S 1, (7)
4 2

0 k
sin (; arcsin(z)> = é ;Sk (120_8) : |z] < 1. (8)

In this paper, we develop a unified approach for the calculation of polynomial congruences
modulo a prime p arising from the truncation of the series (6)—(8) and polynomial congru-
ences involving binomial coefficients (Sk), (;1:) and also the sequence (2k+1)Sy within various
ranges of summation depending on a prime p.

Note that the congruences involving binomial coefficients (3:), (4k) have been studied
extensively from different points of view [9, 10, 11, 12, 16]. Z. H. Sun [10, 11] studied con-

gruences for the sums ZW 3] (‘%) t* and ZW 4! (4k) tk using congruences for Lucas sequences
and properties of the cubic and quartic residues. Sun [9] also investigated interesting con-
nections between values of Z,Ep:/ fj (3:)25"’ (mod p), solubility of cubic congruences, and cu-
bic residuacity criteria Zhao Pan, and Sun [16] obtained first congruences for the sums

> i (Sk) tk and S0 t’“ at ¢ = 2 with the help of some combmatorlal identity. Later
Z. W. Sun [12] gave expllclt congruences for t = —4, %, %, %, %, %, S5 27 by applying properties

of third-order recurrences and cubic residues.

Our approach is based on reducing values of the finite sums discussed above modulo
a prime p to values of the Jacobi polynomials P*/2%1/2)(z), which is done in Section 2,
and then investigating congruences for the Jacobi polynomials in subsequent sections. In
Section 3, we deal with polynomial congruences involving binomial coefficients (2]]2) and even-
indexed Catalan numbers Cs,. In Section 4, we study polynomial congruences containing
binomial coefficients (Bkk) and second-order Catalan numbers C’,g2). In Sections 5 and 6, we
apply the theory of cubic residues developed in [8] to study congruences for polynomials of
the form

[2p/3] 3k p—1 3k p—1 p—1 p—1
k k k k
2 (e e e Sar Soronse

k=(p+1)/2 k=1 k=0

As a result, we prove several cubic residuacity criteria in terms of these sums, one of which,

in terms of ) Zp/lijrl /2 (3k) t*, confirms a question posed by Z. H. Sun [9, Conj. 2.1].

In Section 6, we derive polynomial congruences for the sums » ;" Lp / 6 gtk >z r! o Skt
p P/6] o (2k + 1)Sit®, STP71(2k 4 1)Syt* and also give many numerical congruences Wthh are



new and have not appeared in the literature before. In particular, we show that

p—1

Sk 173

05 =3 <—> (mod p)
k=0 p

confirming a conjecture of Z. W. Sun [13, Conj. 2]. Finally, in Section 7, we prove a closed
form formula for a companion sequence of S,, answering another question of Sun [13, Conj. 4].

2 Main theorem

For a non-negative integer n, we consider the sequence w,(x) defined [3, Sect. 3] by
wn(a) = (20 + DP(=nn+ 13/2% (1 = 2)/2) = PO, (9)

From (3) it follows that w, (x) satisfies a second-order linear recurrence with constant coef-
ficients

Wy y1(7) = 20w, (T) — w1 ()

and initial conditions wy(x) = 1, wy(x) = 1 + 2z. This yields the following formulae:

(a+1Da™ = (et +1)a™

- Cifr £+l
o —
wn(®) = § 2 41, iz =1 (10)
(—1)", if = —1,

where o = z++/2%2 — 1. Note that for z € (—1,1) we also have an alternative representation
r+1

V1—a?

By the well-known symmetry property of the Jacobi polynomials
P*D(z) = (=1)"P) (~x)

wy(x) = cos(narccos ) + sin(n arccos ). (11)

and formula (2), we get one more expression of w,(x) in terms of the Gauss hypergeometric
function
wal) = (~1)"F(=nn + 1,172 (14 2)/2). (12

For a given prime p, let D, denote the set of those rational numbers whose denominator is

not divisible by p. Let ¢(m) be the Euler totient function and let (%) be the Legendre symbol.

We put (%) = 0 if pla. For ¢ = a/b € D, written in its lowest terms we define (£) = (%’) in

view that the congruences x? = ¢ (mod p) and (bx)? = ab (mod p) are equivalent. It is clear
that (i) has all the formal properties of the ordinary Legendre symbol. For any rational

number z, let v,(z) denote the p-adic order of .
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Theorem 1. Let m be a positive integer with p(m) = 2, i.e., m € {3,4,6}, and let p be a
prime greater than 3. Then for any t € D,, we have

(s (l)k (m__l)k & 1
2 T'Ezk+7f)! tzmwtﬁj(l—tﬂ) (mod p), (13)
g (), (), )
D B = (0w (42— 1) (mod p), (14
k=0 ’

L(m=D)p/m] (1Y (m-1 B
2 %ﬁzm(l—i-QL)/mJ)(wt(m;l)pj(l_t/2)+wtf,’lj(1_t/2)> (mod p),

(15)

_1)\lp/m]
= %(%WJ (£/2 = 1) — we (t/2 - 1)) (mod p).

Proof. Let m € {3,4,6}, i.e., p(m) = 2. Suppose p is an odd prime greater than 3 and p =r
(mod m), where r € {1,m — 1}. We put n = &=, Then p = mn + r and from (9) we have

_ 3 1-ay w-2rim (%)k(—m‘ﬁp)k(l—m)k
k) =@t D (o157 = R e ()

Since (2);, = W and 2k + 1 < 2n + 1 < p, the denominators of the summands are

coprime to p and we have

()= m;l2r LP/ZWJ (%)é(mmr)k (1 —x)k: mT—rLQT WZ’”J (%)é(m_l)k <1;x)k(mod )

P (3), ! 2

or

=2 SR o (o
wy,(z 2 (k) T mod p).
Replacing = by 1 —t/2, we get (13).

Applying formula (12) to w,(x), similarly as before, we get

wy(z) = (=1)"F(—n,n+1;1/2; (1 +2)/2) = (_1>nz (T)(klng')k <1j2Lx>

or




Substituting ¢t = 2(1 + z), we obtain (14).

To prove the other two congruences, we consider (m — 1)p modulo m. It is clear that
(m—1)p =r (mod m), where r € {1,m—1}. We put n = M Then (m—1)p = mn+r
and from (9) we have

n o (r=(m=Dp (m—1)p+m—r i
2(m—1)fn— 2T+mz ( m >é)<kk,| m >k (l;x) ' (16)

k=0

wy(x) =

Note that p divides () if and only if k > (p — 1)/2. Moreover, p* does not divide (2),, for
any k from the range of summation. Similarly, we have

(r—( ) 1—[17’+ml m—1p

=0

All possible multiples of p among the numbers r + ml, where 0 <[ < k-1 < w,

could be only of the form r + ml = jp with 1 < 7 < m — 2. This implies that jp=r = —p
(mod m) or (j + 1)p = 0 (mod m), which is impossible, since ged(p,m) =1 and j + 1 < m.
So p does not divide (W) k. Considering

((m—l)p—i—m—r) :ﬁ(m—l)p—i—ml—r

m m

)
=1

we see that p divides ((m_l)#)k if and only if £ > ’%. Moreover, p? does not divide
(w#)k for any k from the range of summation. Indeed, if we had ml — r = jp for
some 1 < j <m—1, then p = —r = jp (mod m) and therefore p(j —1) = 0 (mod m), which
is impossible. From the divisibility properties of the Pochhammer’s symbols above and (16)
we easily conclude that

o (P/m) Lm=Dp/m] (Hmfl)p) <<m71)p+mfr) 1 .
m — 4r m o o
itnze) () = Z p> O k ( 2 ) (mod p)

" k=(p-1)/2 (2), 4!

and therefore,

m— o (B L(m—=1)p/m| (L)
wL(m:)pJ(aﬁ) = kz +m
—0

where for the second sum, we employed the congruence

k=(p—1)/2 (

((mfl)ermfr) (m—Dp+m—r (m—1)p+2m—r (m—l)p—i—m-p—:f—r (m—1)p+mk—r
(g) - 3.5...p.,. 2kt1
2/k 2 2 2 2




valid for (p —1)/2 <k < [(m — 1)p/m]. Now by (13), we obtain

[(m—1)p/m] (L) (mfl
k

- _;wp T)+m ~mikl m _Zk gl —2)*  (mo
m—gr Ve (@) = T e @)+ k:@zm i =)t (mod p).

Taking into account that L%J =p—1-— L%J and replacing x by 1 — ¢/2, we get the

desired congruence (15).
Finally, applying formula (12) and following the same line of arguments as for proving

(15), we have
W m-np (2) = (=1)"F(=n,n+ 1;1/2; (1 + x)/2)
L(m—1)p/m| (T*(mfl)p) <(m,l)p+m4) .
:(_1)L(’”’T””J Z m 3 m L (1+x>
k=0 (i)kk! 2
m m— m r—(m—1)p (m—1)p+m—r
lp/m]  L(m—1)p/m)] ( - >k< I >k <1+x)k

(DL Y+
k=0 k=(p+1)/2 (%)kz !

m m— m 1 (m—l)
L(m;nl)pj Lp/m] L Lp/m] (m)k( m >k (2

(=1)

Now by (15), we obtain

Lom=1p/m] (L) (<m—1>)
m m k

(D)L g (@) = (~1) g () Y (2(1+2))" (mod p)

and after the substitution x = t/2 — 1, we derive the last congruence of the theorem. O

Corollary 2. Let m be a positive integer with o(m) = 2, i.e., m € {3,4,6}, and let p be a
prime greater than 3. Then for any t € D, we have

2 (722 (Ev)k Sy ; Sy (7= D (1= 6/2)=w o (1 /2)) (mod p),
p—l 1y (m=1 —1)lp/m]

—(m)&(k)’f )i = EVTT 17)71 ((m = Dwiz(t/2 = 1) + w moup (/2 = 1)) (mod p).
k=0 ’

Proof. Let p = mn + r, where r € {I,m —1}. If n+1 = [2]+1 < k < 22 then
up((2k +1)!) = 0 and v, ((£),) > 1, since the product H;:OI(?“ + Im) is divisible by p.



If (m —1n—|—r—t
vp((2k)!) = 1, Up(( )k

This implies that v, ((m

m

J +1 <k <p—1, then it is easy to see that v,((2k + 1)!) =
1, and the product Hz ((Im — ) contains the factor (m — 1)p.
)i ) > 1, and therefore we have

|v3

‘Z

— (o) (%) Y (3), (), R (), ()
Z m/k \ m ktkEZ m/k\ m ktk—l— Z m/k\ m ktk (modp),
prd (2k + 1)! — (2k + 1)! o )/2 (2k + 1)!
p—1 (L) (m 1) Lp/m] (L) (m 1) [(m—=1)p/m] (L) (m_l)
m/k m Jk 4k m/k m_Jk 4k m/k m_Jk 4k
e t Z T "+ Z TR t*  (mod p).
k=0 k=0 k=(p+1)/2
Finally, applying Theorem 1, we conclude the proof of the corollary. O]

3 Polynomial congruences involving Catalan numbers

In this section, we consider applications of Theorem 1 when m = 4. In this case, we get
polynomial congruences involving even-indexed Catalan numbers Cy,, (sequence A048990 in
the OEIS [7]) and binomial coefficients (;) (sequence A001448).

Theorem 3. Let p be an odd prime and let t € D,. Then

y

S Ooth = 2(~1)" wip) (1 - 32t)  (mod p),

[3p/4] (_1)1"71
> Cutt=— (wL%Ja —326) + wpp (1 — 32t)> (mod p),

£ ()= () auw o

L a1 -2 .
> ()t =1 — (wt%pj(?at—l)—wtgj(32t—1)> (mod p).

k=(p+1)/2

Proof. We put m = 4 in Theorem 1. Then for any odd prime p, we have p = 41 + r, where [
is non-negative integer and r € {1,3}. Hence,

1 22
14+2p/4] 1420 p+2—r 2—7

Moreover, (—1)lP/*) = (=1)! = (=2). Now noticing that

=2(-=1)P"Y2" (mod p).

1[4k 4k)! He(d
Cor e — L _ (1K) ~ (De()k (64)"
2k + 1\ 2k (2K)1(2k+1)!  (2k +1)!
and replacing t by 64t in Theorem 1, we get the desired congruences. O

8
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Corollary 4. Let p be an odd prime and let t € D,. Then
— 1/-1
> Cuth =3 (_) (3wL%J(1 — 32t) — wap (1 3215)) (mod p),

(__2) (ng,TpJ (32t — 1) + 3wz (32t — 1)) (mod p).

Evaluating values of the sequences w|z(z) and w s (z) modulo p, we get numerical
4
congruences for the above sums. Here are some typical examples.

Corollary 5. Let p be a prime greater than 3. Then

ﬁ = -, 1_6k =2 - (mOd p),
k=0 p k=0 p
—1 4k 13p/4] 4k
SUARRYE (FERE\
168 4\p)’ 165~ 4 :
k=0 k:%l
lp/4] lp/4] (ak
Cgk —1 ) -2
Z 2k 2 - ( 1)le/8l Z A2 = (2 (—1)l/8) (mod p)
k k
k=0 32 p k=0 32 p
pi Cow _ [PV (mod p),  ifp==1 (mod 8);
— 328 | (1)L (mod p), ifp=43 (mod 8),
2
b1 (i <_ D/ (mod p), ifp==+1 (mod 8);
A2k — p
= 1
k=0 2 5 — ) (=D®8 (mod p), ifp=+3 (mod ).
Proof. The proof easily follows from the fact that
w,(=1) = (=", w,(0) = (=)™, and w,(1) = 2n + 1. (17)
O



Corollary 6. Let p be a prime greater than 3. Then

(2) pz Cor )1 (mod p), if p==+1 (mod 12);
ko= | -7/2 (modp), ifp=+5 (mod 12),

<2> (3 _J1 (modp), ifp==1 (mod12);
1/4 (mod p), ifp=+5 (mod 12),

( )

( )

p‘lo (3)’“_{1 (mod p),  ifp==+1 (mod 12);
w | =] = o

— 64 1/2 (mod p), ifp=+5 (mod 12),
pi (4k) (3)’“ _ {1 (mod p), ifp==+1 (mod 12);
= \2k) \64) | =5/4 (modp), ifp=+5 (mod 12).

Proof. We can easily evaluate by (11),

wn(1/2):2cos(@) and  w,(—1/2) = ”(2”—“))

2
— sin
V3 ( 3

Hence we obtain

we (1/2) = {(_DWJ (mod p),  ifp==+1 (mod 12);

—2(=D)P4 (mod p), ifp=+5 (mod 12),

(—1/2) (=1)®*=Y72 (mod p), if p=+1 (mod 12);

wye(— =

L] 0 (mod p), if p=+5 (mod 12)

and wigp(1/2) = (— 1)“’/4J wtgp/4J(—1/2) (=1)P=Y/2 (mod p). Applying Corollary 4
and the equality (—1)®=1/ ( ) we get the desired congruences. O]

Lemma 7. For any x # +1, we have

2n+1 —2n—1

« —

wp(22? — 1) = : where o=z +Va?—1.

a—al
Proof. By (10), we obtain

(a+1a? — (™t +1)a™2"

wan(@) = a—at
(a2 + 1>a2n _ (Oé72+ 1)a72n+ (a_}_afl)(aﬂn _Oéon)
o a2 — a2
a2n_a72n
—w, (222 - 1)+ ———
(22 )+ a—a 'l

10



This implies
) a2n _ a—2n Cy2n—i-1 _ a—2n—1
Wy (22° — 1) = wa,(x) — =

a—a! a—at 7

and the lemma follows.

Lemma 8. Let p be a prime, p > 3, and let x € D,. Then

o= =b(3) () (57)) i
(D5 are (52)0-2) i

Proof. First, we suppose that  # +1. Then, by Lemma 7, if p = 1 (mod 4), we have

p+1 _p+tl
— o 2

N — DN

wiz(22° = 1) = wp- 1(2952 —1) =

(V) . (W“ V)"

p
2V x? —
pt+l—k

i()(“) ()

kisodd

Ead

L1 pz‘l P\ (2—1\"7 [a4+1\7
V-1 = k 2 2

kiseven

PO (5) e

If p =3 (mod 4), then, by Lemma 7, we have

wip)(20% — 1) = wpms (20% — 1) = “—————

a— o

) ()

R /x2 —

(V) (W% ) - (R VE V)

2v12 — 1

2 p p p ’

1 /z—1\"T [z+1\7
2 _

11




and the first congruence of the lemma follows. Similarly, to prove the second congruence,
we consider two cases. If p =1 (mod 4), then we get

3p—1 3p—1

o 2 —Qa 2

wl.3pJ(21) - 1) — wS(p 3(p—1) (2,17 - 1)

E D ()

2/ 12 —

(VY <¢%“+ V) ) (R V)
2v/22 — 1

Simplifying the right-hand side modulo p, we obtain

1 /z—1\"% 1 /2x+1 %Jr?) c—INT [2+1\? 3 /2+1\T [z—1\"
AT AT 5\ 2 3 2\ 72 2

and therefore,

wysp (207 — 1) = % (;) ((f’”;l) (14 22) + <x;1> (1 —2;5)) (mod p).

If p=3 (mod 4), then

3p+l _3p+l
a 2 —« 2

wBTpJ(sz — 1) = w:splli—l(sz — 1) =

J@WT%)W (F“ V=T

2/ 12 —

Simplifying the right-hand side modulo p, we get

3p—1 3p—1 p—1 21
1 /xz—1\ 2 +1 r+1)\ 2 +3 x—1\ 2 [z+1\?
2 2 2 2 2 2 2

N 3(x+1 -1\
2 2 2
and therefore,

wget-0=3 () () errn+ () @e-n) o,

as required. If z = 41, then, by (10), we have w /(1) = 2[}] + 1 = (=1)*"1/2/2 (mod p)
and wz (1) = 2|2 | +1=(-1)®*Y/2/2 (mod p), which completes the proof of the lemm;

From Lemma 8 and Corollary 4 we immediately deduce the following result.

12



Theorem 9. Let p be a prime, p > 3, and lett € D,. Then

e () =4 () 00+ (2 0) i

R (5 (550 i

Proof. From Corollary 4 we have

and

”i AR i _ 1
2% )" T 4

—2
(—) (w2327 = 1) + W) (32t = 1)) (mod p).
k=0

Now by Lemma 8 with x replaced by 4t for the last congruence, we conclude the proof. [
Theorem 10. Let p be a prime, p > 3, and let a,b € Z, ab # 0 (mod p), and a # b
(mod p). Then we have the following congruences modulo p:

( 1

pic (a—p 2(?;)—5) ((3 +b)() (3b + a) <g>) ifp=1 (mod 4);

(—64ab)F — \2(?;)_"1;) (Ba;—b (g) 3b+a (Z)) ifp=3 (mod4),
J

((3)(a)

pl( >a+b) _ m<<3a_b>() (80 —a) g)) Jr=1 tmod ),

2 (64ab)F — k(%a_b)g (3aa—b<g> 3b—a(g)) Fp=3 (mod 4)

Proof. By Corollary 4, we have

-1 a® +b? a® + b?

() (o (52w (52)) i o
-2 a’ + b? a’ + b?

(?) (Swm < 5. ) +ws, < 50 )) (mod p).  (20)

a—>b

L (a-b? 1
" (—64ab)k ~ 2

= (4K (a+0)* _ 1
2 \2k) (64ab)F ~ 4

13



If p=1 (mod 4), then we have modulo p,

N R W S A a(a/b)*T —b(b/a)*T _ a(3) —b(5) ()
3] 2ab e 2ab N a—>b - a—>b '

4

a2 & b2 SRR ) a(%)—b(g) .
WJ( - )_ ala/t) (b/a) " _ '

2ab a—>b - a—2b

If p =3 (mod 4), then

(AN (g ala/t)T — /)T _ (5) = (5) (a2
4] 2ab TR 2ab N a—b  a-—b ’

4

a® + b? a(a/b) T — b(b/a) T %(%)_Q(é)
oy (Eot ) < ol e e

2ab a—>b o a—>b

Now substituting the above congruences in (19) and (20), we conclude the proof. O

4 Congruences involving second-order Catalan num-
bers

In this section, we will deal with a particular case of Theorem 1 when m = 3. This case
leads to congruences containing second-order Catalan numbers cP (sequence A001764 in
the OEIS [7]) and binomial coefficients (*") (sequence A005809).

Theorem 11. Let p be a prime greater than 3, and let t € D,. Then

Lpfj CO¢k =3 ( ) wig)(1 = 27¢/2)  (mod p), (21)
-
Z . (‘) <wL%pJ<1 — 27t/2) + wiz) (1 - 2715/2)> (mod p),
Lp/3J
% <3:> = (g) wz((27t/2—1) (mod p), (22)
N
PR )¢ =3 (5) (wapm2 =0 - vy @rt/2- 1) mod ). 9

14
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Corollary 12. Let p be a prime greater than 3, and let t € D,. Then

p—1

S ot = ( ) (205 (1= 276/2) w2 (1= 27/2))  (mod p),

k=0
1

p—o (3:>t — % <§> <2wL§J (274/2 = 1) + w2 (274/2 — 1)> (mod p).

k=

Using the exact values of w,, from (17) and (18), we immediately get numerical congru-
ences at the points t = 4/27,2/27,1/27,1/9.

Corollary 13. Let p be a prime greater than 3. Then

p—1 o (4 k Lp/3] k
ch (ﬁ) =1, ZC ( ) =3 (mod p),

(1)) =3
2\ k)\27) =3
Remark 14. Z. W. Sun [12, Thm. 3.1] gave another proof of the first congruence in (24)

based on third-order recurrences. Z. H. Sun [11, Rem. 3.1] proved the second congruence in
(24) as well as the second congruence in (25) with the help of Lucas sequences.

5 ELIEQ) mn

k=0

Corollary 15. Let p be a prime, p > 3. Then
Lpz/i‘:J C,?) _ {—6 (mod p), ifp=+4 (mod9);

k - .
— 27 3 (mod p),  otherwise,

p1 c® (1 (mod p), Z:fp =+1 (mod9);

o7k 4 (modp), ifp=+£2 (mod9);

0 -5 (mod p), ifp=+4 (mod?9),
PN (1 (mod p), ifp==1 (mod9);
(k ) 97k =4 —-2/3 (modp), ifp=+2 (mod?9);
= (—1/3 (mod p), ifp=+4 (mod9).
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Corollary 16. Let p be a prime, p > 3. Then

g C]§2) B {_2 (mod p), ifp=+2 (mod9); (26)
_k; pr— .
— 9 1 (mod p),  otherwise,

1p/3] @ E (mod p), ifp=+1 (mod9);

Lk =<¢ -3 (modp), ifp=+2 (mod9);

k=0 (0 (mod p), ifp=+4 (mod9),
i N (1 (modp), ifp=+1 (mod?9);
Z ( I ) o =<¢0 (mod p), if p=+42 (mod9); (27)
k=0 |—1 (modp), ifp==+4 (mod9).

Remark 17. Z. W. Sun [12, Thm. 1.5] provided another proof of congruences (26) and (27)
by using cubic residues and third-order recurrences.

Lemma 18. For any x # 1,—1/2, we have

a3n+2 _ a—3n— 1

— where o« =x+ Va2 —1.

wy(42° — 3z) = =

— a_
Proof. Starting with ws,(x), by (10), we get

(a+1)a — (™t + 1)a3"

Wsn(®) = a— ot
((1/3 + 1)a3n _ (af?) + 1)a73n 043 _ 0473
N ad — a3 a—al

N a3n+1 _ a3n+3 _ a73n71 + a73n73

a—at
= wy(42® — 37)(a® + 1 +a?)

N a3n+1 o 06371—5—3 o a—3n—1 + a—3n—3

a—at
Comparing the right and left-hand sides, we obtain
a3n + a3n+3 _ Oéf?m _ a73n73

n43_3 2 1 -2y _ —
wy, (4 z)(a+1+a7) P

and therefore,

wn (42 — 3z) = (o + 1)<3a?m _g—3n—3) _ a?(a®" — a~3n3) _
a°® — o

16



Lemma 19. Let p be a prime, p > 3, and let x € D,. Then

2

(20 +1) - wig (4a* = 32) = (3) +(xp_1)(x+1) (mod p),

—

p

Proof. First we suppose that  # 1,—1/2 (mod p). Then by Lemma 18, if p = 1 (mod 3),
we have

(2x +1) ~wt%pj(4x3 —3z) = (g) (1—22%) +2 ( 1) z(r+1) (mod p).

Wz (42° — 37) = w%(élxg' —3z) = e (28)
For p-powers of o and a~!, we easily obtain
0P =(zxVa 1P =aP £ (Va2 - 1P =2+ Va2 —1(2? — 1)%
21
=x+ (.% ) 22 =1 (mod p). (29)
p

Substituting (29) into (28) and simplifying, we get

(e 4 V& D) (a4 (E)aZ 1) — a4 (£1)ya? — 1

(Z:B—i—lp)(:v—ljtvﬁ—l) ]

T 22o1) (4 1
= +(2;_2<1 ) (mod p).

If p =2 (mod 3), then, by Lemma 18 and (29), we have

Wz (42° — 37) =

— olp
3 3 of —a
wig) (42" = 32) = wage (42 = 30) = 5o

v+ (E2) VP T — (VI (o — (22)VP =)
r+1)(z—1+Va%—-1)
—x 4 (Z) (w + 1)

= d
21 + 1 (mod p)
and the first congruence of the lemma follows. Similarly, if p =1 (mod 3), then we have
a2p . a172p
w2 (42° — 3z) = W) (42° — 3z) = PR

i} (z+ (Z)Va2=1)" = (z + Va2 = D (2 — (Z)Va? = 1) (mod p).

2r+1)(z—1+Va2—-1)

Simplifying, we easily find

22—
1—22% +2( 2 )a(z + 1)
20 +1

wL%J(ZLxS —3z) = (mod p).

17



If p=2 (mod 3), then

a2p+1 _ a72p

3_ o\ _ 3_ 9. _
w2 (4a® — 3x) = w%(élx 3r) =

2 1

a® — o

e E o (FRAWETT) - (B

N 2z +1)(z — 1+ Va2 -1)

and after simplification we get

20% — 1+ 2(=2
2 +1

):U(a: +1)

wL%pJ(élx?’ —3z) = (mod p),

as desired.
Finally, if = 1 (mod p), then, by (10), we have 3wz (1) = 3(2[p/3] +1) = (%) (mod p)

3
and Bw%pj(l) = 3(2[2p/3] +1) = —(%) (mod p), which coincide with the right-hand sides
of the required congruences when x =1 (mod p).

If x = —1/2 (mod p), then the congruences become trivial and the proof is complete. [
Lemma 20. Let p be a prime, p > 3, and let x € D,. Then we have modulo p,
20 —2 —62 — 6
2z +1)- wL%J(ZLx?’ —3z) = ( xp ) T+ <xT) (x+1),

2xp_ 2) w(da? + 20 — 1)— (?) (z + 1) (42" — 22 - 1).

(2x 4+ 1) -wL%pJ(ZL:U?’ —3z) = <

Proof. First we suppose that z # 1,—1/2 (mod p). If p = 1 (mod 6), then, by Lemma 18,
we have

3 3
g (4 = 3) = w40 — 3) = =,

Substituting o = z + V22 — 1 = (y/(z +1)/2 + /(z — 1)/2)?, we have
(r+vV22—-1)WVr+1+ Vo -1 — (Vo +1—- o —1)P*!

2(p+1)/2 (Oﬂ — a_l)

(r+vVz2—1)(Vr+1+vVr—1)P —1/2(Vz+1—+x—1)P

Wz (42 — 37) =

20t)/2(23 + 1)z — 1
@V oD@+ D)+ (@ 1D)E) — (@ — Ve = D) ((z + 1) —(z — 1)3)
n 20+1)/2(22 4 1)\/m
_a@-1)'T 4@+ () () @+ )
= 20-D/2(27 1 1) = 2w+ 1 (mod p).

Since (=3) = (&) = 1, we get the desired congruence in this case.
P 3

18



If p=>5 (mod 6), then we have

p—1 p—3
3 3 a2 —a 2
U)L%J (41‘ — 31’) = UJPES (437 — 3[13') = W

and therefore,

[S4S)

(V@ D(@+ Vi + (@ - D} —@+ V@~ D(e+ Di—(z - 1})

wL%J(4J:3 —3z) =

20+1/2(2 + 1)y/z — L
_ae -1 — @+ _ () (35 @+ ] (tm0d p)
=T 20022z +1) 27 + 1 moc bl

as desired in view of the fact that (’73) =(5)=-1

The similar analysis can be applied for evaluating W sp) (423 — 3z) modulo p. If p = 1
(mod 6), then

5p—1 5p—3
o 2 —Q 2
3 - 3 _
wy s (42° — 3r) = w@(‘lx 3r) = a2 _ oL

Simplifying, we obtain

(r—V2—1D)(Vr+1+Vz—1)P—(z+V22-1) Vo +1—+x—1)"%

Wz (42° — 3z) =

206r+1)/2(2x + 1)/ — 1
_ @ VD DE 4 = )8~ (a4 VD)4 D (- D
= 200+1)/2(22 4+ 1)y/o — 1
(el 4 20— 1) - (B2) (0 4 (02?20 1)
_ (mod p),
20+ 1
as desired. If p =5 (mod 6), then
5p+3 Sl
az —a 2
W sp) (42° — 37) = w%@lx?’ —3z) = a? — a1
C (WaFI+Va )P - (Vo t - Vo - D)
- 200+3)/2(22 +1)y/o — 1

(24 VD4 D+ (= DD — (= VD) (@ + )~ (o DY
8- 2(=D/2(2x + 1)\/x — 1
(29517_2)33(4332 +2z—1)+ (2“%2)(.7: +1)(4z? — 22 — 1)
20 +1
and the congruence is true. If z =1 (mod 6), then, by (10), we have 3wz (1) = 3(2|p/6] +
1) =2(%) (mod p) and BwL%pJ(l) = 3(2[5p/6] +1) = —2(%) (mod p), which prove the lemma
in this case too. Finally, if = —1/2 (mod p), we get the trivial congruences 0 = 0, and the
proof is complete. O

(mod p),
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Theorem 21. Let p be a prime, p > 3, and lett € D,,.
Ift 20 (mod p), then

Lp/3]

; CO (1 + 1)) = 1; - 1;t3t ((1+z)](01 —3t)) (mod p).
STt +1) = a H)Q(tl —31) (1 - ((1 H)S _Bt)» (mod p). (30)

If 3t +2# 0 (mod p), then

S () < S0 (20000 )
g (3:) (Fe+1)" = ggttrlf) (<(1 . t)}()l — 3t)) - 1) (mod p). (32)

Proof. From (21), Corollary 12 and Lemma 19 we have modulo p,

2(1 — z)(2z + 1)\ " P 3¢ 3z+3 (3322
c® 53(—> »((42® — 32) =
2 G 27 3) e =30 = T e Uy

P! e 2(1 — )2z + 1)2\*
k 27

_ (P 3 3
= <§> (QwL§J (4z° — 3z) — wL%pJ(éla: — 3z))

202 +2x —1  2(1 —2%) (3 — 32 (mod p)
= mo
2 + 1 27 + 1 D P

for any x € D, such that 2z + 1 # 0 (mod p). Replacing x by (—1 — 3t)/2 with ¢ # 0
(mod p), we get the first two congruences of the theorem.

Similarly, from (22), Corollary 12 and Lemma 19 for any x € D, with 2x+1 # 0 (mod p),
we have

“”f (3:) (2@; + 1)2(72:1: - 1)2)k

D x r+1 (33— 322
<§> Wz (42° — 37) + ( ,

h=0 2v+1 2x+1 D
p—1 i

3R\ (2(x +1)(2x —1)>\"_ 1 /p 3 3
;0 (k) ( 27 ~ 3 (g) (2wp(42” — 3z) + w2 (427 — 31))

142z —222  2(x+1)2 (3—3$2

32r+1)  32z+1) \ p ) (mod p).
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This implies that

(1) (o)< (5 ) e

k=1
p—1 2\ K 2 2
2 H(2x —1 2 1 —
Z (3:) ( (x + )2(756 ) ) _ 3(:26+ i ((3 3x ) B 1) (mod p).
— (22 +1) p
Replacing z by (3t + 1)/2, we derive the other two congruences of the theorem. O]

Remark 22. Note that Z. H. Sun [9, Thm. 2.3] proved congruence (31) by another method
using cubic congruences. If we put t = —c/(c+ 1) in (30) and (32), we recover correspond-
ing congruences of Z. W. Sun [12, Thm. 1.1] proved by applying properties of third-order
recurrences.

5 Cubic residues and non-residues and their applica-
tion to congruences

We begin with a brief review of basic facts from the theory of cubic residues that will be
needed later in this section. Let w = >/ = (=1 +iv/3)/2. We consider the ring of the
Eisenstein integers Zjw] = {a + bw : a,b € Z}. To define the cubic residue symbol, we
recall arithmetic properties of the ring Z[w] including description of its units and primes [4,
Chapter 9].

If « = a+bw € Z[w], the norm of « is defined by the formula N(«a) = aa = a® — ab+ ?,
where @ = a + bw = a + bw? = (a — b) — bw is the complex conjugate of a. Note that the
norm is a nonnegative integer always congruent to 0 or 1 modulo 3. It is well known that
Z|w] is a unique factorization domain. The units of Z[w] are +1, +w, +w?.

Let p be a prime in Z, then p in Z[w] falls into three categories [1, Prop. 4.7]: (i) if p = 3,
then 3 = —w?(1 — w)?, where 1 — w is prime in Zw] and N(1 —w) = (1 — w)(1 — w?) = 3;
(ii) if p = 2 (mod 3), then p remains prime in Z[w| and N(p) = p?; (iii) if p = 1 (mod 3),
then p splits into the product of two conjugate non-associate primes in Z[w|, p = 77 and
N(m) = m = p. Moreover, every prime in Z[w] is associated with one of the primes listed
in (i) — (iii).

An analog of Fermat’s little theorem is true in Z[w]: if 7 is a prime and 7 t «, then
oM™l =1 (mod 7).

Note that if 7 is a prime such that N(7) # 3, then N(7) = 1 (mod 3) and the expression

o™ 5 is well defined in Z[w], i.e., & 3 = w’ (mod 7) for a unique unit w’. This leads
to the definition of the cubic residue character of o modulo 7 [4, p. 112]:
a 0, if 7wl
<_> Vi ifatE (33)
T3 w, ifa"s =w (mod ).
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The cubic residue character has formal properties similar to those of the Legendre symbol [4,
Prop. 9.3.3]:

(1) The congruence x
is a cubic residue modulo 7;

(i) (%)= (2)5 (5

(iii) (2),=(3)y

( o]
(v

= a (mod 7) is solvable in Z[w] if and only if (2), =1, ie., iff

iv) If m and 6 are associates, then (;)3 = (%)3;
) If a = § (mod «), then (2), = (@)3.

Let m = a + bw € Z[w]. We say that 7 is primary if 7 = 2 (mod 3), that is equivalent
to a =2 (mod 3) and b =0 (mod 3). If 7 € Z[w], N(7) > 1 and 7 = £2 (mod 3), we may
decompose m = £y ... 7., where 7, ..., are primary primes [4, p. 135]. For a € Z[w], the

cubic Jacobi symbol (%)3 is defined by

=5, (),

Now let p be a prime. We define a cubic residue modulo p in Z. We say that m € Z is a
cubic residue modulo p if the congruence 23 = m (mod p) has an integer solution, otherwise
m is called a cubic non-residue modulo p. If p = 3, then by Fermat’s little theorem, m? = m
(mod 3) for all integers m, so 2> = m (mod 3) always has a solution. If p = 2 (mod 3), then
every integer m is a cubic residue modulo p. Indeed, we have 2p — 1 = 0 (mod 3) and by
Fermat’s little theorem, m = m*~! = (m e )3 (mod p). So the only interesting case which
remains is when a prime p = 1 (mod 3).

If a prime p = 1 (mod 3), then it is well known that there are unique integers L and |M |
such that 4p = L? + 27M? with L = 1 (mod 3). In this case, p splits into the product of

primes of Z[w], p = n7, where we can write 7 in the form

L+3M

1
= (L +3MV=3) = +3Mw.

It is easy to see that (3LM)2 = —3 (mod p) and therefore for any integer m coprime to p by
Euler’s criterion [5, 15], we have one of the three possibilities
mP V3 =1 (=1-L/(3M))/2 or (—1+L/(3M))/2 (mod p).
p

Moreover, m®~1/3 = 1 (mod p) if and only if m is a cubic residue modulo p. When m is
a prime and a cubic non-residue modulo p, Williams [15] found a method how to choose
the sign of M so that m®~Y/3 = (~1 — L/(3M))/2 (mod p). To classify cubic residues and
non-residues in Z, Sun [8] introduced three subsets

Cij(m) = {c e D,,

1+2 .
(M) :wj}, j=0,1,2, meN, m#0 (mod 3),
m 3

of D,,, which posses the following properties:
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i) Co(m) U Cy(m)UCy(m) = {c€ D, | ged(c* +3,m) =1};

ii) ¢ € Cy(m) if and only if — ¢ € Cy(m);

iii) ¢ € C1(m) if and only if — ¢ € Cy(m);

iv) If ¢,d € D,, and ¢ = —3 (mod m), then ¢ € C;(m) if and only if ¢ € C;(m).

Using these sets, Z. H. Sun proved the following criterion of cubic residuacity in Z: Let
p be a prime of the form p = 1 (mod 3) and hence 4p = L? + 27M? for some L, M € Z
and L = 1 (mod 3). If q is a prime with q|M, then ¢~/ =1 (mod p). If ¢+ M and
j €40,1,2}, then

(
(
(
(

¢P V3 = (=1 = L/(3M))/2)’ (mod p) if and only if L/(3M) € Cj(q). (34)

k
Sun [9] gave a simple criterion in terms of values of the sum Z“’ /3] ( k) ( ( ; ) modulo a

9(c?+3)
prime p for ¢ € C;(p) and conjectured a similar criterion in terms of the sum » ,Ezp (/;erl) /2 (3k) tk.
In this section, using our formulas from Theorem 11, we address this question of Sun (see

Theorem 25 below). First, we will need the following statement.

Lemma 23. ([8, Lemma 2.2]) Let p be a prime, p # 3, and let ¢ € D,,.
(7) If p =1 (mod 3) and so p splits into the product of primes, p = 77 with 7 € Z[w]
and m =2 (mod 3), then

ctl+2w) _ (2 +3)(c—1—2w) |
Ec 1p— 2w§3 i EC+1+2S>1 ~ (()c?g+ 3)(c+1+2w)) |
P 3 p 3 ™ 3

(13) If p =2 (mod 3), then

142
(u> = (2 +3)PIB(c+ 14 2w) PV (mod p),
3

p
—1
(C — 2w> = <C+ o Qw) = (2 +3)P D3 — 1 - 2w)PH3 (mod p).
p 3 p 3

Now we prove the following criterion.

Theorem 24. Let p be a prime, p > 3, and let ¢ € D, with ¢* # —3 (mod p). Then
0 (modp), ifceColp);
1

k=(p+1)/2 —1 (mod p), ifce Cy(p).
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Proof. By (23), we have

5.0 ')

L /p 3—c? 32
3 (5) (WL?J(g_i_Cz) —wL§J<3+02)) (mod p).

k=(p+1)/2
(35)
From (10) it easily follows that
3¢ (=1)" 2
n = — 1 — 2w)*H! 1+ 2w)**1) . 36
° <3+62) 2¢(c? + 3)" ((c W) A (e 1 2w) ) (36)

If p=1 (mod 3), then p splits into the product of primes in Z[w|, p = 77 with 7 = 2 (mod 3)
and, by (36), we have

3—c? 1 9
_ 1 (p—1)/3+1 2(p—1)/3+1
ngJ(3+C2> = (£ 3T ((c—1—2w)*® + (c+ 1+ 2w)*? ). (37)

By (33) and Lemma 23, we have

2 2 2
(¢ 4 3)20-D/3(c _ 1 — 9,)2-1/3 = (<C +3)(e—1- 2“)) _ (M) (mod 7)

77 p
(38)
and
2 1+2w)\° 142w\ 2
(¢ +3)2= DB (c 4 1 4 2w)2P~ 1/ = ((C +3)let 1t w)) = <u) (mod 7).
T P 5
(39)

Substituting (38) and (39) into (37), we get

33—\ 1 1+42w)? 142w\ >
wie) Tl )= (c—1-2w) erltew +(c+1+2w) er it (mod )
39\ 34 2 2c P 3 P 3

and therefore,
42 1 (mod ), if ¢ € Cy(p);
e ‘
ngJ(3+02) =4 —-23¢ (modw), ifceCi(p); (40)
¢ (mod ), ifce Cyp).

2c

Since both sides of the above congruence are rational, the congruence is also true modulo
p = mw. Similarly, if p = 2 (mod 3), then

3—c? —1 _ B
wis) (555 ) = gy (e~ 1= 25 (e L 200 ) L (a)
Now, by Lemma 23, we have
2
(c+1+ 2w)2(p+1)/3 = (2 + 3)72(1)72)/3 (C +1+ 2w> (mod p)
p 3
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and
—2

(mod p).

(= 1= 20" 0H0/8 = (¢ 4 3) 208 (M)

p

Substituting the above congruences into (41) and noticing that ¢*+3 = (c+1+2w)(c—1—2w),
we get

3—¢? —1 1+ 2w\ 2 1+2w\?
35\ 3+ 2 2c D 5 P 5

and therefore,

3

4 —1 (mod p), if ¢ € Cy(p);
wth( Te ) ={% (modp), ifceCi(p) (42)

3+ 2
—% (mod p), if ¢ € Cy(p).

Combining congruences (40) and (42), we obtain that for all primes p > 3,

1 (mod p), if ¢ € Co(p);

p 3—c2 _ 34c . )
(3)@0@(—3—1—02)_ -5 (mod p), if ¢ € Ci(p); (43)

32—_Cc (mod p), if ¢ € Cy(p).

Applying the similar argument for evaluation of w2 (g:_zz)’ we see that if p = 1 (mod 3),
then 2p = 2 (mod 3) and therefore,

3—¢2 1 .
= —1— (p—1)/3+1 4(p—1)/3+1
wL%”J (3 + 62) 26(62 + 3)2(p—1)/3 ((C 1 2@) + (C +1+ 2w) )

- zic ((c— 1= 2) (M); (414 20) (M)_l> (mod 1),

p p 3

which implies
5 2 1 (mod p), if ¢ € Co(p);
wpp(355) =% mdp. e (44)

3+ 2
—32—? (mod p), if ¢ € Cy(p).

If p=2 (mod 3), then 2p = 1 (mod 3) and we have

3—c? -1 A
_ (p+1)/3—-1 I 4(p+1)/3—-1
) (3 + c2>  2¢(c? + 3)-1)/3 (e 14 2)™ +le—1—2w)™ )

= ;—j ((c— 1 - 2w) (w)ng (c+1+2w) (w>_l) (mod p),

P p 3
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and therefore,
—1 (mod p), ifce Cy(p);

3—¢2 )
wL?J(m>— —%£ (mod p), if c € Ci(p); (45)

32—+cc (mod p), if ¢ € Cy(p).

Combining (44) and (45), we see that for all primes p > 3,

1 (mod p), if ¢ € Cy(p);
D 3—¢c2 ) s )
<§) wz\3ra )5 % (mod p), if c € Cy(p); (46)
—¥< (mod p), if c € Cy(p).
Now, by (43), (46) and (35), the congruence of the theorem easily follows. O

From Theorem 24 and criterion (34) we deduce the following result confirming a question
of Z. H. Sun [9, Conj. 2.1].

Theorem 25. Let q be a prime, ¢ =1 (mod 3) and so 4q¢ = L* + 27TM? with L, M € Z and
L =1 (mod 3). Let p be a prime with p # 2,3,q, and let p{ LM. Then

L%iﬂ (Bk) M2 {0 (mod p), Z‘qu%l =1 (mod q);
2

kK . a—1 _ _149M/L
k=(pr1)/ q 3 (mod p), ifp’s = =ML (mod q)

and 1

k) (27q)F j:QLM (mod p), ifp's = w (mod q).

k=(p+1)/2

Proof. To prove the first congruence, we put ¢ = ﬁ in Theorem 24. Then ¢(c? +3) Z 0

(mod p), m = MT2 and we have
2073 parn gk 0 (mod p), if L/(3M) € Co(p);
> (k) o=\ (modp), i L/(3M) € Ci(p)
A —3M (mod p), if L/(3M) € Ch(p)

Now applying (34) and taking into account that L/(3M) = —9M /L (mod q), we get the
result.
To prove the second congruence, we put ¢ = —9M/L in Theorem 24. Then ¢(c? +3) # 0

(mod p), m = 2’:—72(1 and we have
Z (k) QT = —QAM (mod p), if —OM/L € C(p); (47)
h=letl)/2 s (mod p), if —9M/L € Ca(p).
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By (iv), we know that —9M/L € Cj(p) if and only if L/(3M) € C;(p). This together with
(47) and (34) implies the required congruence. O

From Corollary 12 and formulas (43) and (46) we get the following statement.

Theorem 26. Let p be a prime, p > 3, and let ¢ € D, with ¢ # —3 (mod p). Then

= (3k g ¢ |1 (modp), if c € Co(p);
(k) (9(0—2+3)> = (-5 (modp), ifceCilp);
k=0 =5 (mod p), ifce Cs(p)
and
- e Nk 1 (modp), if c € Co(p);
> G (27(02‘+ 3)) ={-% (modp), ifceCilp)
k=0 ¢ (mod p), ifce Cop).

From Theorem 26 and criterion (34) we get the following congruences.

Theorem 27. Let q be a prime, ¢ =1 (mod 3) and so 4q¢ = L* + 27TM? with L, M € Z and
L =1 (mod 3). Let p be a prime with p # 2,3,q, and let p4 LM. Then

23K\ M (1 (mod p), ifp’s =1 (mod g);
§<k> ¢ :{% (mod p), ifp's = “FHEM (mod ),
S/3k\ L 1 (modp), ifp'ss =1 (mod q);
5 (1) =Rt ot 17 < i ot
and
%C(Q)JW_%C _ {1 (mod p), iqu;?'l =1 (mod q);
=T ERY (modp), i =ML (mod g),
oo L {1 (mod p), ifp's =1 (mod q);
0 bo21g)k T % (mod p), zqu%1 = w (mod q).

Proof. Substituting consequently ¢ = L/(3M) and then ¢ = —9M/L in Theorem 26 and
following the same line of reasoning as in the proof of Theorem 25, we get the above con-
gruences. O

In particular, setting ¢ = 7,19,31,37 in Theorem 27, we get the following numerical
congruences.
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Corollary 28. Let p be a prime, p # 2,3,7. Then

- 1( ) _ —2 (mod p), ifp==+2 (mod 7);
— 189k |1 (mod p),  otherwise,

1 e |1 (modp), ifp==1 (mod7);
Z 18k9k =4q—14 (modp), ifp=+2 (mod7),
o0 13 (mod p), ifp==+3 (mod7).

Corollary 29. Let p be a prime, p # 2,3,7,19. Then

p—1 1 (mod p), if p=41,4£7,48 (mod 19);
< > ToF = —2/7 (mod p), ifp==+2,£3,£5 (mod 19);
k=0 —5/7 (mod p), ifp=+4,+6,+9 (mod 19).

Corollary 30. Let p be a prime, p # 2,3,31. Then

-1 AN 1 (mod p), if p=+41,42, 44,48, 415 (mod 31);
> (k) (ﬁ> ={-5/4 (mod p), ifp==43,46,+7,+12,+14 (mod 31);
k=0 1/4 (modp), ifp=+549,+10,+11,4+13 (mod 31).

Corollary 31. Let p be a prime, p # 2,3,11,37. Then

- (1 (mod p), if p==+1,+6,+8,+10,£11,£14, (mod 37);
( )37k = 4/11 (mod p), ifp=+2,49,+12 +15 +16,+£17 (mod 37);
k=0 | —7/11 (mod p), ifp=43,44,4£5 £7,£13,£18 (mod 37),

p1 @ (1 (modp), ifp==£l,£6,+8 +10,£11,£14, (mod 37);
C

Z % =<{ —6 (modp), ifp==42, 49, +12 +15 £16,+17 (mod 37);

k=0 (5 (mod p), if p=4£3,+4,4+5 47,413, £18 (mod 37).

6 Polynomial congruences involving 5,

In this section, we will deal with a particular case of Theorem 1 when m = 6. In this case, we
get polynomial congruences containing the sequence Sy (OEIS A176898) and also (2k+1)Sk.
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Theorem 32. Let p be a prime greater than 3, and lett € D,. Then

Lp/6)

3
> st =] (%’) wizy(1—216t)  (mod p), (48)
k=0
3 s () )
Z Sith = — (2) (wsp (1 — 216t) + wz (1 — 216t)) (mod p)
|132] 12 ,
k=172 R }
[p/6] . B
> (2K + 1)Stt = 5(-1)’%%J (216t — 1)  (mod p), (49)
k=0
[5p/6] . B
Z (2k + 1)tk = E(—l)T <wL%J(216t — 1) —wz (216t — 1)> (mod p).
k=(p+1)/2

Corollary 33. Let p be a prime greater than 3, and lett € D,. Then

-1
pz St = % (g) <5wL%J(1 — 216t) — w{sp (1 — 216t)) (mod p),
k=0

=

bS]

1 p—1
(2K + 1St = —(~1)" <wL%J(216t — 1) + bwip (216t — 1)) (mod p).
0

B
Il

Taking into account (17), we get the following explicit congruences. Note that the first
congruence below confirms a conjecture of Z. W. Sun [13, Conj. 2].

Corollary 34. Let p be a prime greater than 3. Then

p1 1p/6)
Si 1 (3) Sk 3 (3)
_kE_ 1> Z_k‘z_ - (modp)7
£ 108" ~ 2 \p 22 108F ~ 4 \p
p—1 [p/6]
216~ — 2 ({7) ’ 2 5 =1 <_> (mod p),
k=0 k=0
p—1 [p/6]
(2/{5 -+ 1)Sk _2/(3 (2]€ + 1)Sk 1
1088 9\p/)’ 2 i =3l,) (medp)
k=0 k=0
CA2k+1)S, _1(6 Lpz/éj(zkﬂ)s,f:l 6\ (mod
27216 2\p)” 2216 2 \p P

From Corollary 33 and (18) we get the following congruences.
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Corollary 35. Let p be a prime greater than 3. Then

(1/2  (mod p), ifp=+1 (mod 9);

3\ 21 S, .
- Z@ =4 —11/8 (mod p), ifp==+2 (mod?9);
P/ [ 7/8 (mod p), ifp=+4 (mod?9),

(1/2 (mod p), ifp=+1 (mod 9);
1/8 (mod p), ifp=+2 (mod9);
(—5/8 (mod p), ifp=+4 (mod9),

p—1 k
3

2 S ( )

£~ \ 432

p—1 (2k +1)S 1/2 (mod p), ifp=41 (mod9);
( ) Z Bk =) Y12 (modp). ifp==£2 (mod9);
- | —5/12 (mod p), ifp==+4 (mod 9),

(1/2 (mod p), ifp==+1 (mod9);

p—1 k
> (2K + 1) (%) ={-3/4 (modp), ifp=+2 (mod?9);
k=0 (1/4  (mod p), ifp=44 (mod9).

The following theorem provides two families of polynomial congruences.

Theorem 36. Let p be a prime, p > 3, and lett € D,. Ift Z0 (mod p), then the following
congruences hold modulo p:

[p/6]
14+ 12t 1+ 4t 1—12t (1 — 12t
S Se(ft+ 1)) = o ( p )— o < S ) ,

p—1

St (4t + 1>)k5 (1+12t)(1 + 4¢)(1 — 6t) (1 + 4t) _(I-12t) (248 -6t + 1) (1 - 1215)_

k=0 32t p 32If p

If 6t + 1 # 0 (mod p), then we have modulo p,

Lp/6]

) w1412t (1—12t\  3(1+4t) [1+4t
;(2k+1)5k(t(4t+1)):8(1+6t)( ; )+8<1+6t)( p )

p—1

9 ko (L+128) (2482 + 6t + 1) (1 —12¢
;(% L D)8, (24 + 1) = SEsT ( ; )
3(1—6t)(1+4t)* (144t
i 8(1 + 6t) ( P ) '

Proof. From (48), Corollary 33 and Lemma 20 for any = € D, with 2z 4+ 1 # 0 (mod p), we
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have

2 () 16 matee -9
- 43((21;;111)) (233;2) " 4(251 1) (6_1)%) (mod p)

(1—2)2x+1)? k_l P
Z o ( 216 ) =3 (g) (5wyz)(42” — 32) — w5 (42” — 32))

_ (@122 —x+2) (2042 wz(z—-1)(2x+3) (66 o
B 42z +1) ( P ) 427 + 1) ( » ) (mod p).

Now replacing x by (=12t — 1)/2, we get the first two congruences of the theorem.

Similarly, from (49), Corollary 33 and Lemma 20 for any x € D, such that 2z + 1 # 0
(mod p), we have

[p/6]

> (2k+1)8; ((x +1)(27 — 1)2)k

216
k=0

1 p-1
5(—1) 2 wL%J(ZLxS — 3z)

= () tamrn () el

pi(% +1)S, ((93 +1)(22 — 1)2)k

216
k=0

1 p-1
E<_1) 2 (SngJ (42 — 37) + W s (42° — 3x))

_ w20 +w42) (2-22\ (v+1)*(22—3) (62+6
6(2z + 1) P 6(2z + 1) p
Replacing = by (12t 4+ 1)/2, we conclude the proof.

) (mod .

O

The next theorem gives a criterion for ¢ € C}(p) in terms of values of the sums > 2_1 Sjt*
and 3071 (2k + 1)Skt* modulo p.

Theorem 37. Let p be a prime, p > 3, and let ¢ € D, with ¢ # —3 (mod p). Then

(X3) 55 () = {5 i e

k=

—H2 (mod p), if c € Ca(p)
and
- 1/2 d p), if c € Co(p);
23y k1S zfc (mod p) ffc o(p)
Z 36’“ 3+ 02 =\ 4 (mOd p), if ¢ € Cl(p);'

k=0 —2¢ (mod p), if c € Co(p).
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Proof. From Corollary 33 we have
§:s ¢ 1(§ s, (226 5=V modp). (50)
=—(= pi |l ——= ) —we | — m ,
Fl1sB+r@)) —s\3/ P31 2) M\ re P

p—1 p—1
(2k + 1)Sk (—1) 3—c? 3—¢?
203 Groy - 12 U sre) Tuml\sra)) (medp) 6D

If p=1 (mod 6), then p splits into the product of primes in Z[w|, p = 77 with 7 = 2 (mod 3)
and, by (36), we easily find

) _1L—1 .
S \3+¢ 20(02—1—3)

Applying Lemma 23, we have

2 % 142 142w\
wLEJ <3 02) = ( ) 6 — (C— 1— 2&)) <u> + (C+ 1 +2w) (M)
¢ \3+c¢ 2c(c®+3) = P 3 p 3

modulo 7 and therefore,

1 (mod p), if ¢ € Co(p);
3

1 (243 3—¢c2 ,
(=1)z ( p > “w)e) (3+02) =4 55 (modp), ifceCi(p); (52)
—35¢ (mod p), if c € Cy(p).

If p=5 (mod 6), then

3 —c? (—1)% ptl_y ptl
wie| <3+C2):2—<(c—1—2w) T (e 1+ 2w)'5 1).

Now, by Lemma 23, we get

9 p=5 -1
— —1 1 1+2
I\3+2) T 2¢(2 1 3)% P/, r /),

modulo p and therefore,

5 C2—|—3 3_02 1 (mOd p)a lfCECO(p)7
0 () e (553) =% (edp. feeGih)r (9
¢ (mod p), if c € Cy(p).

T T2c

Comparing (52) and (53), we get that (52) holds for all primes p > 3.
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Applying the similar argument for evaluation of W sp | ( ) we see that if p =1 (mod 6),

then 5p =5 (mod 6) and we have

3+2

—1

3 -2 1% o) -
Yl <3 2>: = M<(C_1_2W)53 e+ 142w) s +1>,
T 2c(c2+3) s

Now, by Lemma 23, we easily find

= - 142 1+ 20\
wtspj( ) Sl (c—l—zw)<u> (HHM(M)
6 3+c 2¢(c? + 3) p ; » ,

modulo 7, which implies

N 5 . 1 (mod p), if ¢ € Co(p);
(-1) = ( . ) Swsp (3+02) =< -3¢ (mod p), ifce Ci(p); (54)
32;5 (mod p), if ¢ € Cy(p).

Similarly, if p = 5 (mod 6), then 5p = 1 (mod 6) and we have

2

3—¢2 —1)"% » 5
“’L"’H( C): (=1) — ((c—1—2w)5§2+(c+1+2w) 5).
¢l \ 3+ c? 2¢(c2 4 3)"5

By Lemma 23, we readily get

5p—1 _5 5
3— -1 142 149
W, ( 02> S G Y RSP <u) le—1—2w) (u)
6 3+c 20(02 +3) - p , » ,

modulo p and therefore after simplification we obtain that (54) holds for all primes p >
3. Finally, substituting (52) and (54) into (50) and (51), we get the congruences of the
theorem. O

From Theorem 37 with ¢ = —9M /L and ¢ = L/3M and criterion (34) we get the following
congruences.

Theorem 38. Let q be a prime, ¢ =1 (mod 3) and so 4q¢ = L* + 2TM? with L, M € Z and
L =1 (mod 3). Let p be a prime with p # 2,3,q, and let p{ LM. Then

< >’§ M2 {1/2 (modp),  ifpS =1 (modq):

(160)F ~ |42 (mod p), if p'T = ZELHD (mod g),

k= 8M

o 1/2  (mod p), ifp's =1 (mod g);
( ) S’“ 432q

. g—1 _
i27é\4L 2L (mod p), zfp = = 1i£;M/L (mod q)
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and

p-1 M% ~|1/2 (mod p), z'fp% =1 (mod q);
Z 2k +1)8 16¢)F — | =6M-L (mod ol 149M/L d
k=0 41, p)a pr 3 = 2 (mo Q),
(3q> %(21{ 1)S L 1/2  (mod p), ifp's =1 (mod q);
= - ,
P/ ' (432Q)k £L9M (mod p), ifp's = w (mod q).

For example, if ¢ = 7, then 4¢ = L? + 27M? with L = M = 1 and by Theorem 38, we
get the following numerical congruences.

Corollary 39. Let p be a prime, p # 2,3,7. Then

AL g (1/2 (mod p), ifp==+1 (mod 7);
( ) Z Tio% = —3/8 (mod p), ifp=+2 (mod7);
(—1/8 (mod p), ifp=43 (mod7),
o\ L g (1/2  (mod p), ifp=+41 (mod 7);
(—) y - =1425/8 (modp), ifp=42 (mod7);
P/ = 3024 B L
[ —29/8 (mod p), ifp==+3 (mod 7),
-1 (1/2 (mod p), ifp==41 (mod 7);
(Z) —(2]{1_'1—2?5 =<¢5/4 (modp), ifp=+2 (mod?7);
P/ | —7/4 (mod p), ifp==43 (mod7),
-1 (1/2  (mod p), ifp=+1 (mod 7);
(E) @];;_% =4 —11/36 (mod p), ifp=+£2 (mod7);
P/ =0 | —7/36 (modp), ifp==+3 (mod?7).

Similarly, setting ¢ = 13,19, 31 in Theorem 38, we obtain the following congruences.
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Corollary 40. Let p be

o1 (1/2 (mod p), ifp=+1,+5 (mod 13);
13 Sk )
— Z 505" =4 —7/8 (modp), ifp=+2,4+3 (mod 13);
P70 (3/8 (modp), ifp==44,+6 (mod 13),
20\ P 25 \ b (1/2  (mod p), ifp=+1,4£5 (mod 13);
<—) Sk (ﬁ) =17/40 (mod p), ifp=+2,43 (mod 13);
= (—37/40  (mod p), ifp=+4,£6 (mod 13),
P/ 7/4 dp), ifp=+4 d
(1/2 d p), fp=+1,45 d 13);
13Y 2 2k 4+ 1S, /2 (mod p) ffp_ (mod 13)
" To0gk 1/20 (mod p), if p=42,43 (mod 13);
k=0 | —11/20 (mod p), if p=+4,£6 (mod 13),
20\ 7] . (1/2  (mod p), if p=+1,45 (mod 13);
— (2k+1)Sk | ——= ] =4 -19/36 (mod p), ifp==42,£3 (mod 13);
5616
P70 [ 1/36  (mod p), if p=44,46 (mod 13).
Corollary 41. Let p be a prime, p # 2,3,7,19. Then
p—1 (1/2 (mod p), ifp=+1,47,+8 (mod 19);
19 Sk .
" Z S04k = 5/8 (mod p), if p=42,43,4£5 (mod 19);
k=0 (—9/8 (mod p), ifp=+4,+6,£9 (mod 19),
-1 2%+ 1)8 (1/2  (mod p), if p=4+1,£7,4£8 (mod 19);
( ) Z g =) 13/28 (modp), ifp=42,43,45  (mod 19);
k=0 (—1/28 (mod p), ifp==44,£6,£9 (mod 19).
Corollary 42. Let p be a prime, p # 2,3,31. Then
S (1/2 (mod p),  if p=+1,+2 +4,+8 +15 (mod 31);
( > Do = -1/2 (mod p), ifp==+3+6,+£7,+12 +14 (mod 31);
(0 (mod p), if p= 45,49, 410, £11,+13  (mod 31),
o3 Pl g (1/2  (mod p), if p= 41,42 44,48 +15 (mod 31);
(—) 83—kk =< 23/16 (mod p), if p= 43,46, +7,£12,+14 (mod 31);
P/ =0 (—31/16 (mod p), if p=+5,49,+10,+11,+13 (mod 31),

a prime, p # 2,3,5,13. Then
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(31> N2k + 1S {—1 (mod p), if p=+5,+9,£10,£11,+13 (mod 31);

k .
p) = 124 1/2  (mod p), otherwise,
_ 1/2 d p), fp=+1,£2, +4 £8 +15 d 31);
03\ 2L (2k 1 1S, /2 (mod p) iy (mod 31)
— BT —13/36  (mod p), if p=43,46,4+7,+12,+14 (mod 31);
P/ = ~5/36  (mod p), if p=+5,+9,£10,£11,+13 (mod 31).

7 Closed form for a companion sequence of 5,

As we noticed in the Introduction, the sequence S,, can be defined explicitly by formula
(1) or by the generating function (8). Sun [13] considered a companion sequence T,,, whose
definition comes from a conjectural series expansion of trigonometric functions [13, Conj. 4]:

there are positive integers Ty, 15, T3, ... such that
i Syt 4 1 iTkx% - cos 28L1"(:(:os(6\/§317) (55)
prt 24 pet 12 3

for all real z with |z| < 1/(6v/3). The first few values of T}, are as follows:
1, 32, 1792, 122880, 9371648, 763363328, ....

In this section, we give an exact formula for 7},. It easily follows from the companion series
expansion to (5) [6, p. 210,(12)]:

1
cos(aarcsin(z)) = F (—%, %; §;zz> : |z| < 1. (56)

Proposition 43. The coefficients Ty, k > 1, in expansion (55) are given by

16F1 (3k — 2 3k — 2 3k — 2
Ty = —— =161 (2 — :
=) 2o G - ()

Proof. Combining formulas (5) and (56) with the obvious trigonometric identity

arcsin(z) + arccos(z) = g,
we get a transformation formula connecting both hypergeometric functions from (5) and (56):

1 1 1—a 3
cos <E>F —g, g; —: 2% ) +sin (ﬂ) azF i a, —a; —:2% | = cos(aarccos(z)), |z| < 1.
2 2°2°2 2 2 2 2

Plugging in a = 2/3, we get

1 111 153 2
SF (=5 3:5:%° +=F —, —;=;2% ) =cos [ - arccos(z) |, 2| < 1.
2 3732 V3 \662 3
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Replacing z by 6v/3z with || < 1/(64/3) and taking into account that

153 -
F= 2210822 ) =2 2k
(676727 081') kz:%SkI 3

we obtain
1 111 - 1 2
ﬂF (—g, 35 1081‘2> + % St = T (§ arCCOS(G\/§I)> ,

which gives the following generating function for the companion sequence T, :
1 1 111
— =Y T =_—F(—=,-;=:1082% ).
24 ;’“x 24 ( 37372

Comparing coefficients of powers of 22, we get a formula for T},

= A -0 (7)o (o(7) - (%)),

which shows that T} € N for all positive integers k. O]
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