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Abstract

In this work we provide a new short proof of Carlitz’s identity for the Bernoulli
numbers. Our approach is based on the ordinary generating function for the Bernoulli
numbers and a Grassmann-Berezin integral representation of the Bernoulli numbers
in the context of the Zeon algebra, which comprises an associative and commutative
algebra with nilpotent generators.

1 Introduction

In this work we will give a new, simple and short proof of Carlitz’s identity for the Bernoulli
numbers [6]

m
∑

i=0

(

m

i

)

Bn+i = (−1)m+n

n
∑

j=0

(

n

j

)

Bm+j, (1)

using the Zeon algebra [16, 17]. The identity in Eq. (1) has been re-obtained many times
[7, 8, 12, 23, 25] and also very recently [13, 18, 24]. The proof given here is of independent
interest, because of the simplicity of the arguments involved and, as it occurred in other
contexts [1, 2, 5, 10, 11, 15, 16, 17, 20, 21, 22], the proof comprises another example of
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the usefulness of using the Zeon algebra and/or the Grassmann algebra towards obtaining
combinatorial identities.

Before we continue, we establish the basic underlying algebraic setup needed to give the
proof of Eq. (1). Throughout this work we let Q and R denote the rational and real numbers,
respectively.

2 Basic definitions: Zeon algebra and the Grassmann-

Berezin integral

Definition 1. The Zeon algebra Zn ⊃ R is defined as the associative algebra generated by
the collection {εi}

n
i=1 (n < ∞) and the scalar 1 ∈ R, such that 1εi = εi = εi1, εiεj = εjεi ∀

i, j and ε2i = 0 ∀ i.

Note that only linear elements in Zn contribute to the calculations.
For {i, j, . . . , k} ⊂ {1, 2, . . . , n} and εij···k ≡ εiεj · · · εk the most general element with n

generators εi can be written as (with the convention of sum over repeated indices implicit)

φn = a+ aiεi + aijεij + · · ·+ a12···nε12···n =
∑

i∈2[n]

aiεi, (2)

with a, ai, aij, . . ., a12···n ∈ R, 2[n] being the power set of [n] := {1, 2, . . . , n}, and 1 ≤ i <

j < · · · ≤ n. We refer to a as the body of φn and write b(φn) = a and to φn − a as the soul
such that s(φn) = φn − a.

Definition 2. The Grassmann-Berezin integral on Zn, denoted by
∫

, is the linear functional
∫

: Zn → R such that (we use throughout this work the compact notation dµn := dεn · · · dε1)

dεidεj = dεjdεi,

∫

φn

(

ε̂i
)

dεi = 0 and

∫

φn

(

ε̂i
)

εidεi = φn

(

ε̂i
)

,

where φn

(

ε̂i
)

means any element of Zn with no dependence on εi. Multiple integrals are
iterated integrals, i.e.,

∫

f(φn)dµn =

∫

· · ·

(∫ (∫

f(φn)dεn

)

dεn−1

)

· · · dε1.

For example, if we define ϕn := ε1 + · · ·+ εn it follows directly from Definition 2 and the
multinomial theorem that

∫

ϕi
ndµn = i!δi,n, (3)

where δi,n is the Kronecker delta. For more details on Grassmann-Berezin integration, we
refer the reader to the books of Berezin [3, Chapter 1] and [4, Chapter 2] or the books of
DeWitt [9, Chapter 1] and Rogers [19, Chapter 11].
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We will now recall some basic facts about the Zeon algebra. First, a + φn with s(a) =
0 = b(φn) is invertible iff b(a) 6= 0. More precisely, we have

1

a+ φn

=
1

a

(

1−
φn

a
+

φ2
n

a2
+ · · ·+ (−1)n

φn
n

an

)

. (4)

Second, the following expression holds

eϕn :=
∞
∑

i=0

ϕi
n

i!
=

n
∑

i=0

ϕi
n

i!
= 1 +

∑

1≤i≤n

εi +
∑

1≤i<j≤n

εij + · · ·+ ε12···n. (5)

To obtain Eq. (5) we have used the multinomial theorem and ϕn+1
n = 0 ∀ n ≥ 1. Third, let

φn (ε̂i, ε̂j, . . . , ε̂k) and dµn (ε̂i, ε̂j, . . . , ε̂k) mean φn with εi = εj = · · · = εk = 0 and dµn with
dεi, dεj, . . . , dεk omitted, respectively. We have

∫

φnεij···kdµn =

∫

φn (ε̂i, ε̂j, . . . , ε̂k) εij···kdµn =

∫

φn (ε̂i, ε̂j, . . . , ε̂k) dµn (ε̂i, ε̂j, . . . , ε̂k) . (6)

Eq. (6) follows directly from the general expression in Eq. (2) and Definition 2. Finally,
from Definition 2, we conclude that the order of integration is irrelevant, i.e., a Fubini-like
theorem holds in the setting of Grassmann-Berezin integration.

We are now ready to prove Eq. (1).

3 Proof of Eq. (1)

Let us write Q[[z]] for the ring of formal power series in the variable z over Q. We recall the
generating function for the Bernoulli numbers Bj in Q[[z]] [26], i.e.,

1
∑∞

i=0
zi

(i+1)!

=
z

ez − 1
=

∞
∑

j=0

Bj

zj

j!
(7)

and, making the change z → −z in Eq. (7), we get

ez
∑∞

i=0
zi

(i+1)!

=
zez

ez − 1
=

∞
∑

j=0

Bj

(−z)j

j!
. (8)

Following the strategy of our previous work [16, 17], we consider Eqs. (7) and (8) in the
context of the Zeon algebra with the replacement z → φk ≡ ϕk. Therefore, we get

1
∑k

i=0

ϕi
k

(i+1)!

=
k
∑

j=0

Bj

ϕ
j
k

j!
(9)
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and
eϕk

∑k

i=0

ϕi
k

(i+1)!

=
k
∑

j=0

Bj

(−ϕk)
j

j!
, (10)

using that ϕk+1
k = 0 ∀ k ≥ 1. We observe that b(

∑k

i=0

ϕi
k

(i+1)!
) = 1 6= 0 and, hence,

∑k

i=0

ϕi
k

(i+1)!

is invertible in Zk.
Now, integrating Eq. (9) in the Zeon algebra and using Eq. (3) we get

∫

1
∑j

i=0

ϕi
j

(i+1)!

dµj =

j
∑

k=0

Bk

k!

∫

ϕk
jdµj = Bj (11)

∀ j ≥ 1. It is straightforward to verify that the representation in Eq. (11) is equivalent to a
well-known representation of the Bernoulli numbers [14, Theorem 3.1], i.e.,

Bn = n!
n
∑

i=1

(−1)i
∑

i1,i2,...,in≥0
i1+i2+···+in=i

i1+2i2+···+nin=n

i!

i1!i2! · · · in!

1

2!i13!i2 · · · (n+ 1)!in
.

Indeed, we have

Bn =
n
∑

i=1

(−1)i
∫ (

ϕn

2!
+

ϕ2
n

3!
+ · · ·+

ϕn
n

(n+ 1)!

)i

dµn

=
n
∑

i=1

(−1)i
∑

i1,i2,...,in≥0
i1+i2+···+in=i

i!

i1!i2! · · · in!

∫

ϕi1
n ϕ

2i2
n · · ·ϕnin

n

2!i13!i2 · · · (n+ 1)!in
dµn

= n!
n
∑

i=1

(−1)i
∑

i1,i2,...,in≥0
i1+i2+···+in=i

i!

i1!i2! · · · in!

δn,i1+2i2+···+nin

2!i13!i2 · · · (n+ 1)!in

= n!
n
∑

i=1

(−1)i
∑

i1,i2,...,in≥0
i1+i2+···+in=i

i!

i1!i2! · · · in!

δn,i1+2i2+···+nin

2!i13!i2 · · · (n+ 1)!in
,

using Eqs. (3), (4) and the multinomial theorem.
By considering Eq. (10), we take k = m + n and write ϕm+n = ϕm + φn with ϕm :=

ε1 + · · ·+ εm, φn := ǫ1 + · · ·+ ǫn, and ǫi := εi+m ∀ 1 ≤ i ≤ n. Next, we multiply both sides
of Eq. (10) by e−φn . Finally, integrating the resulting equation with dµm := dεm · · · dε1 and
dνn := dǫn · · · dǫ1 we get

∫

(

∫

eϕm

∑m+n

i=0
(ϕm+φn)i

(i+1)!

dµm

)

dνn =
m+n
∑

j=0

Bj

j!

∫ (∫

(−ϕm − φn)
je−φndνn

)

dµm. (12)
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In Eq. (12) we have used a Fubini-like argument to perform the integrations. We first consider
the left-hand side of Eq. (12). By expanding eϕm as in Eq. (5) and integrating with respect
to dµm we will need to analyze terms such as

∑

1≤i1<i2<···<ij≤m

∫

(

∫

εi1i2···ij
∑m+n

i=0
(ϕm+φn)i

(i+1)!

dµm

)

dνn

=

(

m

j

)∫





∫

1
∑m−j+n

i=0
(ϕm−j+φn)i

(i+1)!

dµm−j



 dνn =

(

m

j

)

Bn+m−j. (13)

Therefore, using Eq. (13), we get for the left-hand side of Eq. (12)

m
∑

i=0

(

m

i

)

Bn+i. (14)

Similarly, we expand e−φn as in Eq. (5) and integrate with respect to dνn to obtain for the
right-hand side of Eq. (12)

(−1)m+n

n
∑

j=0

(

n

j

)

Bm+j. (15)

By equating the expressions in (14) and (15) we obtain the desired result, i.e., Eq. (1).

Let B
(j)
i be the i-th Bernoulli number of order j with generating function in Q[[z]] given

by
(

z

ez − 1

)j

=
∞
∑

i=0

B
(j)
i

zi

i!
.

Note that B
(1)
n ≡ Bn. Following the procedure just described, it is straightforward to prove

an analogous identity for the Bernoulli numbers of higher order, i.e.,

m
∑

i=0

ki

(

m

i

)

B
(k)
n+i = (−1)m+n

n
∑

j=0

kj

(

n

j

)

B
(k)
m+j.
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