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Abstract

In this work we provide a new short proof of Carlitz’s identity for the Bernoulli
numbers. Our approach is based on the ordinary generating function for the Bernoulli
numbers and a Grassmann-Berezin integral representation of the Bernoulli numbers
in the context of the Zeon algebra, which comprises an associative and commutative
algebra with nilpotent generators.

1 Introduction

In this work we will give a new, simple and short proof of Carlitz’s identity for the Bernoulli

numbers [6] ) )
> (1) B = comen S (1) B )

i=0 =0
using the Zeon algebra [16, 17]. The identity in Eq. (1) has been re-obtained many times
(7,8, 12, 23, 25] and also very recently [13, 18, 24]. The proof given here is of independent

interest, because of the simplicity of the arguments involved and, as it occurred in other
contexts [1, 2, 5, 10, 11, 15, 16, 17, 20, 21, 22], the proof comprises another example of
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the usefulness of using the Zeon algebra and/or the Grassmann algebra towards obtaining
combinatorial identities.

Before we continue, we establish the basic underlying algebraic setup needed to give the
proof of Eq. (1). Throughout this work we let Q and R denote the rational and real numbers,
respectively.

2 Basic definitions: Zeon algebra and the Grassmann-
Berezin integral

Definition 1. The Zeon algebra Z, D R is defined as the associative algebra generated by
the collection {e;}; (n < 0o0) and the scalar 1 € R, such that 1l¢; = ¢; = ¢;1, g;6; = €j&; V
i,jand g2 =0V i.

Note that only linear elements in Z,, contribute to the calculations.
For {i,j,...,k} C {1,2,...,n} and .., = €;&;-- - €} the most general element with n
generators €; can be written as (with the convention of sum over repeated indices implicit)

(;§n =a+ ;& + €5 + - + A12..0€12..n = Z aici, (2>
ic2ln]
with a, a;, aij, ..., G12., € R, 2I" being the power set of [n] := {1,2,...,n}, and 1 < i <

Jj < -+ <n. We refer to a as the body of ¢,, and write b(¢,) = a and to ¢, — a as the soul
such that s(¢,) = ¢, — a.

Definition 2. The Grassmann-Berezin integral on Z,, denoted by [, is the linear functional
[ : Z, — R such that (we use throughout this work the compact notation du,, := de,, - - - dey)

dé‘@'dé‘j = dé‘jd&, /(bn (éz)d& =0 and/<bn (él)é‘ld& = ¢n (él),

where ¢, (él-) means any element of Z, with no dependence on g;. Multiple integrals are
iterated integrals, i.e.,

[ st = [ ([ ([ oz )iz ) oo

For example, if we define ¢,, := &1+ - - - + &, it follows directly from Definition 2 and the
multinomial theorem that

/ Pryin = 18, (3)

where ¢;,, is the Kronecker delta. For more details on Grassmann-Berezin integration, we
refer the reader to the books of Berezin [3, Chapter 1] and [4, Chapter 2] or the books of
DeWitt [9, Chapter 1] and Rogers [19, Chapter 11].
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We will now recall some basic facts about the Zeon algebra. First, a + ¢,, with s(a) =
0 = b(¢,) is invertible iff b(a) # 0. More precisely, we have

1 1 On O or
— (1= 4
a+ ¢ a( a+a2+ + )a” (4)
Second, the following expression holds
PN~
ern = = = 1+ E gi + E €+ + €120 (5)
i=0 i=0 1<i<n 1<i<j<n

To obtain Eq. (5) we have used the multinomial theorem and @™ = 0V n > 1. Third, let
On (5,65, ..., éx) and dpy, (€;,€5,...,€x) mean ¢, with ¢, =¢; = --- = g, = 0 and dp,, with
de;, dej, ..., dej, omitted, respectively. We have

/¢nﬁz]kdﬂn:/¢n (éi,éj,...,ék) €wkd,un:/¢n (éi,éj,...,ék> d,un (éi,éj,...,ék>. (6)

Eq. (6) follows directly from the general expression in Eq. (2) and Definition 2. Finally,
from Definition 2, we conclude that the order of integration is irrelevant, i.e., a Fubini-like
theorem holds in the setting of Grassmann-Berezin integration.

We are now ready to prove Eq. (1).

3 Proof of Eq. (1)

Let us write Q[[z]] for the ring of formal power series in the variable z over Q. We recall the
generating function for the Bernoulli numbers B; in Q[[z]] [26], i.e.,

L 3yl (7)

o] 2t z _ |
Yoy €1 = U

and, making the change z — —z in Eq. (7), we get

_ eje_zl _ ZB]-(_T)]. (8)

> im0 (ij—l)! =0 J:

eZ

Following the strategy of our previous work [16, 17], we consider Egs. (7) and (8) in the
context of the Zeon algebra with the replacement z — ¢ = ¢r. Therefore, we get

k
1 @
-y B 0
k i Z A
Zi:O (iikl)! Jj=0 J:



and

k .
ZBJ , (10)
Zz 0 (z+1)' Jj=

using that of*! = 0V k > 1. We observe that (3", (z+1 ) =1 # 0 and, hence, 3¢ 07 @k
is invertible in Z.

Now, integrating Eq. (9) in the Zeon algebra and using Eq. (3) we get

/];% / Yy = (11)

=0 (i4+1)!
vV j > 1. It is straightforward to verify that the representation in Eq. (11) is equivalent to a
well-known representation of the Bernoulli numbers [14, Theorem 3.1}, i.e

i . 7! 1
B, = nl 1) .
n Zzl< ) Z /L ‘ 2‘113”2 PN (n + ]_)!'ln

111i5!
i1 igynin>0 L2

i1zt =i
11 +2i2++nin=n

Indeed, we have

- on | P2 Y
B — 1 Frn  Pn
n =2 )/(2'+3'+ +(n+1)!> dftn

i=1

2i9 Ny

- - i! Q2.
— _1Z .nn n dn

01,825050n 20
11+i2++in=1

—nl Z(_l)i Z L n,i1+2ig+ - +1in
o il .q 19lin3lia . .. lin
— b sy Tliald! 21131 (n+1)!
7/1+7f2++ln:'5

=n! Z(_l)i Z & n,i1+2ig+-+nin

11,8250.0,in >0
11 +ig++in=1

using Eqs. (3), (4) and the multinomial theorem.

By considering Eq. (10), we take k = m + n and write ©,1n = @m + ¢n With @, =
1+t Em, On =€+ -+ €y, and € :=€;4,, V1 <@ < n. Next, we multiply both sides
of Eq. (10) by e~¢". Finally, integrating the resulting equation with du,, := de,, - - - de; and
dv, = de, - - - de; we get

/ (/ Zm+n 4Pm+¢n)z ) dvy = mZ—HL j / </ n)j6¢”dun> dfip,. (12)

(a41)!




In Eq. (12) we have used a Fubini-like argument to perform the integrations. We first consider
the left-hand side of Eq. (12). By expanding e*™ as in Eq. (5) and integrating with respect
to du,, we will need to analyze terms such as

Eirig- i
Z / (/ m+n (@m+on)t d’um) an

1<i1 <io<---<ij<m z 0 (i+1)!
<m> / / ! d d (m)B (13)
= . Hom— Up = . n+m—j-
m—j+n (Pm—j+¢n)’ J J
J D P R J
Therefore, using Eq. (13), we get for the left-hand side of Eq. (12)
> ()8 (14)
)
i=0

Similarly, we expand e~ as in Eq. (5) and integrate with respect to dv, to obtain for the
right-hand side of Eq. (12)

m-+n . n
03 () B (19
— \Jj
j
By equating the expressions in (14) and (15) we obtain the desired result, i.e., Eq. (1).

Let ij ) be the i-th Bernoulli number of order j with generating function in Q[[z]] given
by

e}

J i

< (4)#

= BY =

() -2 83

=0

Note that B = B,,. Following the procedure just described, it is straightforward to prove
an analogous identity for the Bernoulli numbers of higher order, i.e.,

(1)t oS 7)ok,
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