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Abstract

A lattice point (0, 0) 6= (x, y) ∈ Z
2 is called visible (from the origin) if gcd(x, y) = 1

and nonvisible otherwise. Given positive integers a, b, define M := M(a, b) and N :=
N(a, b) to be the positive integers M and N having the least value of max(M,N) with
the property that gcd(M − i, N − j) > 1 for all 1 ≤ i ≤ a and 1 ≤ j ≤ b. We give
upper and lower bounds for M,N .

1 Introduction

A lattice point (0, 0) 6= (x, y) ∈ Z
2 is called visible (from the origin) if gcd(x, y) = 1 and

nonvisible otherwise (see Herzog and Stewart [2]). In other words, (r, s) is visible iff r
s
is in

lowest terms.
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In [4], Pighizzini and Shallit defined, for a positive integer n, the function S(n), which is
the least positive integer r such that there exists m ∈ {0, 1, . . . , r} with gcd(r− i,m− j) > 1
for 0 ≤ i, j < n. This is equivalent to finding the square of side n, nearest to the origin in
the first quadrant of the real xy plane, where all its lattice points are nonvisible from the
origin. It was shown in [4] that

S(n) < e(2+o(1))n2 logn as n→ ∞, (1)

and computed S(n) and the corresponding m’s for n = 1, 2, 3. This function was also studied
by Wolfram [6, pp. 613, 1093] who computed S(4).

Here, we generalize the function S(n). Given positive integers a, b, let (M(a, b), N(a, b))
be a minimal pair of positive integers such that gcd(M − i, N − j) > 1 for all 1 ≤ i ≤ a and
1 ≤ j ≤ b. More precisely, given positive integers a, b, defineM :=M(a, b) and N := N(a, b)
to be the positive integers M and N having the least value of max(M,N) with the property
that gcd(M − i, N − j) > 1 for all 1 ≤ i ≤ a and 1 ≤ j ≤ b. This is equivalent to finding the
rectangle with sides a, b, nearest to the origin in the first quadrant of real xy plane, where
all its lattice points are nonvisible from the origin.

Without loss of generality, we assume that a ≥ b. In this note, we prove the following
result. We always write p for a prime number.

Theorem 1. If a ≥ b, we then have

(i) max{M(a, b), N(a, b)} ≤ exp((6/π2 + o(1))ab log ab) as b→ ∞.

(ii) max{M(a, b), N(a, b)} ≤ exp(0.721521ab log ab) if b > 100.

(iii) We have

M(a, b) ≥ exp((c1 + o(1))b log ab) and N(a, b) ≥ exp((c1 + o(1))a log ab),

where

c1 = 1−
∑

p≥2

1

p2
= 0.547753 · · ·

provided b→ ∞ in such a way that log log a = o(b).

Taking a = b = n, (i) above shows that

S(n) ≤ exp((12/π2 + o(1))n2 log n) as n→ ∞,

which improves (1). We also give a lower bound for S(n). We prove

Theorem 2. For n > 1, we have

S(n) ≥ exp(.82248n log n).

We also give an algorithm for computing M and N for a given a and b. This is stated in
Section 3 and values of M and N are computed for some small values of a, b. The proof of
Theorem 2 is given in Section 4.
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2 Preliminaries

For a positive integer i, let pi denote the i-th prime. Thus p1 = 2, p2 = 3, . . .. For real x > 1,
let

π(x) =
∑

p≤x

1 and θ(x) =
∑

p≤x

log p.

From the prime number theorem, we have π(x) ≤ s1x/ log x and θ(pℓ) ≤ s2ℓ log ℓ for positive
constants s1, s2. The following results give explicit values of s1 and s2.

Lemma 3. Let x be real and positive and ℓ be a positive integer. We have

(i) π(x) ≤
x

log x

(

1 +
1.2762

log x

)

for x > 1.

(ii) pℓ ≥ ℓ log ℓ for ℓ ≥ 1.

(iii) θ(pℓ) ≤ ℓ(log ℓ+ log log ℓ− .75) for ℓ ≥ 8.

(iv) θ(x) ≥ x

(

1−
1

log x

)

for x ≥ 41.

(v)
∑

p≤x

1

p
≤ log log x+ 0.2615 +

1

log2 x
for x > 1.

The estimates (ii), (iv) and (v) are Rosser and Schoenfeld [5, (3.12), (3.16), (3.20)],
respectively. The estimate (i) is due to Dusart [1] and (iii) is derived from estimates in [1].

For given integers j ≥ r ≥ 1, let

r′ := r′(j) := #{i : 1 ≤ i ≤ r and gcd(i, j) = 1}.

Let

Rj := max

{

r′ −
rϕ(j)

j
: 1 ≤ r < j

}

,

where ϕ(j) is the Euler phi-function. It is easy to see that Rp = 1−1/p. For a real number x,
let {x} denote the fractional part of x; i.e., {x} = x−⌊x⌋. We prove the following estimate.

Lemma 4. If n > 100, then

n
∑

j=1

Rj ≤ .375n log n− .432n− 10.
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Proof. For 1 ≤ r < j, we have

r′(j) ≤ r −
∑

p|j

⌊

r

p

⌋

+
∑

pq|j

⌊

r

pq

⌋

−
∑

pqr|j

⌊

rj
pqr

⌋

+ · · · ,

where p, q, r, . . . are primes dividing j. Since

ϕ(j)

j
= 1−

∑

p|j

1

p
+
∑

pq|j

1

pq
−
∑

pqr|j

1

pqr
+ · · · ,

we get

r′ −
rϕ(j)

j
≤
∑

p|j

{

rj
p

}

−
∑

pq|j

{

rj
pq

}

+
∑

pqr|j

{

rj
pqr

}

− · · · .

Since r/s ≤ ⌊r/s⌋+ 1− 1/s holds for positive integers r, s, we get

Rj ≤
∑

p|j

(

1−
1

p

)

+
∑

pqr|j

(

1−
1

pqr

)

+ · · ·

Let ω(j) be the number of distinct prime divisors of j and put ωt =
(

j

t

)

. Then

Rj ≤
∑

t odd

ωt −
∑

p|j

1

p
= 2ω(j)−1 −

∑

p|j

1

p
.

Thus, for n > 100, we have

n
∑

j=1

Rj ≤

100
∑

j=1

Rj +
1

2

n
∑

j>100

2ω(j) −
b
∑

j>100

∑

p|j

1

p

=
100
∑

j=1



Rj − 2ω(j)−1 −
∑

p|j

1

p



+
1

2

n
∑

j=1

2ω(j) −
n
∑

j=2

∑

p|j

1

p

≤ −130.4778 +
1

2

n
∑

j=1

2ω(j) −
∑

p≤n

⌊

n

p

⌋

1

p
. (2)

Assuming n > 100, we have

∑

p≤n

⌊

n

p

⌋

1

p
≥

∑

p≤n

(

n+ 1

p2
−

1

p

)

≥ (n+ 1)
∑

p≤b

(

1

p2
−

1

p(n+ 1)

)

≥ (n+ 1)
∑

p≤101

(

1

p2
−

1

101p

)

≥ .432(n+ 1). (3)
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As in the proof of [3, Lemma 9] for n ≥ 248, and using exact computations for n ∈ [101, 247],
we obtain

n
∑

j=2

2ω(j) − 120 ≤ .375n log n for all n > 100. (4)

Combining the estimates (2), (3) and (4) above, we get the assertion of the lemma.

Lemma 5. For a positive integer n, we have

n
∑

j=1

ϕ(j)

j
≤

6n

π2
+ log n+ 1. (5)

Proof. We have

n
∑

j=1

ϕ(j)

j
=

b
∑

j=1

µ(j)

j

⌊

n

j

⌋

=
n
∑

j=1

µ(j)

j

(

n

j
−

{

n

j

})

= n
b
∑

j=1

µ(j)

j2
−

n
∑

j=1

µ(j)

j

{

n

j

}

.

Hence, inequality (5) follows from

n
∑

j=1

µ(j)

j2
=

∞
∑

j=1

µ(j)

j2
−
∑

j>n

µ(j)

j2
<

6

π2
+
∑

j>n

1

j2
≤

6

π2
+

∫ ∞

n

du

u2
=

6

π2
+

1

n
,

and

−

n
∑

j=1

µ(j)

j

{

n

j

}

≤

n
∑

j=2

1

j
<

∫ n

1

du

u
= log n.

We now define two functions f and g on N with values in the positive real numbers given
by

f(n) =

{

∑n

j=1 ϕ(j)/j, if n ≤ 100;

6n/π2 + log n+ 1, if n > 100;

and

g(n) =

{

∑n

j=1Rj, if n ≤ 100;

.375n log n− .432n− 10, if n > 100.

We observe from Lemmas 4 and 5 that inequalities f(n) ≤ 6n/π2 + log n+ 1 for n ≥ 1 and
g(n) ≤ .375n log n hold for all n ≥ 7.
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3 Proof of Theorem 1

3.1 Proof of the upper bounds (i) and (ii) in Theorem 1

Let a and b be positive integers with a ≥ b. If p |M and p | N for each p ≤ b, then

gcd(M − i, N − j) > 1 for 1 ≤ i ≤ a, 1 ≤ j ≤ b and gcd(i, j) 6= 1.

If p |M and N ≡ 1 (mod p) for every b < p ≤ a, then

gcd(M − i, N − 1) > 1 for b < i ≤ a.

Let

T := T (a, b) : = {(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, gcd(i, j) = 1} \ {(i, 1) : b < i ≤ a},

and let t = #T . We label the elements of T (a, b) as

T (a, b) = {(il, jl) : 1 ≤ l ≤ t}

in lexicographic order. Hence (i1, j1) = (1, 1), (i2, j2) = (1, 2), . . ..
We consider the system of congruences

M,N ≡ 0 (mod p) for p ≤ b;

M ≡ 0 (mod p) and N ≡ 1 (mod p) for b < p ≤ a;

and
M ≡ iℓ (mod pπ(b)+ℓ) and N ≡ jl mod pπ(b)+ℓ) for 1 ≤ ℓ ≤ t.

By the Chinese remainder theorem, we get

max(M,N) ≤
∏

ℓ≤π(a)+t

pℓ. (6)

We now estimate π(a) + t. For every 1 ≤ j ≤ b, write a = jqj + rj where 0 ≤ rj < j. By
dividing a into intervals of length j, we obtain

t+ a− b =
b
∑

j=1

(qjϕ(j) + r′j) = a

b
∑

j=1

ϕ(j)

j
+

b
∑

j=1

(

r′j −
rjϕ(j)

j

)

≤ a
b
∑

j=1

ϕ(j)

j
+

b
∑

j=1

Rj,

which gives

t+ π(a) ≤ ab

(

∑b

j=1 ϕ(j)/j − 1

b
+
b+ π(a) +

∑b

j=1Rj

ab

)

.
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Assume that b > 100. By Lemmas 4, 5, 3 (i) and the fact that a ≥ b, we obtain

∑b

j=1 ϕ(j)/j − 1

b
+
b+ π(a) +

∑b

j=1Rj

ab

≤
6

π2
+

log b

b
+
b+ .375b log b− .432b− 10 + π(a)

ab

≤
6

π2
+

log b

b
+
.568 + 3

8
log b

a
+
a(1 + 1.2762/log a)− 10

ab log a

≤
6

π2
+

11 log b

8b
+

1

b log b

(

1 +
1.2762

log b

)

−
10

b2
. (7)

In particular,

t+ π(a) ≤

(

6

π2
+ o(1)

)

ab when b→ ∞. (8)

Additionally, since the last expression (7) is a decreasing function of b, we obtain

t+ π(a) ≤ .67252ab for b > 100.

Define h0(b) = .67252 if b > 100 and for b ≤ 100 let this function be defined in the following
way:

h0(b) :=

∑b

j=1 ϕ(j)/j − 1

b

+ max
b≤a≤100

{

b+
∑b

j=1Rj + π(a)

ab
,
b+

∑b

j=1Rj

101b
+

1

b log 101

(

1 +
1.2762

log 101

)

}

.

We then obtain from a ≥ b and Lemma 3 (i) that t+ π(a) ≤ h0(b)ab.
If π(a) + t ≤ 7, then max(M,N) ≤ 510510. In fact, b ≤ a ≤ 4 in that case. Hence, we

now assume that π(a) + t ≥ 8. By Lemma 3 (i) and (iii) and from the fact that a ≥ b, we
have

∏

ℓ≤π(a)+t

pℓ ≤ exp (abh0(b)(log h0(b)ab+ log log h0(b)ab− .75)

≤ exp

(

abh0(b) log ab

(

1 +
log h0(b) + log log h0(b)ab− .75

log ab

))

≤ exp

(

abh0(b) log ab

(

1 +
log h0(b) + log log h0(b)b

2 − .75

log b2

))

:= exp(h1(b)ab log b).

Here,

h1(b) = h0(b)

(

1 +
log h0(b) + log log h0(b)b

2 − .75

log b2

)

.
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Making b→ ∞, we get (i) of Theorem 1 from (8). For b > 100, since h0(b) = .67252, we get

h1(b) ≤ h0(b)

(

1 +
log h0(b) + log log h0(b) · 101

2 − .75

log 1012

)

≤ .721521 := c1,

which proves (ii) of Theorem 1. Our arguments give upper bounds for M(a, b) and N(a, b)
in smaller ranges of b as well. That is, for b ≤ 100, we get h1(b) ≤ c1(b), where the values of
c1 are given by:

b c1 b c1 b c1 b c1 b c1
2 9432 3 1.1429 4 .9344 5 .99964 6 .8587
7 .9074 8 .8448 9 .8279 10 .7813 11 .8186
12 .7718 13 .8034 14 .7752 15 .7608 16 .7435
17 .7689 18 .7419 19 .7646 20 .7454 ≥ 21 .7463

3.2 Proof of the lower bound (iii) of Theorem 1

Let M,N satisfy the conditions of Theorem 1. For each pair (i, j) with 1 ≤ i ≤ a and
1 ≤ j ≤ b, let pi,j be the least prime dividing gcd(M − i, N − j). We consider the set

P = {pi,j : 1 ≤ i ≤ a, 1 ≤ j ≤ b}.

Suppose that p ∈ P . If p | gcd(M− i, N−j) and p | gcd(M− i′, N−j′) for some 1 ≤ i, i′ ≤ a
and 1 ≤ j, j′ ≤ b with (i, j) 6= (i′, j′). Then p | (i− i′) and p | (j − j′). In particular, p ≤ a.
Thus, given p ∈ P , let (i0, j0) be the least pair with 1 ≤ i0 ≤ a and 1 ≤ j0 ≤ b such that
p | gcd(M − i, N − j). Then every other pair (i, j) with 1 ≤ i ≤ a and 1 ≤ j ≤ b such that
p | gcd(M− i, N− j) has the property that i = i0+up and j = j0+vp for some non-negative
integers u, v with 0 ≤ u ≤ ⌊(a − 1)/p⌋ and 0 ≤ v ≤ ⌊(b − 1)/p⌋. Thus, for a fixed p, the
number of pairs (i, j) for which p = pi,j is at most

(

1 +

⌊

a− 1

p

⌋)(

1 +

⌊

b− 1

p

⌋)

= 1 +

⌊

a− 1

p

⌋

+

⌊

b− 1

p

⌋

+

⌊

a− 1

p

⌋⌊

b− 1

p

⌋

. (9)

Putting also
T = T (a, b) = {(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b},

and summing up the above inequality (9) over all the possible primes p ∈ P , we get that

#T = ab ≤
∑

p∈P

(

1 +
a+ b

p
+
ab

p2

)

≤ #P + (a+ b)
∑

p≤a

1

p
+ ab

∑

p≤a

1

p2
. (10)

By the prime number theorem, in the right, the second sum is

(a+ b) (log log a+O(1)) = o(ab)
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because of the assumption that log log t = o(b) as b→ ∞. Put

c2 =
∑

p≥2

1

p2
= 1− c1

and P = #P . We then get that

ab ≤ P + (c2 + o(1))ab or P ≥ (c1 + o(1))ab (b→ ∞).

Now it is clear that

Ma >
∏

1≤i≤a

(M − i) ≥
∏

p∈P

p

≥
∏

k≤P

pk = exp((1 + o(1))P logP ) = exp ((c1 + o(1))ab log ab) ,

implying the desired inequality (iii) on M . A similar argument proves the inequality for N .
Hence, part (iii) of Theorem 1 is proved.

4 Proof of Theorem 2

We now prove Theorem 2 by computing M(a, a) for a > 1. We follow the same arguments
as in Section 3.2 with a = b and arrive at

#T = a2 ≤ #P + 2
∑

p≤a

⌊

a− 1

p

⌋

+
∑

p≤a

⌊

a− 1

p

⌋2

,

giving

#P ≥ a2 − 2
∑

p≤a

⌊

a− 1

p

⌋

−
∑

p≤a

⌊

a− 1

p

⌋2

≥ a2 − 2a
∑

p≤a

1

p
− a2

∑

p≤a

1

p2
, (11)

and

Ma >
∏

p∈P

p ≥

#P
∏

i=1

pi = exp(θ(p#P)). (12)

Let a ≤ 100. We explicitly compute the integral part of the middle term of (11), which

we call it Pa, and compute (
∏Pa

i=1 pi)
1

a to get a lower bound of M giving the assertion for
a ≤ 100. In fact we get M ≥ exp(a log a) for a ≥ 2. Now we take a ≥ 101. Then from
Lemma 3 (v) and

∑

p≥a

1

p2
≤ ζ(2)−

100
∑

i=1

1

i2
+
∑

p≤100

1

p2
≤ .4604,
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we get

#P ≥a2 − .4604a2 − 2a

(

log log a+ .2615 +
1

log2 a

)

≥a2

{

.5396−
2 log log a+ .523 + 2

log2 a

a

}

≥ .5032a2

since a ≥ 101. This together with (12) and Lemma 3 (ii) and (iv) gives

Ma > exp

(

.5032a2 log(.5032a2)(1−
1

log(.5032a2)
)

)

> exp

(

.5032a2(log a)(2 +
log .5032

log a
)(1−

1

log(.5032a2)
)

)

> exp(.82248a2 log a)

since a ≥ 101. The proof is now complete.
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